Master Thesis Deep Physiological Arousal Detection in a Driving Simulator Aaqib Saeed August 2017 Deep Physiological Arousal Detection in a Driving Simulator Master Thesis by Aaqib Saeed 1651854 MSc Computer Science Data Science and Smart Services Enschede, August 2017 Graduation Committee: Dr.Ir. Maurice van Keulen, University of Twente Dr. Stojan Trajanovski, Philips Research Prof. Dr. Jan B.F. van Erp, University of Twente Dr. A.K. Ramakrishnan, University of Twente Acknowledgments I am thankful to many people for their support, contribution and trust which made two years of master studies very exciting, and an experience in itself. I would like to thank my advisers Stojan Trajanovski, Maurice van Keulen and Jan van Erp for their guidance, critical feedback, thought-provoking discussions and above all giving me freedom to pursue my own ideas. Their unfailing help not just enabled me to get a better understanding of applied Machine Learning but helped me develop a research mindset. I also want to thank my internship supervisors (in Fit2Perform project) Adrienne Heinrich and Victor Kallen for sparking my interest in biometrics data analytics. I owe a special thanks to my friends back home in Pakistan, Nouman Farooq, Inam Akbar and Mudasir Ali for all their support and motivation. I am also very grateful to my teachers from undergraduate studies especially, M.Qasim Pasta, Faraz Zaidi and Husain Parvez for their encouragement and being an inspiration. But most importantly, I am very thankful to my parents for all their love, sacrifices and countless efforts in providing new opportunities to me and my siblings for a better future. A special word of gratitude to my fiance, Zaharah A.Bukhsh, for always being there for me and being my emotional support in making this journey wonderful. 3 Abstract Driving is an activity that requires considerable alertness. Insufficient attention, imperfect perception,inadequateinformationprocessing,andsub-optimalarousalarepossiblecausesof poor human performance. Understanding of these causes and the implementation of effective remedies is of key importance to increase traffic safety and improve driver’s well-being. For this purpose, we used deep learning algorithms to detect arousal level, namely, under- aroused, normal and over-aroused for professional truck drivers in a simulated environment. The physiological signals are collected from 11 participants by wrist wearable devices. We presented a cost effective ground-truth generation scheme for arousal based on a subjective measure of sleepiness and score of stress stimuli. On this dataset, we evaluated a range of deep neural network models for representation learning as an alternative to handcrafted feature extraction. Our results show that a 7-layers convolutional neural network trained on raw physiological signals (such as heart rate, skin conductance and skin temperature) outperforms a baseline neural network and denoising autoencoder models with weighted F- score of 0.82 vs. 0.75 and Kappa of 0.64 vs. 0.53, respectively. The proposed convolutional model not only improves the overall results but also enhances the detection rate for every driver in the dataset as determined by leave-one-subject-out cross-validation. 5 Contents Acknowledgments 3 Abstract 5 Contents 7 List of Figures 11 List of Tables 13 List of Acronyms 15 1 Introduction 1 2 Background Study and Related Work 7 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Recognizing Physiological Arousal . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Deep Learning for Sequence Classification . . . . . . . . . . . . . . . . . . . . 12 2.4 Analysis of Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Data and Methodology 15 3.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Contents 3.3 Arousal Ground Truth Annotation . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Pre-processing and Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Deep Neural Networks for Arousal Classification 23 4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Neural Network and Denoising Autoencoder . . . . . . . . . . . . . . . . . . . 24 4.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.4 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.6 Training Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.7 Tackling Data Imbalance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7.1 Threshold-Moving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.7.2 Over-Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.7.3 Weighted Categorical Cross Entropy . . . . . . . . . . . . . . . . . . . 37 5 Experiments and Discussion 39 5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.2 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.3 Evaluation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.4 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1.6 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.1 Validation of Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Convolutional and Recurrent Neural Networks . . . . . . . . . . . . . 45 5.2.3 Evaluation of Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.4 Effect of techniques to solve Data Imbalance . . . . . . . . . . . . . . 52 5.2.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8 5.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Conclusion and Future Work 61 Appendix 63 A1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A2 Oversmapled classes per driver using SMOTE . . . . . . . . . . . . . . . . . . 63 A3 Cost matrices for Threshold-Moving method . . . . . . . . . . . . . . . . . . . 64 A4 Illustration of ground truth unavailability . . . . . . . . . . . . . . . . . . . . 65 Bibliography 67
Description: