Deep Learning for Medical Image Analysis Edited by S. Kevin Zhou Hayit Greenspan Dinggang Shen Deep Learning for Medical Image Analysis The Elsevier and MICCAI Society Book Series Advisory board StephenAylward(Kitware,UnitedStates) DavidHawkes(UniversityCollegeLondon,UnitedKingdom) KensakuMori(UniversityofNagoya,Japan) AlisonNoble(UniversityofOxford,UnitedKingdom) SoniaPujol(HarvardUniversity,UnitedStates) DanielRueckert(ImperialCollege,UnitedKingdom) XavierPennec(INRIASophia-Antipolis,France) PierreJannin(UniversityofRennes,France) Alsoavailable: Balocco,ComputingandVisualizationforIntravascularImagingand ComputerAssistedStenting,9780128110188 Wu,MachineLearningandMedicalImaging,9780128040768 Zhou,MedicalImageRecognition,SegmentationandParsing, 9780128025819 Deep Learning for Medical Image Analysis Edited by S. Kevin Zhou Hayit Greenspan Dinggang Shen AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2017ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-810408-8 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com Publisher:JoeHayton AcquisitionEditor:TimPitts EditorialProjectManager:CharlotteKent ProductionProjectManager:Julie-AnnStansfield Designer:MatthewLimbert TypesetbyVTeX Contents Contributors........................................................ xv AbouttheEditors ................................................... xxi Foreword .......................................................... xxiii PART 1 INTRODUCTION CHAPTER 1 An Introduction to Neural Networks and Deep Learning .......................................... 3 Heung-Il Suk 1.1 Introduction......................................... 3 1.2 Feed-ForwardNeuralNetworks ........................ 4 1.2.1 Perceptron .................................... 4 1.2.2 Multi-LayerNeuralNetwork..................... 5 1.2.3 LearninginFeed-ForwardNeuralNetworks ........ 6 1.3 ConvolutionalNeuralNetworks ........................ 8 1.3.1 ConvolutionandPoolingLayer................... 8 1.3.2 ComputingGradients ........................... 9 1.4 DeepModels........................................ 11 1.4.1 VanishingGradientProblem ..................... 11 1.4.2 DeepNeuralNetworks.......................... 12 1.4.3 DeepGenerativeModels ........................ 14 1.5 TricksforBetterLearning ............................. 20 1.5.1 RectifiedLinearUnit(ReLU) .................... 20 1.5.2 Dropout ...................................... 20 1.5.3 BatchNormalization............................ 21 1.6 Open-SourceToolsforDeepLearning................... 22 References.......................................... 22 Notes .............................................. 24 CHAPTER 2 An Introduction to Deep Convolutional Neural Nets for Computer Vision ......................... 25 Suraj Srinivas, Ravi K. Sarvadevabhatla, Konda R. Mopuri, Nikita Prabhu, Srinivas S.S. Kruthiventi and R. VenkateshBabu 2.1 Introduction......................................... 26 2.2 ConvolutionalNeuralNetworks ........................ 27 2.2.1 BuildingBlocksofCNNs ....................... 27 2.2.2 Depth ........................................ 29 2.2.3 LearningAlgorithm ............................ 30 v vi Contents 2.2.4 TrickstoIncreasePerformance................... 31 2.2.5 PuttingItAllTogether:AlexNet.................. 32 2.2.6 UsingPre-TrainedCNNs........................ 32 2.2.7 ImprovingAlexNet............................. 33 2.3 CNNFlavors ........................................ 34 2.3.1 Region-BasedCNNs............................ 34 2.3.2 FullyConvolutionalNetworks.................... 35 2.3.3 Multi-ModalNetworks.......................... 38 2.3.4 CNNswithRNNs .............................. 40 2.3.5 HybridLearningMethods ....................... 43 2.4 SoftwareforDeepLearning ........................... 45 References.......................................... 46 PART 2 MEDICAL IMAGE DETECTION AND RECOGNITION CHAPTER 3 Efficient Medical Image Parsing .................. 55 Florin C. Ghesu, Bogdan Georgescu and Joachim Hornegger 3.1 Introduction......................................... 55 3.2 BackgroundandMotivation ........................... 57 3.2.1 ObjectLocalizationandSegmentation:Challenges .. 58 3.3 Methodology........................................ 58 3.3.1 ProblemFormulation ........................... 58 3.3.2 SparseAdaptiveDeepNeuralNetworks ........... 59 3.3.3 MarginalSpaceDeepLearning................... 61 3.3.4 AnArtificialAgentforImageParsing ............. 64 3.4 Experiments......................................... 71 3.4.1 AnatomyDetectionandSegmentationin3D........ 71 3.4.2 LandmarkDetectionin2Dand3D................ 74 3.5 Conclusion.......................................... 77 Disclaimer .......................................... 78 References.......................................... 78 CHAPTER 4 Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition....................... 83 Zhennan Yan, Yiqiang Zhan, Shaoting Zhang, Dimitris Metaxas and Xiang Sean Zhou 4.1 Introduction......................................... 83 4.2 RelatedWork........................................ 85 4.3 Methodology........................................ 87 4.3.1 ProblemStatementandFrameworkOverview....... 87 4.3.2 LearningStageI:Multi-InstanceCNNPre-Train .... 88 4.3.3 LearningStageII:CNNBoosting................. 90 Contents vii 4.3.4 Run-TimeClassification......................... 92 4.4 Results ............................................. 93 4.4.1 ImageClassificationonSyntheticData ............ 93 4.4.2 Body-PartRecognitiononCTSlices .............. 95 4.5 DiscussionandFutureWork ........................... 99 References.......................................... 100 CHAPTER 5 Automatic Interpretation of Carotid Intima–Media Thickness Videos Using Convolutional Neural Networks.......................................... 105 Nima Tajbakhsh,Jae Y. Shin, R. Todd Hurst, Christopher B. Kendall and Jianming Liang 5.1 Introduction......................................... 