ebook img

Deep Neural Networks versus Support Vector Machines for ECG Arrhythmia Classificaqon PDF

35 Pages·2017·1.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deep Neural Networks versus Support Vector Machines for ECG Arrhythmia Classificaqon

The Hong Kong Polytechnic University Department of Electronic and Informa<on Engineering ICME 2017 MUST-EH Deep Neural Networks versus Support Vector Machines for ECG (cid:1) Arrhythmia Classifica?on Sean Shensheng Xu, Man-Wai Mak and Chi-Chung Cheung 10 July 2017 Sean@ICME2017 (EIE,PolyU) 1 (cid:1) Outline •  Introduc?on –  Heart arrhythmia and electrocardiogram (ECG) •  Previous works –  Tradi?onal classifiers for ECG classifica?on •  Our works –  ECG classifica?on by SVMs and DNNs •  Experimental results •  Conclusions and current works Sean@ICME2017 (EIE,PolyU) 2 (cid:1) Arrhythmia Normal heartbeats(cid:1) Abnormal heartbeats(cid:1) Arrhythmia is a condi?on in which the heartbeat is abnormal. Some types of arrhythmia may predispose to complica?ons. Sean@ICME2017 (EIE,PolyU) 3 (cid:1) Typical Normal Heartbeat Sean@ICME2017 (EIE,PolyU) 4 (cid:1) Detec?on of Arrhythmia •  Electrocardiogram (ECG) –  Record the electrical ac?vity of the heart(cid:1) Normal ECG checking(cid:1) Holter monitor(cid:1) Diagnose arrhythmia(cid:1) Observe occasional arrhythmia(cid:1) A[ach small electrodes to the chest, A series of electrodes a[ached to arms and legs(cid:1) the chest(cid:1) Several minutes(cid:1) More than 24 hours(cid:1) Give an instant diagnosis result(cid:1) Extremely ?me-consuming(cid:1) (cid:1) It is be[er to use machines for ECG classifica?on. Sean@ICME2017 (EIE,PolyU) 5 (cid:1) Previous Works •  Two well-known classifiers for ECG classifica?on (cid:1) Support Vector Machine (SVM) Ar?ficial Neural Network (cid:1) (ANN) To find a hyper-plane that maximizes the margin of two classes(cid:1) Capture hidden informa?on Sean@ICME2017 (EIE,PolyU) from known data(cid:1) 6 (cid:1) Previous Works Classifica<on (cid:1) Feature Pre-Processing(cid:1) Classifier(cid:1) Accuracy(cid:1) Kohli et al., Nil(cid:1) SVM(cid:1) 73.40%(cid:1) (2010)(cid:1) Jadhav et al., Nil(cid:1) ANN(cid:1) 82.22%(cid:1) (2010)(cid:1) Khare et al., Rank correla?on SVM(cid:1) 85.98%(cid:1) (2011)(cid:1) Principal component analysis (PCA)(cid:1) Data: UCI arrhythmia dataset [1] Sean@ICME2017 (EIE,PolyU) 7 UCI Arrhythmia Dataset •  452 labelled heartbeats •  16 heartbeat types •  Each heartbeat has 279 given features (e.g., Sex, Heart rate, QRS dura?on and so on) –  206 features are real numbers, and the rest are nominal (e.g., “M” and “F” for “Sex”) Sean@ICME2017 (EIE,PolyU) 8 (cid:1) UCI Arrhythmia Dataset •  Class distribu?on(cid:1) No. of samples are highly imbalance(cid:1) h[p://archive.ics.uci.edu/ml/machine-learning-databases/arrhythmia/arrhythmia.names Sean@ ICME2017 (EIE,PolyU) 9 (cid:1) Limita?ons •  Their performance cannot be compared directly. –  Different evalua?on protocols •  Arbitrary cases (not in general) –  Provided a single split of the dataset into a training set and a test set •  Tes?ng data is used for performance op?miza?on. –  Classifica?on accuracy may be over-es?mated. Sean@ICME2017 (EIE,PolyU) 10

Description:
Deep Neural Networks versus h p://archive.ics.uci.edu/ml/machine-learning-databases/arrhythmia/ The original representaqon of the features.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.