ebook img

Delay effects in the response of low grade gliomas to radiotherapy: A mathematical model and its therapeutical implications PDF

0.43 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Delay effects in the response of low grade gliomas to radiotherapy: A mathematical model and its therapeutical implications

MathematicalMedicineandBiologyPage1of 26 doi:10.1093/imammb/dqnxxx 4 Delayeffects inthe response oflowgrade gliomasto radiotherapy: A 1 0 mathematical model andits therapeutical implications 2 n V´ICTOR M.PE´REZ-GARC´IA∗ a J DepartamentodeMatema´ticas,UniversidaddeCastilla-LaMancha ETSIIndustriales,Avda.CamiloJose´ Cela3,13071CiudadReal,Spain. 2 1 ∗Correspondingauthor:[email protected] ] MAGDALENA BOGDANSKA M MathematicsDepartment,TechnicalUniversityofLodz, Q Lodz,Wolczanska214Street,Poland. o. ALICIA MART´INEZ-GONZA´LEZ,JUAN BELMONTE-BEITIA i DepartamentodeMatema´ticas,UniversidaddeCastilla-LaMancha b ETSIIndustriales,Avda.CamiloJose´ Cela3,13071CiudadReal,Spain. - q [ PHILIPPESCHUCHT Universita¨tsklinikfu¨rNeurochirurgie 1 v BernUniversityHospital,CH-3010Bern,Switzerland 3 LUIS A.PE´REZ-ROMASANTA 0 6 RadiotherapyUnit,UniversityHospitalofSalamanca,Salamanca,Spain 2 . [ReceivedonXXXXX] 1 0 Lowgradegliomas(LGGs)areagroup ofprimarybraintumorsusuallyencountered inyoung patient 4 populations.Thesetumorsrepresentadifficultchallengebecausemanypatientssurviveadecadeormore 1 andmaybeatahigherriskfortreatment-relatedcomplications. Specifically,radiationtherapyisknown : v to have a relevant effect on survival but in many cases it can be deferred to avoid side effects while i maintaining its beneficial effect. However, a subset of low-grade gliomas manifests more aggressive X clinicalbehaviorandrequiresearlierintervention. Moreover,theeffectivenessofradiotherapydepends r onthetumorcharacteristics.RecentlyPalludetal.,[Neuro-oncology,14(4):1-10,2012],studiedpatients a with LGGstreated with radiation therapy as a first line therapy. and found the counterintuitive result thattumorswithafastresponsetothetherapyhadaworseprognosisthanthoserespondinglate. Inthis paperweconstructamathematicalmodeldescribingthebasicfactsofgliomaprogressionandresponseto radiotherapy.ThemodelprovidesalsoanexplanationtotheobservationsofPalludetal.Usingthemodel weproposeradiationfractionationschemesthatmightbetherapeuticallyuseful byhelpingtoevaluate thetumormalignancywhileatthesametimereducingthetoxicityassociatedtothetreatment. Keywords:LowGradeGliomas,Radiotherapy,Mathematicalmodeloftumorresponse 1. Introduction Lowgradeglioma(LGG)isatermusedtodescribeWHOgradeIIprimarybraintumorsofastrocytic and/or oligodendroglialorigin. These tumors are highly infiltrative and generally incurable but have mediansurvivaltimeof>5yearsbecauseoflowproliferation(Pignattietal.,2002;Pouratian&Schiff, 2010). Whilemostpatientsremainclinicallyasymptomaticbesidesseizures,thetumortransformation (cid:13)c Theauthor2008.PublishedbyOxfordUniversityPressonbehalfoftheInstituteofMathematicsanditsApplications.Allrightsreserved. 2of26 V.M.PE´REZ-GARC´IAetal. toaggressivehighgradegliomaiseventuallyseeninmostpatients. ManagementofLGGhashistoricallybeencontroversialbecausethesepatientsaretypicallyyoung, with few, if any, neurologicalsymptoms. Historically, a wait and see approach was often favored in mostcases of LGG due to the lack of symptomsin these mostly youngand otherwisehealthyadults. Thesupportforthispracticecamefromseveralretrospectivestudiesshowingnodifferenceinoutcome (survival, qualityof life) if therapywas deferred(Olsonetal., 2000;Grier&Batchelor, 2006). Other investigationshavesuggestedaprolongedsurvivalthroughsurgery(Smithetal.,2008). Inabsenceof arandomizedcontrolledtrial,recentlypublishedstudiesmayprovidethemostconvincingevidencein supportofanearlysurgerystrategy(Jakolaetal.,2012) andwaitingforthe useofothertherapeutical options such as radiotherapy and chemotherapy. However, the decision on the individual treatment strategy is based on a number of factors including patient preference, age, performance status, and locationoftumor(Ruiz&Lesser,2009;Pouratian&Schiff,2010). As to radiation therapy the clinical trial by Garciaetal (2004) showed the advantageof using ra- diotherapy in addition to surgery. However, the timing of radiotherapy after biopsy or debulking is debated. Itisnowwellknownthatimmediateradiotherapyaftersurgeryincreasesthetimeofresponse (progression-free survival), but does not seem to improve overal survival while at the same time in- ducingseriousneurologicaldeficitsasa resulttonormalbraindamage(VandenBent,2005). Overall survivaldependsmoreonpatientandtumour-relatedcharacteristicssuchasage,tumourgrade,histol- ogy and neurologicalfunction than the details of the plan of radiotherapytreatment. Radioteraphyis usuallyofferedforpatientswithacombinationofpoorriskfactorssuchasage,sub-totalresection,and diffuseastrocytomapathology(Higuchietal.,2004). Mathematicalmodellinghasthepotentialtoselectpatientsthatmaybenefitfromearlyradiotherapy. Also it may help in developingspecific optimalfractionationschemesfor selected patientsubgroups. Howeverdespiteitsenormouspotential,mathematicalmodellinghashadalimitedusewithstrongfocus onsomeaspectsofradiationtherapy(RT)forhigh-gradegliomas(Rockneetal.,2010;Bondiauetal., 2011;Konukogluetal.,2010;Barazzuoletal.,2010). Uptonow,noideascomingfrommathematical modellinghavebeenfoundusefulforclinicalapplication. Thereisthusaneedformodelsaccountingforthefundamentalfeaturesoflow-gradegliomadynam- icsandtheirresponseto radiationtherapywithoutinvolvingexcessivedetailsonthe -oftenunknown- specificprocessesbutallowingthequalitativeunderstandingofthephenomenainvolved.Theavailabil- ityofsystematicandquantitativemeasurementsofLGGgrowthratesprovideskeyinformationforthe developmentandvalidationofsuchmodels(Palludetal.,2012,b). Inthispaperwepresentasimplemathematicalmodelcapturingthekeyfeaturesseenintheresponse of LGGsto radiation. Our modelincorporatesthebasic elementsoftumordynamics: infiltrationand invasionofthenormalbrainbythetumorcells,proliferationandtumorcelldeathinresponsetother- apy. Radiationtherapyis includedin analmostparameter-freeway thatcapturesthe essentials of the dynamicsandexplainstherelationshipbetweenproliferation,responsetothetherapyandprognosisas recentlyreportedbyPalludetal.(2012b). In addition to explaining the counterintuitive observationsof Palludetal. (2012b) the model pre- sentedinthispapercanbeusedtoexploredifferentradiationregimes. Theanalysistobepresentedin thispapersuggeststhepossibilityofusingradiationtherapywithpalliativeintentandalsototestwhat thetumorresponseisandhelptheoncologistsinmakingthebestpossibledecisionsonwhenandhow toactonthetumor. Ourplaninthispaperisasfollows. First,inSection2wepresentourmodelaccountingfortumor celldynamicsandtheresponseofthetumorcellstoradiation. NextinSec. 3wepresenttheresultsof thenumericalsimulationsofthemodelindifferentscenariosandstudythedependenceofthemodelon DELAYEFFECTSINRADIOTHERAPYOFLGG 3of26 thedifferentparameters. InSec. 4wedisplaysomeanalyticalestimatesofthetypicaldynamicsofthe tumorresponsetoradiation. InSec. 