106 5.2 RelatedWork........................................ 107 5.3 CIMTProtocol ...................................... 109 5.4 Method............................................. 109 5.4.1 ConvolutionalNeuralNetworks(CNNs) ........... 109 5.4.2 FrameSelection................................ 110 5.4.3 ROILocalization............................... 112 5.4.4 Intima–MediaThicknessMeasurement ............ 115 5.5 Experiments......................................... 117 5.5.1 Pre-andPost-ProcessingforFrameSelection....... 118 5.5.2 ConstrainedROILocalization.................... 118 5.5.3 Intima–MediaThicknessMeasurement ............ 121 5.5.4 End-to-EndCIMTMeasurement.................. 123 5.6 Discussion .......................................... 124 5.7 Conclusion.......................................... 128 Acknowledgement ................................... 128 References.......................................... 128 Notes .............................................. 131 CHAPTER 6 Deep Cascaded Networks for Sparsely Distributed Object Detection from Medical Images ........... 133 Hao Chen, Qi Dou, Lequan Yu, Jing Qin, Lei Zhao, Vincent C.T. Mok, Defeng Wang, Lin Shi and Pheng-Ann Heng 6.1 Introduction......................................... 134 6.2 Method............................................. 136 6.2.1 CoarseRetrievalModel ......................... 136 6.2.2 FineDiscriminationModel ...................... 139 6.3 MitosisDetectionfromHistologyImages ................ 139 6.3.1 Background ................................... 139 6.3.2 TransferLearningfromCross-Domain............. 140 viii Contents 6.3.3 DatasetandPreprocessing ....................... 140 6.3.4 QuantitativeEvaluationandComparison........... 141 6.3.5 ComputationCost.............................. 142 6.4 CerebralMicrobleedDetectionfromMRVolumes......... 143 6.4.1 Background ................................... 143 6.4.2 3DCascadedNetworks ......................... 144 6.4.3 DatasetandPreprocessing ....................... 146 6.4.4 QuantitativeEvaluationandComparison........... 147 6.4.5 SystemImplementation ......................... 149 6.5 DiscussionandConclusion ............................ 149 Acknowledgements .................................. 150 References.......................................... 150 Notes .............................................. 154 CHAPTER 7 Deep Voting and Structured Regression for Microscopy Image Analysis....................... 155 YuanpuXie, Fuyong Xing and Lin Yang 7.1 Deep Voting: A Robust Approach Toward Nucleus LocalizationinMicroscopyImages ..................... 156 7.1.1 Introduction................................... 156 7.1.2 Methodology .................................. 158 7.1.3 WeightedVotingDensityEstimation .............. 162 7.1.4 Experiments................................... 163 7.1.5 Conclusion.................................... 165 7.2 Structured Regression for Robust Cell Detection Using ConvolutionalNeuralNetwork ......................... 165 7.2.1 Introduction................................... 165 7.2.2 Methodology .................................. 166 7.2.3 ExperimentalResults ........................... 169 7.2.4 Conclusion.................................... 171 Acknowledgements .................................. 172 References.......................................... 172 PART 3 MEDICAL IMAGE SEGMENTATION CHAPTER 8 Deep Learning Tissue Segmentation in Cardiac Histopathology Images............................ 179 JeffreyJ.Nirschl,AndrewJanowczyk,EliotG.Peyster, Renee Frank, Kenneth B. Margulies, Michael D. Feldman and Anant Madabhushi 8.1 Introduction......................................... 180 8.2 ExperimentalDesignandImplementation................ 183 Contents ix 8.2.1 DataSetDescription............................ 183 8.2.2 ManualGroundTruthAnnotations................ 183 8.2.3 Implementation................................ 183 8.2.4 TrainingaModelUsingEngineeredFeatures ....... 185 8.2.5 Experiments................................... 186 8.2.6 TestingandPerformanceEvaluation............... 188 8.3 ResultsandDiscussion................................ 188 8.3.1 Experiment1:ComparisonofDeepLearningand RandomForestSegmentation .................... 188 8.3.2 Experiment2:EvaluatingtheSensitivityofDeep LearningtoTrainingData ....................... 188 8.4 ConcludingRemarks ................................. 191 Notes .............................................. 191 DisclosureStatement ................................. 191 Funding ............................................ 192 References.......................................... 192 CHAPTER 9 Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching .... 197 Yanrong Guo, Yaozong Gao and Dinggang Shen 9.1 Background......................................... 197 9.2 ProposedMethod .................................... 199 9.2.1 RelatedWork.................................. 199 9.2.2 LearningDeepFeatureRepresentation............. 201 9.2.3 SegmentationUsingLearnedFeatureRepresentation. 206 9.3 Experiments......................................... 211 9.3.1 Evaluation of the Performance of Deep-Learned Features ...................................... 212 9.3.2 EvaluationofthePerformanceofDeformableModel 216 9.4 Conclusion.......................................... 219 References.......................................... 219 CHAPTER 10 Characterizationof Errors inDeep Learning-Based Brain MRI Segmentation .......................... 223 Akshay Pai, Yuan-Ching Teng, Joseph Blair, Michiel Kallenberg, Erik B. Dam, Stefan Sommer, Christian Igel and Mads Nielsen 10.1 Introduction......................................... 224 10.2 DeepLearningforSegmentation ....................... 225 10.3 ConvolutionalNeuralNetworkArchitecture .............. 226 10.3.1BasicCNNArchitecture......................... 226 10.3.2Tri-PlanarCNNfor3DImageAnalysis............ 227
Description: