ebook img

Deformation Theory of Discontinuous Groups PDF

498 Pages·2022·6.496 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deformation Theory of Discontinuous Groups

AliBaklouti DeformationTheoryofDiscontinuousGroups De Gruyter Expositions in Mathematics | Editedby LevBirbrair,Fortaleza,Brazil VictorP.Maslov,Moscow,Russia WalterD.Neumann,NewYorkCity,NewYork,USA MarkusJ.Pflaum,Boulder,Colorado,USA DierkSchleicher,Bremen,Germany KatrinWendland,Freiburg,Germany Volume 72 Ali Baklouti Deformation Theory of Discontinuous Groups | MathematicsSubjectClassification2020 Primary:22E25,22E27,22E40,22G15,32G05,57S30;Secondary:81S10,57M25,57M27,57S30 Author Prof.AliBaklouti FacultédesSciencesdeSfax DépartementdeMathématiques RoutedeSoukra 3038Sfax Tunisia [email protected] ISBN978-3-11-076529-8 e-ISBN(PDF)978-3-11-076530-4 e-ISBN(EPUB)978-3-11-076539-7 ISSN0938-6572 LibraryofCongressControlNumber:2022934617 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Discontinuousactionsofgroupsplayanimportantroleinmanyfieldsofmathemat- ics,especiallyinthestudyofRiemannsurfaces.Thisresearchaxisappearstobeasig- nificantandindispensableframeworkbecauseofitscloserelationshipwithsomany other fields in mathematics, such as geometry, topology, number theory, algebraic geometry,differentialgeometryandwithdifferentfields,suchasphysicsandother variousareas.ThestudyofKleiniangroups(discretegroupsoforientationpreserv- ingisometriesofhyperbolicspaces),Fuchsiangroups,andthetheoryofautomorphic formsareallrichareasofmathematicswithmanydeepresults.TheworkofThurston on3-manifoldsandasageneralizationthedeformationsofKleiniangroupshavegiven additionalfocustothisveryrichfieldofdiscontinuousgroupactions. Whenitcomestothesettingofsolvablegroupsactions,theliteratureissome- whatscarceinthisarea.Thisbookisdevotedmainlytostudyingvariousgeometric andtopologicalconceptsrelatedtothedeformationandmodulispacesofdiscontin- uousgroupactionsandbuildingsomeinterrelationshipsbetweentheseconcepts.It containsthemostrecentdevelopmentsofthetheory,extendingfrombasicconcepts toacomprehensiveexposition,andhighlightingthenewestapproachesandmethods indeformationtheory.Itpresentsfullproofsofrecentresults,computesfundamental examplesandservesasanintroductionandreferenceforstudentsandresearchers inLietheory,discontinuousgroupsanddeformation(andmoduli)spaces.Italsoin- cludesthemostrecentsolutionstomanyopenquestionsoverthelastdecadesand bringsrelatednewestresearchresultsinthisarea. Thefirstchapteraimstorecordsomemainbackgroundsonnilpotent,solvable and exponential solvable Lie groups and some compact extensions. Fundamental and basic examples, such as Heisenberg groups, threadlike groups, Euclidean mo- tion groups and Heisenberg motion groups are treated with extensive details for furtherdevelopmentsanduse.Asapreparationtodiscontinuousactions,anexplicit descriptionofclosedanddiscretesubgroupsofthesegroupsisalsowelldeveloped. The important notion of syndetic hull of closed subgroups is also introduced and manyexistenceandunicityresultsareproved,includingtheextensionsofhomomor- phisms of discrete subgroups to their syndetic hulls, which appears to be of major roleinthecomputationoftheparameter,deformationandmodulispaces. Thesecondchapterfocusesonthecharacterizationofproperactionofclosedsub- groupsonsolvmanifoldsandonsomehomogeneousspacesofcompactextensions. Inthecaseofm-stepnilpotentLiegroups,theproperactionofaclosedconnected subgroupisshowntobeequivalenttoitsfreeactionsform ≤ 3.Suchafactfailsin generaltoholdotherwise.Wealsogenerategeometriccriteriaoftheproperactionof adiscontinuousgrouponanarbitraryhomogeneousspace,wherethegroupinques- tionstandsforthesemidirectproductgroupK⋉ℝn,whereKisacompactsubgroup ofGL(n,ℝ).InthecaseofHeisenbergmotiongroups,thesamerequirestheclassifi- cationintothreecategoriesofalldiscretesubgroups.Asshown,thiswillbeacapital https://doi.org/10.1515/9783110765304-201 VI | Preface roleinthestudyofmanygeometricalconceptsrelatedtocorrespondingdeformation andmodulispaces. Wealsodefinethenotionsofweakandfiniteproperactionsandsubstantiatethat theseareequivalenttofreeactionsofconnectedclosedsubgroupsoperatingonspe- cialandmaximalsolvmanifolds. WepayattentioninChapter3tothedeterminationoftheparameter,deformation andmodulispacesoftheactionofadiscontinuousgroupΓ ⊂ Gonahomogeneous spaceG/H innumeroussettings,GbeingaLiegroupandH aclosedsubgroupofG. Thisissueisofmajorrelevancetounderstandthelocalgeometricstructuresofthese spaces as many examples reveal. The strategy basically consists in building up ac- curatecross-sectionsofadjointorbitsofdeformationparameters.Towardsuchgoal, thefirststepconsistsingeneratinganalgebraiccharacterizationoftheabovespaces makinguseoftheresultsontheexistenceofsyndetichullsdevelopedinthefirstchap- ter.IntroducingtheGrassmanniantopology,wethenshowthattheparameterspace isstratifiedintoG-invariantlayers,endowedwiththestructureofatotalspaceofa principalfiberbundle.Thisallowstoexplicitlydetermine(toacertainextent)thepa- rameteranddeformationspacesinmanyfundamentalcases.Forinstance,thesetting ofHeisenberggroupsisextensivelypursuedinthefourthchapter,whereanecessary andsufficientconditionforwhichthedeformationspaceisendowedwithasmooth manifoldstructureisobtained.Thisfurtherallowstoextendthestudytothesetting ofthedirectproductofHeisenberggroups. Wealsodealwiththesettingofgeneralm-stepnilpotentLiegroupsinChapter4, whereadescription ofthe parameterand deformationspacesarederived(m ≤ 3). AnecessaryconditionfortheHausdorfnessofthedeformationspaceisalsoobtained. Thesettingofthreadlikegroupsisalsostudiedandanexplicitdeterminationofthe deformationspaceisprovided.Inthecaseofanon-Abeliandiscontinuousgroupof rankk,thedeformationspaceisshowntobeendowedwithasmoothmanifoldstruc- tureifandonlyifk >3. Thefifthchapterisdevotedtostudythelocalrigiditypropertyofdeformationsin- troducedbyA.WeilintheRiemanniancaseandgeneralizedfurtherbyT.Kobayashi. Westatethelocalrigidityconjectureinthenilpotentsetting,whichassertsthatthe localrigidityfailstoholdforanynontrivialdiscontinuousgroupactingonnilpotent homogeneousspace.Wefurtherextendourstudytomanyexponentialandsolvable settings.Namely,weshowthatthelocalrigidityfailswhentheLiealgebralofthesyn- detichullofΓisnotcharacteristicallysolvableandintheexponentialsettingwhere lisAbeliananddim(l)≥2.Besides,weprovetheexistenceofformalcoloreddiscon- tinuousgroupsinthegeneralsolvablesetting.Thatis,theparameterspaceadmitsa mixtureoflocallyrigidandformallynonrigiddeformations.InthecasewhereGisthe diamondgroupandΓanontrivialfinitelygeneratedsubgroupofG(notnecessarily discrete),thenthereisnoopenG-orbitsinHom(Γ,G).Inparticular,ifΓisadiscontin- uousgroupforahomogeneousspaceG/H,thenthestronglocalrigiditypropertyfails tohold. Preface | VII Wearealsoconcernedwithananalogueoftheso-calledSelberg–Weil–Kobayashi localrigiditytheoreminthecontextofarealexponentialgroupGandH amaximal subgroupofG,wherethelocalrigiditypropertyisshowntoholdifandonlyifthe groupGisisomorphictoAff(ℝ),thegroupofaffinetransformationsoftherealline. For more generality where G is a Lie group and Γ a finite group, we show that the spaceHom(Γ,G)/Gisdiscreteandatmostcountable.Thisspaceisfiniteifinaddition G hasfinitelymanyconnectedcomponents.Thishelpstoshow ananalogueof the localrigidityconjectureholdsinbothcaseswhereGstandsforthecompactextension K⋉ℝnandfortheHeisenbergmotiongroups. Chapter 6 deals with the stability property, a different geometrical concept of deformations, which measures in general the fact that in a neighborhood of φ ∈ Hom(Γ,G),thepropernesspropertyoftheactiononG/H ispreserved.Thedetermi- nationofstablepointsisaverydifficultproblemingeneral,whichmainlyreduces todescribeexplicitlytheinteriorofthesubsetofHom0(Γ,G)ofinjectivehomomor- d phisms with discrete image. We are then led to investigate about several kinds of questionsofgeometricnaturerelatedtothestructureofthedeformationspaceandas aresult,manystabilitytheoremswillbeestablishedinthenilpotentandexponential casesandalsointhecontextofsomecompactextensions. Ontheotherhand,itmaythenhappenthattheredoesnotexistaninfinitedis- cretesubgroupΓofG,whichactsproperlydiscontinuouslyonG/H.Thisphenomenon iscalledtheCalabi–Markusphenomenon.Basedonseveralupshotsprovedinprevi- ouschapters,suchaphenomenontogetherwiththequestionofexistenceofcompact Clifford–Kleinformsaresubjectofastudyinthecontextofsomecompactextensions ofnilpotentLiegroups. Theseventhchapterisdevotedtoresumesomeofthepreviousupshotsoncewe removetheassumptiononthegroupsinquestiontobesimplyconnected.Thismeans thatthecentermaybecompactandweshowinthiscasethatmanypreviouslyopen questionsinthesimplyconnectedsettinggetanswered.Forinstance,inthecaseof reducedHeisenberggroupsHr ,thedeformationspaceturnsouttobeaHausdorff 2n+1 space and even endowed with a smooth manifold structure for any arbitrary con- nectedsubgroupHofGandanyarbitrarydiscontinuousgroupΓforG/Handthatthe stabilitypropertyholds,whichisalsothecaseoftheproductLiegroupG = Hr × 2n+1 Hr andH = Δ ,thediagonalsubgroupofG.Ontheotherhand,a(strong)local 2n+1 G rigiditytheoremisobtainedforbothHr andHr ×Hr .Thatis,theparameter 2n+1 2n+1 2n+1 spaceadmitsa(strong)locallyrigidpointifandonlyifΓisfinite. Thesettingofreducedthreadlikegroupsisalsoconsideredthroughsimilarques- tions.WeshowthatalocalrigidityconjectureholdsforAbeliandiscontinuousgroups andthatnon-Abeliandiscontinuousgroupsarestable.Wealsosingleoutthenotionof stabilityonlayersandshowthatanyAbeliandiscontinuousgroupisstableonlayers. Thepurposeofthelastchapteristodescribeadequantizationprocedurefortopo- logicalmodulesoveradeformedalgebra.Wedefinethecharacteristicvarietyofatopo- logicalmoduleasthecommonzeroesoftheannihilatoroftherepresentationobtained VIII | Preface bysettingthedeformationparametertozero.Ontheotherhand,thePoissoncharac- teristicvarietyisdefinedasthecommonzeroesoftheidealobtainedbyconsidering theannihilatorofthedeformedrepresentation,andthensettingthedeformationpa- rametertozero. Wenextapplysuchadequantizationproceduretothecaseofrepresentationsof Liegroups.LetV =ℝdbealinearPoissonmanifold.ThenthedualV∗oflinearforms onV formaLiesubalgebragofthealgebraS(gℂ)ofpolynomialsonV endowedwith thePoissonbracket.WethenregardthePoissonmanifoldV asthedualg∗oftheLie algebrag. InthecasewhereG=expgisanexponentialsolvableLiegroup,theorbitmethod appearstobeafundamentaltooltosmoothlylinktheirunitarydualswiththespace ofcoadjointorbits.Wefirstbringexplicitcomputationsofthecharacteristicandthe PoissoncharacteristicvarietiesinmanyfundamentalPoisson-linearexamples.Inthe nilpotentcase,weshowthatanycoadjointorbitappearsasthePoissoncharacteristic varietyofawell-chosentopologicalmodule.WethensubstantiatetheZariskiclosure conjectureclaimingthatforanirreducibleunitaryrepresentationofG,associatedto