AliBaklouti DeformationTheoryofDiscontinuousGroups De Gruyter Expositions in Mathematics | Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany KatrinWendland,Freiburg,Germany Volume 72 Ali Baklouti Deformation Theory of Discontinuous Groups | MathematicsSubjectClassification2020 Primary:22E25,22E27,22E40,22G15,32G05,57S30;Secondary:81S10,57M25,57M27,57S30 Author Prof.AliBaklouti FacultédesSciencesdeSfax DépartementdeMathématiques RoutedeSoukra 3038Sfax Tunisia [email protected] ISBN978-3-11-076529-8 e-ISBN(PDF)978-3-11-076530-4 e-ISBN(EPUB)978-3-11-076539-7 ISSN0938-6572 LibraryofCongressControlNumber:2022934617 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Discontinuousactionsofgroupsplayanimportantroleinmanyfieldsofmathemat- ics,especiallyinthestudyofRiemannsurfaces.Thisresearchaxisappearstobeasig- nificantandindispensableframeworkbecauseofitscloserelationshipwithsomany other fields in mathematics, such as geometry, topology, number theory, algebraic geometry,differentialgeometryandwithdifferentfields,suchasphysicsandother variousareas.ThestudyofKleiniangroups(discretegroupsoforientationpreserv- ingisometriesofhyperbolicspaces),Fuchsiangroups,andthetheoryofautomorphic formsareallrichareasofmathematicswithmanydeepresults.TheworkofThurston on3-manifoldsandasageneralizationthedeformationsofKleiniangroupshavegiven additionalfocustothisveryrichfieldofdiscontinuousgroupactions. Whenitcomestothesettingofsolvablegroupsactions,theliteratureissome- whatscarceinthisarea.Thisbookisdevotedmainlytostudyingvariousgeometric andtopologicalconceptsrelatedtothedeformationandmodulispacesofdiscontin- uousgroupactionsandbuildingsomeinterrelationshipsbetweentheseconcepts.It containsthemostrecentdevelopmentsofthetheory,extendingfrombasicconcepts toacomprehensiveexposition,andhighlightingthenewestapproachesandmethods indeformationtheory.Itpresentsfullproofsofrecentresults,computesfundamental examplesandservesasanintroductionandreferenceforstudentsandresearchers inLietheory,discontinuousgroupsanddeformation(andmoduli)spaces.Italsoin- cludesthemostrecentsolutionstomanyopenquestionsoverthelastdecadesand bringsrelatednewestresearchresultsinthisarea. Thefirstchapteraimstorecordsomemainbackgroundsonnilpotent,solvable and exponential solvable Lie groups and some compact extensions. Fundamental and basic examples, such as Heisenberg groups, threadlike groups, Euclidean mo- tion groups and Heisenberg motion groups are treated with extensive details for furtherdevelopmentsanduse.Asapreparationtodiscontinuousactions,anexplicit descriptionofclosedanddiscretesubgroupsofthesegroupsisalsowelldeveloped. The important notion of syndetic hull of closed subgroups is also introduced and manyexistenceandunicityresultsareproved,includingtheextensionsofhomomor- phisms of discrete subgroups to their syndetic hulls, which appears to be of major roleinthecomputationoftheparameter,deformationandmodulispaces. Thesecondchapterfocusesonthecharacterizationofproperactionofclosedsub- groupsonsolvmanifoldsandonsomehomogeneousspacesofcompactextensions. Inthecaseofm-stepnilpotentLiegroups,theproperactionofaclosedconnected subgroupisshowntobeequivalenttoitsfreeactionsform ≤ 3.Suchafactfailsin generaltoholdotherwise.Wealsogenerategeometriccriteriaoftheproperactionof adiscontinuousgrouponanarbitraryhomogeneousspace,wherethegroupinques- tionstandsforthesemidirectproductgroupK⋉ℝn,whereKisacompactsubgroup ofGL(n,ℝ).InthecaseofHeisenbergmotiongroups,thesamerequirestheclassifi- cationintothreecategoriesofalldiscretesubgroups.Asshown,thiswillbeacapital https://doi.org/10.1515/9783110765304-201 VI | Preface roleinthestudyofmanygeometricalconceptsrelatedtocorrespondingdeformation andmodulispaces. Wealsodefinethenotionsofweakandfiniteproperactionsandsubstantiatethat theseareequivalenttofreeactionsofconnectedclosedsubgroupsoperatingonspe- cialandmaximalsolvmanifolds. WepayattentioninChapter3tothedeterminationoftheparameter,deformation andmodulispacesoftheactionofadiscontinuousgroupΓ ⊂ Gonahomogeneous spaceG/H innumeroussettings,GbeingaLiegroupandH aclosedsubgroupofG. Thisissueisofmajorrelevancetounderstandthelocalgeometricstructuresofthese spaces as many examples reveal. The strategy basically consists in building up ac- curatecross-sectionsofadjointorbitsofdeformationparameters.Towardsuchgoal, thefirststepconsistsingeneratinganalgebraiccharacterizationoftheabovespaces makinguseoftheresultsontheexistenceofsyndetichullsdevelopedinthefirstchap- ter.IntroducingtheGrassmanniantopology,wethenshowthattheparameterspace isstratifiedintoG-invariantlayers,endowedwiththestructureofatotalspaceofa principalfiberbundle.Thisallowstoexplicitlydetermine(toacertainextent)thepa- rameteranddeformationspacesinmanyfundamentalcases.Forinstance,thesetting ofHeisenberggroupsisextensivelypursuedinthefourthchapter,whereanecessary andsufficientconditionforwhichthedeformationspaceisendowedwithasmooth manifoldstructureisobtained.Thisfurtherallowstoextendthestudytothesetting ofthedirectproductofHeisenberggroups. Wealsodealwiththesettingofgeneralm-stepnilpotentLiegroupsinChapter4, whereadescription ofthe parameterand deformationspacesarederived(m ≤ 3). AnecessaryconditionfortheHausdorfnessofthedeformationspaceisalsoobtained. Thesettingofthreadlikegroupsisalsostudiedandanexplicitdeterminationofthe deformationspaceisprovided.Inthecaseofanon-Abeliandiscontinuousgroupof rankk,thedeformationspaceisshowntobeendowedwithasmoothmanifoldstruc- tureifandonlyifk >3. Thefifthchapterisdevotedtostudythelocalrigiditypropertyofdeformationsin- troducedbyA.WeilintheRiemanniancaseandgeneralizedfurtherbyT.Kobayashi. Westatethelocalrigidityconjectureinthenilpotentsetting,whichassertsthatthe localrigidityfailstoholdforanynontrivialdiscontinuousgroupactingonnilpotent homogeneousspace.Wefurtherextendourstudytomanyexponentialandsolvable settings.Namely,weshowthatthelocalrigidityfailswhentheLiealgebralofthesyn- detichullofΓisnotcharacteristicallysolvableandintheexponentialsettingwhere lisAbeliananddim(l)≥2.Besides,weprovetheexistenceofformalcoloreddiscon- tinuousgroupsinthegeneralsolvablesetting.Thatis,theparameterspaceadmitsa mixtureoflocallyrigidandformallynonrigiddeformations.InthecasewhereGisthe diamondgroupandΓanontrivialfinitelygeneratedsubgroupofG(notnecessarily discrete),thenthereisnoopenG-orbitsinHom(Γ,G).Inparticular,ifΓisadiscontin- uousgroupforahomogeneousspaceG/H,thenthestronglocalrigiditypropertyfails tohold. Preface | VII Wearealsoconcernedwithananalogueoftheso-calledSelberg–Weil–Kobayashi localrigiditytheoreminthecontextofarealexponentialgroupGandH amaximal subgroupofG,wherethelocalrigiditypropertyisshowntoholdifandonlyifthe groupGisisomorphictoAff(ℝ),thegroupofaffinetransformationsoftherealline. For more generality where G is a Lie group and Γ a finite group, we show that the spaceHom(Γ,G)/Gisdiscreteandatmostcountable.Thisspaceisfiniteifinaddition G hasfinitelymanyconnectedcomponents.Thishelpstoshow ananalogueof the localrigidityconjectureholdsinbothcaseswhereGstandsforthecompactextension K⋉ℝnandfortheHeisenbergmotiongroups. Chapter 6 deals with the stability property, a different geometrical concept of deformations, which measures in general the fact that in a neighborhood of φ ∈ Hom(Γ,G),thepropernesspropertyoftheactiononG/H ispreserved.Thedetermi- nationofstablepointsisaverydifficultproblemingeneral,whichmainlyreduces todescribeexplicitlytheinteriorofthesubsetofHom0(Γ,G)ofinjectivehomomor- d phisms with discrete image. We are then led to investigate about several kinds of questionsofgeometricnaturerelatedtothestructureofthedeformationspaceandas aresult,manystabilitytheoremswillbeestablishedinthenilpotentandexponential casesandalsointhecontextofsomecompactextensions. Ontheotherhand,itmaythenhappenthattheredoesnotexistaninfinitedis- cretesubgroupΓofG,whichactsproperlydiscontinuouslyonG/H.Thisphenomenon iscalledtheCalabi–Markusphenomenon.Basedonseveralupshotsprovedinprevi- ouschapters,suchaphenomenontogetherwiththequestionofexistenceofcompact Clifford–Kleinformsaresubjectofastudyinthecontextofsomecompactextensions ofnilpotentLiegroups. Theseventhchapterisdevotedtoresumesomeofthepreviousupshotsoncewe removetheassumptiononthegroupsinquestiontobesimplyconnected.Thismeans thatthecentermaybecompactandweshowinthiscasethatmanypreviouslyopen questionsinthesimplyconnectedsettinggetanswered.Forinstance,inthecaseof reducedHeisenberggroupsHr ,thedeformationspaceturnsouttobeaHausdorff 2n+1 space and even endowed with a smooth manifold structure for any arbitrary con- nectedsubgroupHofGandanyarbitrarydiscontinuousgroupΓforG/Handthatthe stabilitypropertyholds,whichisalsothecaseoftheproductLiegroupG = Hr × 2n+1 Hr andH = Δ ,thediagonalsubgroupofG.Ontheotherhand,a(strong)local 2n+1 G rigiditytheoremisobtainedforbothHr andHr ×Hr .Thatis,theparameter 2n+1 2n+1 2n+1 spaceadmitsa(strong)locallyrigidpointifandonlyifΓisfinite. Thesettingofreducedthreadlikegroupsisalsoconsideredthroughsimilarques- tions.WeshowthatalocalrigidityconjectureholdsforAbeliandiscontinuousgroups andthatnon-Abeliandiscontinuousgroupsarestable.Wealsosingleoutthenotionof stabilityonlayersandshowthatanyAbeliandiscontinuousgroupisstableonlayers. Thepurposeofthelastchapteristodescribeadequantizationprocedurefortopo- logicalmodulesoveradeformedalgebra.Wedefinethecharacteristicvarietyofatopo- logicalmoduleasthecommonzeroesoftheannihilatoroftherepresentationobtained VIII | Preface bysettingthedeformationparametertozero.Ontheotherhand,thePoissoncharac- teristicvarietyisdefinedasthecommonzeroesoftheidealobtainedbyconsidering theannihilatorofthedeformedrepresentation,andthensettingthedeformationpa- rametertozero. Wenextapplysuchadequantizationproceduretothecaseofrepresentationsof Liegroups.LetV =ℝdbealinearPoissonmanifold.ThenthedualV∗oflinearforms onV formaLiesubalgebragofthealgebraS(gℂ)ofpolynomialsonV endowedwith thePoissonbracket.WethenregardthePoissonmanifoldV asthedualg∗oftheLie algebrag. InthecasewhereG=expgisanexponentialsolvableLiegroup,theorbitmethod appearstobeafundamentaltooltosmoothlylinktheirunitarydualswiththespace ofcoadjointorbits.Wefirstbringexplicitcomputationsofthecharacteristicandthe PoissoncharacteristicvarietiesinmanyfundamentalPoisson-linearexamples.Inthe nilpotentcase,weshowthatanycoadjointorbitappearsasthePoissoncharacteristic varietyofawell-chosentopologicalmodule.WethensubstantiatetheZariskiclosure conjectureclaimingthatforanirreducibleunitaryrepresentationofG,associatedto a coadjoint orbit Ω via the Kirillov orbit method, the Poisson characteristic variety associatedtoatopologicalmodulewithanadequatewaycoincideswiththeZariski closureing∗ oftheorbitΩ.Wealsoprovetheconjectureinmanyrestrictivecases, notablyinthenilpotentsetting(withadifferentapproach)andinthecasewherethe representationisinducedfromanormalpolarizingsubgoup.Wefinallyinvestigatethe bicontinuityofKirillovandDixmiermapsinthelightofthisdequantizationprocess. AliBaklouti Contents Preface|V 1 Structuretheory|1 1.1 SolvableLiegroups|1 1.1.1 SolvableandexponentialsolvableLiegroups|1 1.1.2 HeisenbergLiegroups|5 1.1.3 ThreadlikeLiegroups|6 1.1.4 MaximalsubgroupsofsolvableLiegroups|7 1.2 Euclideanmotiongroups|10 1.2.1 Onorthogonalmatrices|10 1.2.2 Somestructureresults|13 1.2.3 DiscretesubgroupsofI(n)|15 1.2.4 ClosedsubgroupsofI(n)|26 1.3 Heisenbergmotiongroups|35 1.3.1 Firstpreliminaryresults|35 1.3.2 DiscretesubgroupsofHeisenbergmotiongroups|36 1.4 Syndetichulls|43 1.4.1 ExistenceresultsforcompletelysolvableLiegroups|43 1.4.2 CaseofexponentialLiegroups|44 1.4.3 CaseofreducedexponentialLiegroups|48 2 Properactionsonhomogeneousspaces|51 2.1 Properandfixed-pointactions|51 2.1.1 Discontinuousgroups|52 2.1.2 Clifford–Kleinforms|52 2.1.3 Weakandfiniteproperactions|53 2.1.4 Campbell–Baker–Hausdorffseries|56 2.1.5 Properactionsandcoexponentialbases|57 2.2 Properactionsfor3-stepnilpotentLiegroups|58 2.3 SpecialnilpotentLiegroups|62 2.4 Properactionsonsolvablehomogeneousspaces|65 2.4.1 Properactionsonspecialsolvmanifolds|65 2.4.2 Weakandfiniteproperactionsonsolvmanifolds|67 2.4.3 Properactionsonmaximalsolvmanifolds|72 2.4.4 Connectedsubgroupsactingproperlyonmaximalsolvmanifolds|72 2.4.5 Fromcontinuoustodiscreteactions|74 2.5 ProperactionforthecompactextensionK⋉ℝn|78 X | Contents 2.5.1 Criterionforproperaction|80 2.6 ProperactionsforHeisenbergmotiongroups|84 3 Deformationandmodulispaces|87 3.1 Deformationandmodulispacesofdiscontinuousactions|87 3.1.1 Parameter,deformationandmodulispaces|87 3.1.2 Caseofeffectiveactions|89 3.1.3 Deformationof(G,X)-structures|90 3.2 Algebraiccharacterizationofthedeformationspace|91 3.2.1 Thedeformationandmodulispacesintheexponentialsetting|91 3.2.2 Onpairs(G,H)havingLipsman’sproperty|96 3.3 CaseofAbeliandiscontinuousgroups|97 3.3.1 AnalysisonGrassmannians|98 3.3.2 Theparameterspacefornormalsubgroups|102 3.3.3 Thedeformationspacefornormalsubgroups|103 3.3.4 Examples|107 3.4 Non-Abeliandiscontinuousgroups|109 3.4.1 Structureofaprincipalfiberbundle|109 3.4.2 Thecontextwhere[Γ,Γ]isuniformin[G,G]|113 4 ThedeformationspacefornilpotentLiegroups|117 4.1 DeformationandmodulispacesforHeisenberggroups|117 4.1.1 Acriterionoftheproperaction,continued|117 4.1.2 Thedeformationspacefornon-Abelianactions|118 4.1.3 DeformationandmodulispaceswhenHcontainsthecenter|123 4.1.4 ThecasewhenHdoesnotmeetthecenter|125 4.1.5 CaseofcompactClifford–Kleinforms|133 4.1.6 Examples|137 4.1.7 AsmoothmanifoldstructureonT(Γ,H2n+1,H)|140 4.1.8 ProofofTheorem4.1.26|151 4.1.9 FromH2n+1totheproductgroupH2n+1×H2n+1|152 4.2 Caseof2-stepnilpotentLiegroups|156 4.2.1 DescriptionofthedeformationspaceT(l,g,h)|159 4.2.2 DecompositionofHom1(l,g)|160 4.2.3 Hausdorffnessofthedeformationspace|163 4.3 The3-stepcase|166 4.3.1 Somepreliminaryresults|166 4.3.2 OnthequotientspaceHom(l,g)/G|170 4.3.3 Descriptionoftheparameterandthedeformationspaces|190 4.3.4 Hausdorffnessofthedeformationspace|195 4.3.5 Illustratingexamples|195 4.4 Deformationspaceofthreadlikenilmanifolds|200