5wediscusssomehypothesissuggestedfromthemodelthatmay beusefulfortherapy.Finally,inSec. 6wesummarizeourconclusions. 2. MathematicalmodelfortheresponseofLGGstoradiotherapy 2.1 Tumorcellcompartment Inthelastyearstherehasbeenalotofactivityonmathematicalmodelsofgliomaprogression(Murray, 2007;Stamatakosetal.,2006,b;Frieboesetal.,2007;Swansonetal.,2008;Bondiauetal.,2008;Eikenberryetal., 2009;Tanakaetal.,2009;Konukogluetal.,2010;Wangetal.,2009;Rockneetal.,2010;Pe´rez-Garc´ıaetal., 2011;Pe´rez-Garc´ıa&Mart´ınez-Gonza´lez,2012;Hatzkirouetal.,2012;Badoualetal.,2012;Mart´ınez-Gonza´lezetal., 2012;Guetal.,2012;PainterandHillen,2013).Inthispaperwewillconsideramodelforthecompart- mentof tumorcells of the simplest possible type: a Fisher-Kolmogorov(FK) type equation(Murray, 2007). Morecomplicatedmodelssuchassingle-cellbasedmodelswouldallow,inprinciple,tofollow theindividualmovementofthetransformedastrocytesthroughthebrainparenchyma.However,consid- eringthatthebasicrulesbehindamodelaremoreimportantthanthemodeldetails,wehavediscarded boththeuseofon-latticemodels,whicharenotrealisticwhencellmotionisconsidered,andoff-lattice modelswhichassumefixedcellgeometriesand/orincorporateunknowncell-cellinteractions. Besides, thesemodelsoftenrequiretheestimationofalargenumberofunknownparametersandthedetermina- tionofinitialcellconfigurations,whichareextremelydifficulttovalidateininvivoexperimentsand/or usingclinicaldata. Thus,tokeepourdescriptionassimpleasposiblewehaveoptedforacontinuous modelasfollows ¶ C = DD C+r (1 C)C, (2.1a) ¶ t − C(x,0) = C (x), (2.1b) 0 whereC(x,t) is the tumor cell density as a function of time t and the spatial position x and it is measuredinunitsofthemaximalcelldensityallowedinthe tissueC (typicallyaround103 cell/cm). D =(cid:229) n ¶ 2/¶ x2 isthen dimensionalLaplacianoperator. ∗ j=1 j − D is thediffusioncoefficientaccountingfortheaveragecellularmotilitymeasuredin mm2/dayto beassumedinthispapertobeconstantandspatiallyuniform.Migrationingliomasisnotsimpleandin factmanyauthorshaveproposedthatthehighlyinfiltrativenatureofhumangliomasrecapitulatesthe migratorybehaviorofglialprogenitors(Suzukietal.,2002;Dirks,2001). Hereweassume,asinmost models,thatgliomacellinvasionthroughoutthebrainisbasicallygovernedbyastandardFickiandiffu- sionprocess.Morerealisticandcomplicateddiffusiontermsingliomasshouldprobablybegovernedby fractional(anomalous)diffusion(Fedotovetal.,2011)orothermoreelaborateterms(Deroulersetal., 2009) to accountfor the high infiltration observedin this type of tumors(Onishietal., 2011) and the fact that cells do not behave like purely random walkers and may actually remain immobile for long timesbeforecompelledtomigratetoamorefavorableplace. Inadditioninrealbraintherearespatial inhomogeneities expected in the parameter values such as different propagation speeds in white and graymatter,andanisotropies(e.g.onthediffusiontensorwithpreferentialpropagationdirectionsalong white matter tracts). Many papers have incorporated these details (Jbadietal., 2005; Bondiauetal., 2008;Konukogluetal.,2010;Clatz,2005;PainterandHillen,2013)mostlywiththeintentiontomake patient-specificprogressionpredictions. However,themainlimitationisthelackofinformationonthe (many) patientspecific unknowndetails what has limited progressesin that direction. Thus, in order 4of26 V.M.PE´REZ-GARC´IAetal. to simplify the analysis and focus on the essentials of the phenomena we have chosen to study the modelinonespatialdimensionandinisotropicmedia.Itisinterestingthatuptonowonlythesimplest models such as those given by Eqs. (2.1) have been used to extract conclusionsuseful for clinicians (Swansonetal.,2008;Wangetal.,2009). The choiceof one-dimensionaldiffusionintendsto incorporatequalitativelydiffusionphenomena inthesimplestpossibleway. Frontsolutionsofthe1DFKequationhavebeenextensivelystudiedand areknowntopropagatewithaminimalspeedc=2√r Dwhenstartingfromstillinitialdata(Murray, 2007). It is interesting that the 1D model recapitulates the most relevant -for us-phenomenologyob- servedinhigher-dimensionalscenarios. Firstitisobviousandwell-knownthatfront(invasionwaves) solutions of the 1D FK equation also solve higher dimensional version of the equation (Xin, 2000; BrazhnikandTyson,2000). Moreover,thosesolutionsareasymptoticallystable(Xin,2000;Sattinger, 1976)whatmeansthatunlikeothermorecomplicatednon-symmetricalsolutions(BrazhnikandTyson, 2000), they do arise as limits of non symmetric initial data. It is also well known that radially sym- metric (in 2D) or spherically symmetric (in 3D) travelling wave solutions of FK do not exist in high dimensions but that symmetric fronts also develop in those scenarios with a non-constant speed that dependsonthelocalcurvatureR(BrazhnikandTyson,2000;Volpert&Petrovskii,2009). Asthefront growswith time the now radius-dependentfrontspeed is givenby c(R)=c D/R(t). Thusgrowing symmetricmultidimensionalsolutionswithlargecurvatureradii(R ¥ )gro−wwiththesamespeedas → 1Dfronts(Volpert&Petrovskii,2009;GerleeandNelander,2012). In this paper we are interested on the descriptionof low-gradegliomasthat typically are very ex- tended when diagnosed, thus the initial data radius is large and fronts are well developed by then. Althoughduring the initial stages of tumordevelopmentthe dimensionalitymay play a relevantrole, for spatially extended tumors the effect of using higher-dimensional operators is not expected to be substantial. Moreover, some of the phenomena to be described later in this paper are found to be essentially independentof diffusionand a verygood qualitativeagreementwill be foundbetween our simplified analysisandthegrowthdynamicsofthemeantumordiameter. Takingintoaccountalltheseevidences we will keep the system one-dimensional,since our intention is notto providea detailed quantitative descriptionoftheprocesses-thatinanywaywouldbebeyondthereachofasimplemodelsuchasFK- but instead to provide a qualitative description of the dynamics in the simplest possible way. As we willdiscussindetaillater,thisapproachwillleadtoasimpleyetqualitativelycorrectdescriptionofthe responseoflowgradegliomastoradiotherapy. The parameterr in Eq. (2.1) is the proliferationrate (1/day)its inverse givingan estimate of the typicalcelldoublingtimes. Wehavechosenalogistictypeofproliferationleadingtoamaximumcell densityC(x,t)=1. Finally,thetumorevolvesfromaninitialcelldensitygivenbythefunctionC (x) 0 inanunboundeddomain,soweimplicitlyassumeittobelocatedinitiallysufficientlyfarfromthegrey matter. A very interesting feature of model Eqs. (2.1) is the well known fact that a tumor front arises propagatingattheasymptotic(constant)speedofv =2√Dr whatisinverygoodagreementwiththe ∗ observed fact that the tumor mean diameter grows at an approximately constant speed (Palludetal., 2012). Whilemanyothermathematicalmodelsofgliomasincorporatedifferentcellphenotypes,e.g. nor- moxic(proliferative)andhypoxic(migratory)phenotypes,suchasinMart´ınez-Gonza´lezetal.(2012); Hatzkirouetal.(2012);Pe´rez-Garc´ıa&Mart´ınez-Gonza´lez(2012),herewefocusourattentiononLGGs andassuchwillconsiderasingle(dominant)tumorcellphenotype.Inourmodelwedonotincludethe possibleexistenceofdifferenttumorcellpopulationswithdifferentsensitivitiestotherapysuchasstem DELAYEFFECTSINRADIOTHERAPYOFLGG 5of26 cellssincethefunctionandmechanismsofstemcellsinglioblastomaareyetunderdebate(Barrettetal., 2012;Chenetal.,2012). 2.2 Responsetoradiation Radiationtherapyhasbeenincorporatedindifferentformstomathematicalmodelsofhigh-gradeglioma progression(Rockneetal.,2010;Bondiauetal.,2011;Konukogluetal.,2010;Barazzuoletal.,2010). In thispaperwe wantto focusourattentiononLGGswhoseresponsetoradiationis verydifferentto the oneobservedinHGGs. RadiationtherapyinLGGstypicallyinducesa responsethatprolongsfor severalyearsaftertherapy. Very interesting quantitative data on the response of LGGs to radiation have been reported in a retrospectivestudybyPalludetal.(2012). TheauthorsstudiedpatientsdiagnosedwithgradeIILGGs treatedwithfirst-lineradiotherapybeforeevidencesofmalignanttransformation. Patientswithapost- RTvelocityofdiametricexpansion(VDE)(Palludetal.,2012)slowerthan-10mm/yearweretakenasa subgroupofslowlygrowingLGGs.Patientswithapost-RTVDEof-10mm/yearorfasterwereincluded inthegroupoffastgrowingLGGs. Theauthorsconcludedthatthepost-RTVDEwassignificantlyfaster inthegroupwithhighproliferation.Alsointhepatientswithanavailablepre-RTVDE,thelowpre-RT VDEsubgrouppresentedaslowerVDEatimagingprogression. Astothesurvivaltime(ST),thepost- radiotherapyVDEcarriedaprognosticsignificanceonsurvivaltime,asthefastpost-radiotherapytumor volumedecrease(VDE at-10 mm/yearor faster)were associated with a significantlyshortersurvival thantheslowpost-radiotherapytumorvolumedecrease(VDEslowerthan-10mm/year). Theveryslowresponsetoradiotherapy,leadingtotumorregressionlastingforseveralyearsisdiffi- culttounderstandinthecontextofthestandardlinearquadraticmodelinwhichdamageisinstantaneous andleadstocelldeathearlyafterradiationtherapy. Howeverakeyaspectofthecellresponsetoradia- tionisthatirradiatedcellsusuallydiebecauseoftheso-calledmitoticcatastropheaftercompletingone orseveralmitoses(VanderKogel&Joiner,2009). Thismeansthatslowlyproliferatingtumors,asitis the caseofLGGswithtypicallow proliferationindexesbetween1%and5%inpathologicalanalyses needaverylongtimetomanifesttheaccumulatedcelldamagethatcannotberepaired. Thus,inordertocaptureinaminimalwaytheresponseofthetumortoradiationwewillcomplement equation(2.1)forthedensityoffunctionallyalivetumorcellsC(x,t)withanequationfortheevolution of the density of irreversibly damaged cells after irradiationC (x,t). Our model for the evolution of d bothtumorcelldensitieswillbegivenbytheequations ¶ C = DD C+r (1 C C )C, (2.2a) ¶ t − − d ¶ C r d = DD C (1 C C )C . (2.2b) ¶ t d− k − − d d ThefirstequationisaFisher-KolomogorovtypeequationdescribingtheevolutionoftumorcellsC(x,t). Thesaturationtermincludesthetotaltumorcelldensity,i.e. boththefunctionaltumorcellsandthose damaged by radiationC (x,t). The evolution of cells irreversibly damaged by radiation is given by d Eq. (2.2b). Asitiswelldescribedintheliterature(VanderKogel&Joiner,2009),mostofthesecells behavenormallyuntilacertainnumberofmitosiscycles,thuswewillconsiderthatafteranaverageof k mitosis cyclesthese cells die resultingin a negativeproliferation. The longersurvivaltime kt with t =1/r beingthetumorpopulationdoublingtime,resultsinareducedproliferationpotentialr /k,that is the coefficientusedforthe negativeproliferationterm. Thus, theparameterk in Eq. (2.2b) hasthe meaningoftheaveragenumberofmitosiscyclesthatdamagedcellsareabletocompletebeforedying. 6of26 V.M.PE´REZ-GARC´IAetal. Aswiththenormalpopulationthenumberofcellsenteringmitosisdependsinanonlinearwayonboth tumorcellpopulations(cf. lastterminEq.(2.2b)). Wewillassumeaseriesofradiationdosesd ,d ,...,d givenattimest ,t ,...,t . Theinitialdatafor 1 2 n 1 2 n thefirstsubintervalwillbegivenbytheequations C(x,t ) = C (x), (2.3a) 0 0 C (x,t ) = 0. (2.3b) d 0 The evolution of the tumor follows then Eqs. (2.2) until the first radiation dose d , given at time t . 1 1 Theirradiationresultsinafractionofthecells(survivingfraction)abletorepairtheradiation-induced damagegivenbyS (d )andafraction1 S (d )ofcellsunabletorepairtheaccumulateddamagethus f 1 f 1 − feedingthecompartmentofirreversiblydamagedcells. Thesubsequentevolutionofthepopulationsis againgivenbyEqs. (2.2)untilthenextRTdoseisgiven.Ingeneralaftereachirradiationeventweget C(x,t+) = S (d )C(x,t ), (2.3c) j f j −j Cd(x,t+j ) = Cd(x,t−j )+ 1−Sf(dj) C(x,t−j ), (2.3d) whereS (d )isthesurvivalfractionafteradoseofradi(cid:2)ationd ,i.e(cid:3).thefractionofdamagedtumorcells f j j after irradiation that are not able to repair lethal damage and are incorporatedto the compartmentof damagedcells. Forthedosestobeconsideredindependenttheintervalbetweendoses(typically1day) hastobelargerthanthetypicaldamagerepairtimes(oftheorderofhours). Theevolutionofbothcell densitiesbetweenirradiationeventsisgivenbythePDEs(2.2). 2.3 Parameterestimation Eqs.(2.2)togetherwiththeinitialconditionsforeachsubproblem(2.3)definecompletelythedynamics ofalowgradegliomaintheframeworkofoursimplifiedtheoreticalapproach. WehavechosentheparameterstodescribethetypicalgrowthpatternsofLGG.Fortheproliferation rate we have chosen typical values to be small and around r =0.003 day 1 (see e.g. Badoualetal. − (2012)),thatgivedoublingtimesoftheorderofayear. Specificallywehaveconsideredvaluesranging fromr =0.001day 1 forveryslowlygrowingLGGstor =0.01day 1. Forthecelldiffusioncoef- − − ficient we have taken values around D=0.0075mm2 /day (Jbadietal., 2005). This choice, together withthepreviouslychosenr leadstoasymptotictumordiametergrowthspeedsgivenbyv=4√Dr of the orderofseveralmillimetersperyear, inagreementwith typicaldiametricgrowthspeedsofLGGs (Palludetal., 2012). Howeverthe factthat the asymptotic speed is only reachedwhen the tumorcell densityisaroundonemayrequiretakinglargervaluesofDtomatchtherealgrowthspeeds. Astotheradiobiologicalparameters,beinggliomasveryresistanttoradiationwehavetakenvalues intherangeS (1.8Gy) SF 0.9consideringthemediansurvivalfractionvalue0.83afteronedose f 1.8 ≡ ∼ of2GygivenbyBarazzuoletal.(2010). Finally, the average number of mitosis cycles completed before the mitotic catastrophe occurs is difficult to estimate. This parameter intends to summarize in a single number a complex process in which a cell hit by radiation and its progeny die after some more mitosis cycles leading to a final extinctionafteravariabletime. Deathbymitoticcatastropheimpliesaminimalvalueofk=1andto allowforsomemoretimewemaychoosevaluesintherangek=1 3(VanderKogel&Joiner,2009). − Wewillshowlaterthatthechoiceofthisparameterhasalimitedeffectonthemodeldynamicsandthat instandardfractionationschemestheremaybebiologicalreasonstotakeitask=1. OurtypicalchoicesforthefullsetofmodelparametersissummarizedinTable1. DELAYEFFECTSINRADIOTHERAPYOFLGG 7of26 Variable Description Value(Units) References C Maximumtumor 106cell/cm2 Swansonetal.(2008) ∗ celldensity D Diffusioncoefficientfor 0.01mm2/day Jbadietal.(2005) tumorcells r Proliferation 0.00356day 1 Badoualetal.(2012) − rate SF Survivalfraction 0.9 Barazzuoletal.(2010) 1.8 ∼ for1.8Gy k Averagenumberofmitosis 1-3 VanderKogel&Joiner(2009) cyclescompletedbeforethe mitoticcatastrophe Table1.TypicalvaluesofthebiologicalparametersinthemodelofLGGevolution. Inthispaperwewillfixthedoseperfractioninagreementwiththestandardfractionationschemes forLGGstobe1.8Gy,theonlyrelevantparameteristhesurvivalfractionSF thatwillbetakentobe 1.8 aroundSF 0.9,asdiscussedabove. Inmanyexampleswewillchoosetheradiotherapyschemeas 1.8 ∼ thestandardfractionationofatotalof54Gyin30fractionsof1.8Gyoveratimerangeof6weeks(5 sessionsperweekfrommondaytofriday). 3. Results 3.1 Computationaldetails Wehavestudiedtheevolutionofthetumordiameterusingourmodelequations(2.2)and(2.3). Tosolve thepartialdifferentialequationswehaveusedstandardsecondorderfinitedifferencesbothintimeand space. Since the tumor diameterin the frameworkof this modeltendsto grow linearlyin any spatial dimensionwe have focusedon the simplest one-dimensionalversionof the model. We havechecked with simulationsin higherdimensionsthatthedynamicsisessentiallythesame andthushavesticked to the simplest possible model. To avoid boundaryeffects and focus on the bulk dynamics, we have assumedourcomputationaldomaintobemuchlargerthanthetumorsize. In each simulation we have computed the tumor diameter as the distance between the points for which the density reaches a critical detection value C that provides a signal in the T2 (or FLAIR) th MRI sequence. Althoughwhichisthatprecisevalueisa debatedquestionandin factdependsonthe thresholdsusedintheimages,wehaveassumedthatC 0.05 0.07. Thisisinagreementwiththe th ∼ − reported value of cellular density about0.16 for detection (Swansonetal., 2008) and a normaltissue densityofabout0.1. Inagreementwithpreviousstudieswetakeafataltumorburden(FTB)sizeof6 cmindiameter(Swansonetal.,2008;Wangetal.,2009). Asparameterscontainingusefulinformation we have computed: the time in which the tumor starts regrowing after the therapy, usually called in 8of26 V.M.PE´REZ-GARC´IAetal. 60 (a) ½ = 0.00712 day-1 50 ) m m 40 ( r te ½ = 0.00356 day-1 e m 30 a i D r o 20 m u T 10 0 0 1 2 3 4 5 Time (years) 0.5 (b) 0.4 A(t) 0.3 B(t) 0.2 0.1 0.0 0 40 80 120 160 200 Time (days) FIG.1.(a)Tumordiameterevolutionfortwodifferentvaluesoftheproliferation:r =0.00356day−1,r =0.00712day−1.Other parametervaluesare: D=0.0075mm2/day,criticaldetectionvalueCth=0.07,SF1.8=0.90andk=1. Theinitialtumorcell densitiesaretakenasCd(x,0)=0,C(x,0)=0.4sech(x/6)withxmeasuredinmm,whatgivesaninitialtumordiameterof28.8 mm. Radiotherapy followsthestandardscheme(6weekswith1.8Gydosesfrommondaytofriday)andstartsattimet=0. Circlesdenotemeasurementseverythreemonthsthatwouldcorrespondtoaclosefollow-upofthepatient.Theupperdashedline (horizontal)showsthefataltumorburdensizetakenthroughthispapertobe6cmasdiscussedinthetext. (b)Evolutionofthe tumorcellamplitudesA(t)=maxx C(x,t) andB(t)=maxx Cd(x,t) duringthefirst200daysshowingtheearlyresponsetothe therapyforr =0.00356day−1. | | | | DELAYEFFECTSINRADIOTHERAPYOFLGG 9of26 10 (a) 8 ) y ( 6 e m Ti Survival time 4 2 Growth delay Time to tumor progression 0 0.002 0.004 0.006 0.008 0.01 ½ (day- 1 ) m) 0 m (b) ( n -4 o ti c u d -8 e r r e t -12 e m a Di -16 x a M -20 0.0 0.002 0.004 0.006 0.008 0.01 ½ (day- 1 ) FIG.2. Dependenceofthe(a)survivaltime(solidline),growthdelay(dashedline),timetotumorprogression(dottedline)and (b)maximalreductionindiameterasafunctionofr . Thecurvessummarizetheoutcomeofmanyindividualsimulationswith initialdataCd(x,0)=0,C(x,0)=0.2exp x4/81920 withxmeasuredinmmthatgivesaninitialtumordiameterof33.80mm. − Radiotherapyfollowsthestandardscheme(6weekswith1.8Gydosesfrommondaytofriday)andstartsattimet=0. Other (cid:0) (cid:1) parametersusedinthesimulationsareasinFig.1. 10of26 V.M.PE´REZ-GARC´IAetal. clinical practice time to tumor progression(TTP), the time for which the tumor size equals its initial size-denotedasgrowthdelay(GD)-andthetimeforwhichthetumorsizeequalstheFTBorsurvival time(ST). Wehavestudiedabroadrangeofparametervaluescorrespondingtothepossiblerangeofrealistic valuesintheframeworkofoursimpledescriptionofthetumordynamicsanditsresponsetoradiother- apy. We have also taken differenttypesof initial data rangingfrom morelocalized (such as gaussian initial profiles) to more infiltrative (such as sech type functions). In what follows we summarize our results. 3.2 Tumorproliferationratedeterminestheresponsetoradiotherapy Inafirstseriesofsimulationswehavestudiedthedependenceoftheevolutionofthetumordiameteron theproliferationrate. Fig. 1(a)showstheevolutionofthetumordiameterfortwodifferentproliferation rates r =0.00356 day 1 and r =0.00712 day 1 (Fig. 1). In the first case of low proliferation, the − − tumorrespondsmoreslowlytotherapyasmeasuredbythespeedoftumorregression(decreaseinsize) butthetotalresponsetimeissignificantlylonger,beingthe timetotumorprogressionof16.9months against8.2monthsinthelatercase. Alsothegrowthdelaysare14.7monthsforthefasterproliferating tumor against29.9monthsfor the less proliferativeone. Finally the “virtualpatient” with the slowly proliferating tumor survives much longer than that with the more proliferative one. This is just an exampleofatendencyshowninallofoursimulationswheremoreaggressivetumorsrespondearlierto thetherapy. It is remarkablethat this fact is in fullagreementwith the results fromPalludetal. (2012b). Our model based on reasonable biological assumptions leads to a long remission time (e.g. in Fig. 1 of about 3 years) much larger than the treatment duration (6 weeks) and negatively correlated with the tumor proliferationrate. As a second relevant finding, also seen in the results shown by Palludetal. (2012b),weobservethattumorsrespondingfasterhavealsoshorterregrowthtime. Fig 1(b) shows the dynamics of the maximum density of tumor cells (A(t)=max C(x,t)) and x damagedtumorcells(B(t)=max C (x,t)). Ascouldbeexpectedtheamplitudeoffunctionallyalive x d tumorcellsdecreasesduringthetherapywiththeexceptionofthebreaksintheweekendswereasmall increaseisseenandcorrespondinglytheamplitudeofdamagedtumorcellsgrowsaftereveryirradiation andforthefulltreatmentperiod(6weeks=42days). Aftert =42daysthepopulationoftumorcells starts a slow recovery while the population of damaged cells declines in a much longer time scale. However, the width of the total tumor population evolves only in the slow time scale and does not displayanyeffectsduringthetreatmentperiod. Itisimportanttoemphasizethatthisbehaviorisnottheresultofafortunatechoiceoftheparameters but a generic behavior as we have confirmedthrougha large numberof simulations coveringthe full clinically relevantparameterspace. As an example, in Fig. 2 we show how the variationof r overa broadrangeofvaluesleadstothesameconclusion. Largerproliferationvaluesacceleratetheresponse butleadtoearlierregrowthandassuch,shortergrowthdelaysandsurvivaltimes[Fig. 2(a)].Oursimu- lationsalsopointoutthatthemaximumvolumereductionisonlyweaklydependentontheproliferation rater [Fig. 2(b)],thesmallertheproliferationratesthelargerthemaximumreductionindiameter.This factisalsoinverygoodagreementwiththeresultsofPalludetal.(2012b)(seee. g. Fig. 2bottomof theirpaper).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.