a coadjoint orbit Ω via the Kirillov orbit method, the Poisson characteristic variety associatedtoatopologicalmodulewithanadequatewaycoincideswiththeZariski closureing∗ oftheorbitΩ.Wealsoprovetheconjectureinmanyrestrictivecases, notablyinthenilpotentsetting(withadifferentapproach)andinthecasewherethe representationisinducedfromanormalpolarizingsubgoup.Wefinallyinvestigatethe bicontinuityofKirillovandDixmiermapsinthelightofthisdequantizationprocess. AliBaklouti Contents Preface|V 1 Structuretheory|1 1.1 SolvableLiegroups|1 1.1.1 SolvableandexponentialsolvableLiegroups|1 1.1.2 HeisenbergLiegroups|5 1.1.3 ThreadlikeLiegroups|6 1.1.4 MaximalsubgroupsofsolvableLiegroups|7 1.2 Euclideanmotiongroups|10 1.2.1 Onorthogonalmatrices|10 1.2.2 Somestructureresults|13 1.2.3 DiscretesubgroupsofI(n)|15 1.2.4 ClosedsubgroupsofI(n)|26 1.3 Heisenbergmotiongroups|35 1.3.1 Firstpreliminaryresults|35 1.3.2 DiscretesubgroupsofHeisenbergmotiongroups|36 1.4 Syndetichulls|43 1.4.1 ExistenceresultsforcompletelysolvableLiegroups|43 1.4.2 CaseofexponentialLiegroups|44 1.4.3 CaseofreducedexponentialLiegroups|48 2 Properactionsonhomogeneousspaces|51 2.1 Properandfixed-pointactions|51 2.1.1 Discontinuousgroups|52 2.1.2 Clifford–Kleinforms|52 2.1.3 Weakandfiniteproperactions|53 2.1.4 Campbell–Baker–Hausdorffseries|56 2.1.5 Properactionsandcoexponentialbases|57 2.2 Properactionsfor3-stepnilpotentLiegroups|58 2.3 SpecialnilpotentLiegroups|62 2.4 Properactionsonsolvablehomogeneousspaces|65 2.4.1 Properactionsonspecialsolvmanifolds|65 2.4.2 Weakandfiniteproperactionsonsolvmanifolds|67 2.4.3 Properactionsonmaximalsolvmanifolds|72 2.4.4 Connectedsubgroupsactingproperlyonmaximalsolvmanifolds|72 2.4.5 Fromcontinuoustodiscreteactions|74 2.5 ProperactionforthecompactextensionK⋉ℝn|78 X | Contents 2.5.1 Criterionforproperaction|80 2.6 ProperactionsforHeisenbergmotiongroups|84 3 Deformationandmodulispaces|87 3.1 Deformationandmodulispacesofdiscontinuousactions|87 3.1.1 Parameter,deformationandmodulispaces|87 3.1.2 Caseofeffectiveactions|89 3.1.3 Deformationof(G,X)-structures|90 3.2 Algebraiccharacterizationofthedeformationspace|91 3.2.1 Thedeformationandmodulispacesintheexponentialsetting|91 3.2.2 Onpairs(G,H)havingLipsman’sproperty|96 3.3 CaseofAbeliandiscontinuousgroups|97 3.3.1 AnalysisonGrassmannians|98 3.3.2 Theparameterspacefornormalsubgroups|102 3.3.3 Thedeformationspacefornormalsubgroups|103 3.3.4 Examples|107 3.4 Non-Abeliandiscontinuousgroups|109 3.4.1 Structureofaprincipalfiberbundle|109 3.4.2 Thecontextwhere[Γ,Γ]isuniformin[G,G]|113 4 ThedeformationspacefornilpotentLiegroups|117 4.1 DeformationandmodulispacesforHeisenberggroups|117 4.1.1 Acriterionoftheproperaction,continued|117 4.1.2 Thedeformationspacefornon-Abelianactions|118 4.1.3 DeformationandmodulispaceswhenHcontainsthecenter|123 4.1.4 ThecasewhenHdoesnotmeetthecenter|125 4.1.5 CaseofcompactClifford–Kleinforms|133 4.1.6 Examples|137 4.1.7 AsmoothmanifoldstructureonT(Γ,H2n+1,H)|140 4.1.8 ProofofTheorem4.1.26|151 4.1.9 FromH2n+1totheproductgroupH2n+1×H2n+1|152 4.2 Caseof2-stepnilpotentLiegroups|156 4.2.1 DescriptionofthedeformationspaceT(l,g,h)|159 4.2.2 DecompositionofHom1(l,g)|160 4.2.3 Hausdorffnessofthedeformationspace|163 4.3 The3-stepcase|166 4.3.1 Somepreliminaryresults|166 4.3.2 OnthequotientspaceHom(l,g)/G|170 4.3.3 Descriptionoftheparameterandthedeformationspaces|190 4.3.4 Hausdorffnessofthedeformationspace|195 4.3.5 Illustratingexamples|195 4.4 Deformationspaceofthreadlikenilmanifolds|200

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.