ebook img

Deep Learning for Computer Vision with Python, Volume 2 PDF

210 Pages·2017·9.53 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deep Learning for Computer Vision with Python, Volume 2

Deep Learning for Computer Vision with Python Practitioner Bundle Dr. Adrian Rosebrock 1stEdition(1.1.0) Copyright(cid:13)c 2017AdrianRosebrock,PyImageSearch.com PUBLISHED BY PYIMAGESEARCH PYIMAGESEARCH.COM Thecontentsofthisbook,unlessotherwiseindicated,areCopyright(cid:13)c 2017AdrianRosebrock, PyimageSearch.com. Allrightsreserved. Bookslikethisaremadepossiblebythetimeinvestedby theauthors. Ifyoureceivedthisbookanddidnotpurchaseit,pleaseconsidermakingfuturebooks possible by buying a copy at https://www.pyimagesearch.com/deep-learning-computer-vision- python-book/today. Firstprinting,September2017 Tomyfather,Joe;mywife,Trisha; andthefamilybeagles,JosieandJemma. Withouttheirconstantloveandsupport, thisbookwouldnotbepossible. Contents 1 Introduction .................................................. 11 2 Data Augmentation ........................................... 13 2.1 What Is Data Augmentation? 13 2.2 Visualizing Data Augmentation 14 2.3 Comparing Training With and Without Data Augmentation 17 2.3.1 TheFlowers-17Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Aspect-awarePreprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3 Flowers-17: NoDataAugmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.4 Flowers-17: WithDataAugmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Summary 29 3 Networks as Feature Extractors ................................ 31 3.1 Extracting Features with a Pre-trained CNN 32 3.1.1 WhatIsHDF5? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.2 WritingFeaturestoanHDF5Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 The Feature Extraction Process 37 3.2.1 ExtractingFeaturesFromAnimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 ExtractingFeaturesFromCALTECH-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.3 ExtractingFeaturesFromFlowers-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Training a Classifier on Extracted Features 43 3.3.1 ResultsonAnimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 ResultsonCALTECH-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.3 ResultsonFlowers-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Summary 46 4 Understanding rank-1 & rank-5 Accuracies .................... 49 4.1 Ranked Accuracy 49 4.1.1 Measuringrank-1andrank-5Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.2 ImplementingRankedAccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.3 RankedAccuracyonFlowers-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.4 RankedAccuracyonCALTECH-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Summary 54 5 Fine-tuning Networks ......................................... 57 5.1 Transfer Learning and Fine-tuning 57 5.1.1 IndexesandLayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.2 NetworkSurgery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1.3 Fine-tuning,fromStarttoFinish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Summary 69 6 Improving Accuracy with Network Ensembles .................. 71 6.1 Ensemble Methods 71 6.1.1 Jensen’sInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2 ConstructinganEnsembleofCNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3 EvaluatinganEnsemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Summary 80 7 Advanced Optimization Methods .............................. 83 7.1 Adaptive Learning Rate Methods 83 7.1.1 Adagrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.1.2 Adadelta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.1.3 RMSprop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.1.4 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.1.5 Nadam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2 Choosing an Optimization Method 86 7.2.1 ThreeMethodsYouShouldLearnhowtoDrive: SGD,Adam,andRMSprop . . 86 7.3 Summary 87 8 Optimal Pathway to Apply Deep Learning ..................... 89 8.1 A Recipe for Training 89 8.2 Transfer Learning or Train from Scratch 93 8.3 Summary 94 9 Working with HDF5 and Large Datasets ......................... 95 9.1 Downloading Kaggle: Dogs vs. Cats 95 9.2 Creating a Configuration File 96 9.2.1 YourFirstConfigurationFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3 Building the Dataset 98 9.4 Summary 102 10 Competing in Kaggle: Dogs vs. Cats .......................... 103 10.1 Additional Image Preprocessors 103 10.1.1 MeanPreprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 10.1.2 PatchPreprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 10.1.3 CropPreprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 10.2 HDF5 Dataset Generators 109 10.3 Implementing AlexNet 112 10.4 Training AlexNet on Kaggle: Dogs vs. Cats 117 10.5 Evaluating AlexNet 120 10.6 Obtaining a Top-5 Spot on the Kaggle Leaderboard 123 10.6.1 ExtractingFeaturesUsingResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.6.2 TrainingaLogisticRegressionClassifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.7 Summary 128 11 GoogLeNet ................................................. 131 11.1 The Inception Module (and its Variants) 132 11.1.1 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 11.1.2 Miniception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 11.2 MiniGoogLeNet on CIFAR-10 134 11.2.1 ImplementingMiniGoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 11.2.2 TrainingandEvaluatingMiniGoogLeNetonCIFAR-10 . . . . . . . . . . . . . . . . . . . 140 11.2.3 MiniGoogLeNet: Experiment#1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 11.2.4 MiniGoogLeNet: Experiment#2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.2.5 MiniGoogLeNet: Experiment#3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 11.3 The Tiny ImageNet Challenge 146 11.3.1 DownloadingTinyImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.3.2 TheTinyImageNetDirectoryStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.3.3 BuildingtheTinyImageNetDataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 11.4 DeeperGoogLeNet on Tiny ImageNet 153 11.4.1 ImplementingDeeperGoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.4.2 TrainingDeeperGoogLeNetonTinyImageNet . . . . . . . . . . . . . . . . . . . . . . . . 161 11.4.3 CreatingtheTrainingScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.4.4 CreatingtheEvaluationScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.4.5 DeeperGoogLeNetExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.5 Summary 168 12 ResNet ...................................................... 171 12.1 ResNet and the Residual Module 171 12.1.1 GoingDeeper: ResidualModulesandBottlenecks . . . . . . . . . . . . . . . . . . . . . 172 12.1.2 RethinkingtheResidualModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 12.2 Implementing ResNet 175 12.3 ResNet on CIFAR-10 180 12.3.1 TrainingResNetonCIFAR-10Withthectrl+cMethod . . . . . . . . . . . . . . . . . . 181 12.3.2 ResNetonCIFAR-10: Experiment#2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.4 Training ResNet on CIFAR-10 with Learning Rate Decay 188 12.5 ResNet on Tiny ImageNet 192 12.5.1 UpdatingtheResNetArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.5.2 TrainingResNetonTinyImageNetWiththectrl+cMethod . . . . . . . . . . . . . . 194 12.5.3 TrainingResNetonTinyImageNetwithLearningRateDecay. . . . . . . . . . . . . 198 12.6 Summary 202

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.