The Hong Kong Polytechnic University Department of Electronic and Informa<on Engineering ICME 2017 MUST-EH Deep Neural Networks versus Support Vector Machines for ECG (cid:1) Arrhythmia Classifica?on Sean Shensheng Xu, Man-Wai Mak and Chi-Chung Cheung 10 July 2017 Sean@ICME2017 (EIE,PolyU) 1 (cid:1) Outline • Introduc?on – Heart arrhythmia and electrocardiogram (ECG) • Previous works – Tradi?onal classifiers for ECG classifica?on • Our works – ECG classifica?on by SVMs and DNNs • Experimental results • Conclusions and current works Sean@ICME2017 (EIE,PolyU) 2 (cid:1) Arrhythmia Normal heartbeats(cid:1) Abnormal heartbeats(cid:1) Arrhythmia is a condi?on in which the heartbeat is abnormal. Some types of arrhythmia may predispose to complica?ons. Sean@ICME2017 (EIE,PolyU) 3 (cid:1) Typical Normal Heartbeat Sean@ICME2017 (EIE,PolyU) 4 (cid:1) Detec?on of Arrhythmia • Electrocardiogram (ECG) – Record the electrical ac?vity of the heart(cid:1) Normal ECG checking(cid:1) Holter monitor(cid:1) Diagnose arrhythmia(cid:1) Observe occasional arrhythmia(cid:1) A[ach small electrodes to the chest, A series of electrodes a[ached to arms and legs(cid:1) the chest(cid:1) Several minutes(cid:1) More than 24 hours(cid:1) Give an instant diagnosis result(cid:1) Extremely ?me-consuming(cid:1) (cid:1) It is be[er to use machines for ECG classifica?on. Sean@ICME2017 (EIE,PolyU) 5 (cid:1) Previous Works • Two well-known classifiers for ECG classifica?on (cid:1) Support Vector Machine (SVM) Ar?ficial Neural Network (cid:1) (ANN) To find a hyper-plane that maximizes the margin of two classes(cid:1) Capture hidden informa?on Sean@ICME2017 (EIE,PolyU) from known data(cid:1) 6 (cid:1) Previous Works Classifica<on (cid:1) Feature Pre-Processing(cid:1) Classifier(cid:1) Accuracy(cid:1) Kohli et al., Nil(cid:1) SVM(cid:1) 73.40%(cid:1) (2010)(cid:1) Jadhav et al., Nil(cid:1) ANN(cid:1) 82.22%(cid:1) (2010)(cid:1) Khare et al., Rank correla?on SVM(cid:1) 85.98%(cid:1) (2011)(cid:1) Principal component analysis (PCA)(cid:1) Data: UCI arrhythmia dataset [1] Sean@ICME2017 (EIE,PolyU) 7 UCI Arrhythmia Dataset • 452 labelled heartbeats • 16 heartbeat types • Each heartbeat has 279 given features (e.g., Sex, Heart rate, QRS dura?on and so on) – 206 features are real numbers, and the rest are nominal (e.g., “M” and “F” for “Sex”) Sean@ICME2017 (EIE,PolyU) 8 (cid:1) UCI Arrhythmia Dataset • Class distribu?on(cid:1) No. of samples are highly imbalance(cid:1) h[p://archive.ics.uci.edu/ml/machine-learning-databases/arrhythmia/arrhythmia.names Sean@ ICME2017 (EIE,PolyU) 9 (cid:1) Limita?ons • Their performance cannot be compared directly. – Different evalua?on protocols • Arbitrary cases (not in general) – Provided a single split of the dataset into a training set and a test set • Tes?ng data is used for performance op?miza?on. – Classifica?on accuracy may be over-es?mated. Sean@ICME2017 (EIE,PolyU) 10
Description: