ebook img

Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications PDF

369 Pages·2019·9.107 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications

Chapman & Hall/CRC Artificial Intelligence and Robotics Series TOWARD DEEP NEURAL NETWORKS WASD NEURONET MODELS, ALGORITHMS, AND APPLICATIONS Yunong Zhang, Dechao Chen, and Chengxu Ye A Chapman & Hall Book Toward Deep Neural Networks WASD Neuronet Models, Algorithms, and Applications Toward Deep Neural Networks WASD Neuronet Models, Algorithms, and Applications Yunong Zhang Dechao Chen Chengxu Ye CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2019byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-138-38703-4(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Reasonableeffortshavebeenmade topublishreliabledataandinformation,buttheauthorandpublishercannotassumeresponsibilityforthevalidityofall materialsortheconsequencesoftheiruse.Theauthorsandpublishershaveattemptedtotracethecopyrightholdersofall materialreproducedinthispublicationandapologizetocopyrightholdersifpermissiontopublishinthisformhasnotbeen obtained.Ifanycopyrightmaterialhasnotbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuture reprint. ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,reproduced,transmitted,orutilized inanyformbyanyelectronic,mechanical,orothermeans,nowknownorhereafterinvented,includingphotocopying,mi- crofilming,andrecording,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthepublishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/)orcontacttheCopyrightClearanceCenter,Inc.(CCC),222RosewoodDrive,Danvers,MA 01923,978-750-8400.CCCisanot-for-profitorganizationthatprovideslicensesandregistrationforavarietyofusers.For organizationsthathavebeengrantedaphotocopylicensebytheCCC,aseparatesystemofpaymenthasbeenarranged. TrademarkNotice:Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidenti- ficationandexplanationwithoutintenttoinfringe. LibraryofCongressCataloging-in-PublicationData Names:Zhang,Yunong,author. Chen,Dechao,author. Ye,Chengxu,author. | | Title:Towarddeepneuralnetworks:WASDneuronetmodels,algorithms,andapplications/ YunongZhang,DechaoChen,ChengxuYe. Description:BocaRaton,Florida:CRCPress,[2019] Series:Chapman&Hall/CRCartificial | intelligenceandroboticsseries Includesbibliographicalreferencesandindex. | Identifiers:LCCN2018050905 ISBN9781138387034(hardback:acid-freepaper) | | ISBN9780429426445(ebook) Subjects:LCSH:Neuralnetworks(Computerscience) Classification:LCCQA76.87.Z475372019 DDC006.3/2--dc23 | LCrecordavailableathttps://lccn.loc.gov/2018050905 VisittheTaylor&FrancisWebsiteat http://www.taylorandfrancis.com andtheCRCPressWebsiteat http://www.crcpress.com Toourparentsand ancestors,asalways Contents Preface xv Authors xxiii Acknowledgments xxv I Single-Input-Single-OutputNeuronet 1 1 Single-InputEuler-PolynomialWASDNeuronet 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 NeuronetModelandTheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 WASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Weightsdirectdetermination . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Structureautomaticdetermination . . . . . . . . . . . . . . . . . . . . . . 7 1.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 AppendixA:The5thto25thEulerPolynomials . . . . . . . . . . . . . . . . . . . . . 11 2 Single-InputBernoulli-PolynomialWASDNeuronet 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 NeuronetModelandTheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 WASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Weightsdirectdetermination . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Structureautomaticdetermination . . . . . . . . . . . . . . . . . . . . . . 18 2.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AppendixB:The5thto25thBernoulliPolynomials . . . . . . . . . . . . . . . . . . . 23 3 Single-InputLaguerre-PolynomialWASDNeuronet 25 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 NeuronetModelandTheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 WASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 Weightsdirectdetermination . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Structureautomaticdetermination . . . . . . . . . . . . . . . . . . . . . . 28 3.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 vii viii Contents II Two-Input-Single-OutputNeuronet 33 4 Two-InputLegendre-PolynomialWASDNeuronet 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 TheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 NeuronetModelandWASDAlgorithms . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 Two-inputLegendre-polynomialneuronetmodel . . . . . . . . . . . . . . 39 4.3.2 TwoWASDalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 Two-InputChebyshev-Polynomial-of-Class-1WASDNeuronet 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 TheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3 NeuronetModelandWASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.1 Two-inputChebyshev-polynomial-of-Class-1neuronetmodel . . . . . . . 50 5.3.2 WASDalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6 Two-InputChebyshev-Polynomial-of-Class-2WASDNeuronet 63 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 TheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3 NeuronetModelandWASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.1 Two-inputChebyshev-polynomial-of-Class-2neuronetmodel . . . . . . . 65 6.3.2 WASDalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 III Three-Input-Single-OutputNeuronet 75 7 Three-InputEuler-PolynomialWASDNeuronet 77 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 TheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 NeuronetModelandWASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 82 7.3.1 Three-inputEuler-polynomialneuronetmodel . . . . . . . . . . . . . . . 83 7.3.2 WASDalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8 Three-InputPower-ActivationWASDNeuronet 93 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.2 TheoreticalBasisandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 NeuronetModelandWASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 97 8.3.1 Three-inputpower-activationneuronetmodel . . . . . . . . . . . . . . . . 97 8.3.2 WASDalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Contents ix 8.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.4.1 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.4.2 Testingandprediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.4.3 Furthersimplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.5 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 IV GeneralMulti-InputNeuronet 105 9 Multi-InputEuler-PolynomialWASDNeuronet 107 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.2 TheoreticalBasisandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.3 MIEPNModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4 WDDSubalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.5 WASDAlgorithmwithPWGandTPTechniques . . . . . . . . . . . . . . . . . . 114 9.6 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.7 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 AppendixC:DetailedDerivationofNormalEquation . . . . . . . . . . . . . . . . . . 122 AppendixD:SupplementalTheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10 Multi-InputBernoulli-PolynomialWASDNeuronet 125 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.2 NeuronetModelandTheoreticalBasis . . . . . . . . . . . . . . . . . . . . . . . 126 10.2.1 FIBPNmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.2.2 Theoreticalbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.3 WeightsandStructureDetermination . . . . . . . . . . . . . . . . . . . . . . . . 128 10.3.1 Pruning-while-growingtechnique . . . . . . . . . . . . . . . . . . . . . . 130 10.3.2 Pruning-after-growntechnique . . . . . . . . . . . . . . . . . . . . . . . . 131 10.4 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.4.1 ComparativenumericalresultsofPWGtechnique . . . . . . . . . . . . . . 131 10.4.2 ComparativenumericalresultsofPAGtechnique . . . . . . . . . . . . . . 133 10.4.3 NumericalcomparisonwithconventionalBPneuronets . . . . . . . . . . . 133 10.5 ExtensiontoRobustClassification . . . . . . . . . . . . . . . . . . . . . . . . . . 134 10.6 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 11 Multi-InputHermite-PolynomialWASDNeuronet 137 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.2 MIHPNModelandWASDAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . 138 11.2.1 MIHPNmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 11.2.2 WASDalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.3 NumericalStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.3.1 Trainingandtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.3.2 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.4 ChapterSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 AppendixE:RelatedDefinitionandLemmaaboutApproximationAbilityofHP . . . . 148

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.