ebook img

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms PDF

141 Pages·2022·3.136 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Natural Computing Series FoundingEditor GrzegorzRozenberg SeriesEditors ThomasBäck ,NaturalComputingGroup–LIACS,LeidenUniversity,Leiden, TheNetherlands LilaKari,SchoolofComputerScience,UniversityofWaterloo,Waterloo,ON, Canada SusanStepney,DepartmentofComputerScience,UniversityofYork,York,UK Scope NaturalComputingisoneofthemostexcitingdevelopmentsincomputerscience, andthereisagrowingconsensusthatitwillbecomeamajorfieldinthiscentury.This seriesincludesmonographs,textbooks,andstate-of-the-artcollectionscoveringthe wholespectrumofNaturalComputingandrangingfromtheorytoapplications. Moreinformationaboutthisseriesathttps://link.springer.com/bookseries/4190 · Tome Eftimov Peter Korošec Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms TomeEftimov PeterKorošec ComputerSystemsDepartment ComputerSystemsDepartment JožefStefanInstitute JožefStefanInstitute Ljubljana,Slovenia Ljubljana,Slovenia ISSN 1619-7127 NaturalComputingSeries ISBN 978-3-030-96916-5 ISBN 978-3-030-96917-2 (eBook) https://doi.org/10.1007/978-3-030-96917-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Tomymother,father,brother,both grandmothersandbothgrandfathersfor givingmetheirunconditional support. and Fortheendlessdiscussionsabout nothing andeverything… —Tome TothefamilyIgrewupwith:motherJožica, fatherLado,andbrotherBorut and Tothefamilygrowingupwithme:mybeloved Tina,andourchildren,Tim,Nik,andNeli —Peter Foreword Optimization is finding the best solution from among all the feasible solutions. In mathematicsandcomputerscience,thischallengingtaskisbeingtackledbymany researchersaroundtheworldwhoareinventingvariousapproachesandalgorithms.In thepast20years,theinventingofnewoptimizationalgorithmshasbecomesomething of a competition, not only with oneself, but also with other researchers. In theory, competitive activities have many benefits and help researchers develop important skills,likeperseveranceandresilience,aswellasprotectingsciencefromstagnation. However,toavoidunfaircompetition,clearrulesneedtobedefinedandagreedon whencomparingtheapproachesandalgorithms.TomeEftimovandPeterKorošec arethatrarebreedofcomputerscientistthatrecognizetheneedtodefinetherulesfor benchmarkingalgorithmsinaspecificfieldofmeta-heuristicstochasticoptimisation. Theyprovideafascinatingcompendiumoftheoreticalandpracticalguidesandevena web-basedtoolformakingastatisticalcomparisonofbothsingle-objectiveandmulti- objectiveoptimisationalgorithmsinafairway.Thisbookprovidesapathforward, notonlyinthefieldofmeta-heuristicstochasticoptimisation,butalsoinotherfields of computer science where approaches and algorithms should be benchmarked in thecorrectwaybeforeannouncingthemasthebestsolutions.Asaconsequence,the researcher who wins the competition will succeed as a true scientist, which is the mostbeautifulfeelingofall. Ljubljana,Slovenia BarbaraKoroušic´ Seljak November2021 vii Preface Everythingstartedin2015.I(TomeEftimov)camebackfromaconference,andmy Ph.D.supervisor(BarbaraKoroušic´ Seljak)toldmethatitwouldbenicetomakea presentation about how many runs we should make toobtain arepresentative data sampleforastatisticalanalysisofmeta-heuristics.Forthis,Ineededtocollaborate withmycolleaguePeterKorošec.Theideawastotransferthestatisticalknowledge appliedinotherdomainstooptimization,wheretheinputwastheexperimentaldata from running single-objective meta-heuristics. After a few discussions about the statisticalmethods,webothrealizedthatthiscouldnotbeappliedtoourapplication scenario.Peterexplainedtomeabouttheweaknesseswhenstatisticalcomparisons aremadeusingmeta-heuristicsdata.Afterafewhours,IhadimplementedtheDeep Statistical Comparison approach. The next day, after explaining this to Peter and discussing the results, he told me that we should publish them in a journal. This is how the Deep Statistical Comparison story began, with neither of us realizing atthetimethebenefitswewouldderivefrommakingstatisticalcomparisonsmore robust.Sincethen,therehavebeenmanylongdiscussions,whichhavefinallyledto this book. And despite some of the discussions becoming heated, we are happy to considerourselvesasfriends,notjustcolleagues. Our initial study about how many optimization runs we would need to obtain a representative data sample for a statistical analysis of meta-heuristics remains unfinished. But our diversion into the Deep Statistical Comparison approach was worthit. BookContent Thisbookexplainswhatisrequiredtomakeamorerobuststatisticalcomparisonof theperformanceachievedbymeta-heuristics.Itdoesnotexplainhowtodevelopa newsingle-ormulti-objectivemeta-heuristic,orhowtorunitonaspecificoraset ofprobleminstancesandcollecttheexperimentaldata.Itdealsinwhichstatistical analysis should be made once the experimental data is collected to obtain robust statisticaloutcomes. ix x Preface IntendedAudience Thebookhasbeenwrittenwiththreeaudiencesinmind: (cid:129) Studentsinthefieldofmeta-heuristicstochasticoptimization. (cid:129) Experiencedresearchersinthefieldofmeta-heuristicstochasticoptimization. (cid:129) Engineers who need to select an appropriate optimization algorithm for their industrialtaskbasedonitsperformance. ExpectedBackgroundKnowledge Fewassumptionsaremaderelatingtothebackgroundofthereader.However,they shouldknowwheretofindmeta-heuristicstochasticoptimizationalgorithms,howto runthem,thebasicsofhowtheywork,andhowtheexperimentaldataarecollected. Allthisknowledgeisnotessential,butitwillhelpinunderstandingthelogicbehind thestatisticalanalysispresentedinthisbook. BookOutline Thebookisorganizedforbothnewandexperiencedreaders.Forthenewreadersit providesthebasicsinoptimizationandstatisticalanalysis,allowingthemtobecome familiarwiththematerialbeforetheintroductionoftheDeepStatisticalComparison approach.Experiencedresearcherscanmoverapidlytotheintroductionofthenew statisticalapproaches.Toaccommodatethereader,thecontentisorganizedintothree parts: (cid:129) Part I: Introduction to optimization, benchmarking, and statistical analysis— Chaps.2–4. (cid:129) Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms—Chaps.5–7. (cid:129) Part III: Implementation and application of the Deep Statistical Comparison— Chap.8. Theaimofthefirstpartistoprovidethebasicsinoptimization,benchmarking,and statisticalanalysis.Itbeginsbyexplainingtheoptimizationproblem,togetherwith differentclassificationsthatexistconcerningdifferentcriteriasuchascombinatorial versusnumerical(basedonthetypeofvariablesusedtodescribetheoptimization problem)orsingle-versusmulti-objective(basedonthenumberofobjectivesthat areoptimized).Next,thebenchmarkingprocessisexplainedinmoredetail,focusing on the four main steps that should be taken with great care when a benchmarking studyisperformed:(i)identifyingthebenchmarkingobjective,(ii)definingtheopti- mizationdomain(i.e.,selectionofthealgorithmsandproblems),(iii)definingafair Preface xi experimentaldesign,and(iv)statisticallyanalyzingtheexperimentaldata.Finally, this part ends with an introduction to statistical analysis, with a special focus on hypothesistestingandguidelinesforselectinganappropriateomnibusstatisticaltest fortheperformanceassessmentofmeta-heuristicstochasticoptimizationalgorithms. Thepurposeofthesecondpartistointroducetheweaknessesofclassicstatistical analyses that are used to compare experimental data obtained from meta-heuristic stochasticoptimizationalgorithmsasthemotivationfordevelopingtheDeepStatis- ticalComparison,anapproachthatprovidesmorerobuststatisticaloutcomeswhen thereareoutlierspresentinthedataordatavaluesareinanε-neighborhood.Thispart begins by introducing the Deep Statistical Comparison ranking scheme in a more general form. Next, its application and extensions in single- and multi-objective optimizationarepresentedusingexamples. ThethirdpartfocusesontheimplementationandpracticalusageofDeepStatis- tical Comparison approaches. It introduces the DSCTool, which is a web-service- basede-Learningtoolforstatisticalcomparisonsofmeta-heuristicstochasticopti- mization algorithms. The tool helps users with all Deep Statistical Comparison approachesbyguidingthemonhowtoinputthedata(i.e.,optimizationalgorithm results) should be organized and which statistical test is the most appropriate for theirbenchmarkingscenario.Thispartalsoprovidesapracticalimplementationof alltheexamplespresentedinthesecondparttoguaranteereproducibleresultsand teachusershowtheycanusetheDeepStatisticalComparisonapproachesontheir owndata. Acknowledgments Wemustthankallthefriendsandcolleagueswhosecommentsandcriticismhelped toimprovethebook.WewouldespeciallyliketomentionBarbaraKoroušic´Seljak, GordanaIspirova,andGjorgjinaCenikj. WewouldalsoliketothanktheSlovenianResearchAgency(researchcorefunding No.P2-0098,andthepostdoctoralprojectMr-BECNo.Z2-1867)andtheEuropean Union’sHorizon2020researchandinnovationprogramundergrantagreementNo. 692286(SYNERGYforsmartmulti-objectiveoptimization)forsupportingourwork. At the end, this is no real ending. It is just the place where one story ends and anotheronebegins. Ljubljana,Slovenia TomeEftimov December2021 PeterKorošec

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.