ebook img

Deep Learning-Based Machinery Fault Diagnostics PDF

292 Pages·2022·25.255 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deep Learning-Based Machinery Fault Diagnostics

Deep Learning- Based Machinery Fault Diagnostics Edited by Hongtian Chen, Kai Zhong, Guangtao Ran and Chao Cheng Printed Edition of the Special Issue Published in Machines www.mdpi.com/journal/machines Deep Learning-Based Machinery Fault Diagnostics Deep Learning-Based Machinery Fault Diagnostics Editors HongtianChen KaiZhong GuangtaoRan ChaoCheng MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin Editors HongtianChen KaiZhong GuangtaoRan DepartmentofChemical InstitutesofPhysicalScience DepartmentofControl andMaterialsEngineering, andInformationTechnology, ScienceandEngineering, UniversityofAlberta, AnhuiUniversity, HarbinInstituteofTechnology, Edmonton,ABT6G1H9,Canada Anhui230601,China Harbin150001,China ChaoCheng SchoolofComputerScience andEngineering,Changchun UniversityofTechnology, Changchun130012,China EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournalMachines (ISSN2075-1702) (availableat:https://www.mdpi.com/journal/machines/specialissues/dlfaul). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalNameYear,VolumeNumber, PageRange. ISBN978-3-0365-5173-9(Hbk) ISBN978-3-0365-5174-6(PDF) ©2022bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii HongtianChen,KaiZhong,GuangtaoRanandChaoCheng DeepLearning-BasedMachineryFaultDiagnostics Reprintedfrom:Machines2022,10,690,doi:10.3390/machines10080690 . . . . . . . . . . . . . . . 1 QunhongTian,TaoWang,BingLiuandGuangtaoRan Thruster Fault Diagnostics and Fault Tolerant Control for Autonomous Underwater Vehicle withOceanCurrents Reprintedfrom:Machines2022,10,582,doi:10.3390/machines10070582 . . . . . . . . . . . . . . . 5 HongZheng,KeyuanZhu,ChaoChengandZhaowangFu FaultDetectionforHigh-SpeedTrainsUsingCCAandJust-in-TimeLearning Reprintedfrom:Machines2022,10,526,doi:10.3390/machines10070526 . . . . . . . . . . . . . . . 23 LuQian,QingPan,YaqiongLvandXingweiZhao FaultDetectionofBearingbyResnetClassifierwithModel-BasedDataAugmentation Reprintedfrom:Machines2022,10,521,doi:10.3390/machines10070521 . . . . . . . . . . . . . . . 37 XiangyuPeng,YalinWang,LinGuanandYongfeiXue A Local Density-Based Abnormal Case Removal Method for Industrial Operational OptimizationundertheCBRFramework Reprintedfrom:Machines2022,10,471,doi:10.3390/machines10060471 . . . . . . . . . . . . . . . 53 ShuyueGuan,DarongHuang,ShenghuiGuo,LingZhaoandHongtianChen AnImprovedFaultDiagnosisApproachUsingLSSVMforComplexIndustrialSystems Reprintedfrom:Machines2022,10,443,doi:10.3390/machines10060443 . . . . . . . . . . . . . . . 67 RongqiangZhaoandXiongHu An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault DiagnosisofShoreBridgeLiftGearbox Reprintedfrom:Machines2022,10,424,doi:10.3390/machines10060424 . . . . . . . . . . . . . . . 89 ZhongdaLu,ChundaZhang,FengxiaXu,ZifeiWangandLijingWang FaultDetectionforIntervalType-2T-SFuzzyNetworkedSystemsviaEvent-TriggeredControl Reprintedfrom:Machines2022,10,347,doi:10.3390/machines10050347 . . . . . . . . . . . . . . . 105 ZhigangLi,ZhijieZhou,JieWang,WeiHeandXiangyiZhou Health Assessment of Complex System Based on Evidential Reasoning Rule with TransformationMatrix Reprintedfrom:Machines2022,10,250,doi:10.3390/machines10040250 . . . . . . . . . . . . . . . 123 LijingWang,ChundaZhang,JuanZhuandFengxiaXu FaultDiagnosisofMotorVibrationSignalsbyFusionofSpatiotemporalFeatures Reprintedfrom:Machines2022,10,246,doi:10.3390/machines10040246 . . . . . . . . . . . . . . . 151 JiaruiCui,PeiningWang,XiangquanLi,RuoyuHuang,QingLi,BinCaoandHuiLu Multipoint Feeding Strategy of Aluminum Reduction Cell Based on Distributed Subspace PredictiveControl Reprintedfrom:Machines2022,10,220,doi:10.3390/machines10030220 . . . . . . . . . . . . . . . 169 XiaoyuCheng,ShanshanLiu,WeiHe,PengZhang,BingXu,YawenXieandJiayuanSong AModelforFlywheelFaultDiagnosisBasedonFuzzyFaultTreeAnalysisandBeliefRuleBase Reprintedfrom:Machines2022,10,73,doi:10.3390/machines10020073 . . . . . . . . . . . . . . . 185 v PuYang,ChenwanWen,HuilinGengandPengLiu IntelligentFaultDiagnosisMethodforBladeDamageofQuad-RotorUAVBasedonStacked PruningSparseDenoisingAutoencoderandConvolutionalNeuralNetwork Reprintedfrom:Machines2021,9,360,doi:10.3390/machines9120360 . . . . . . . . . . . . . . . . 209 ShubinWang,YukunTian,XiaogangDeng,QianleiCao,LeiWangandPengxiangSun Disturbance Detection of a Power Transmission System Based on the Enhanced Canonical VariateAnalysisMethod Reprintedfrom:Machines2021,9,272,doi:10.3390/machines9110272 . . . . . . . . . . . . . . . . 229 ChenXuandYawenMao Auxiliary Model-Based Multi-Innovation Fractional Stochastic Gradient Algorithm forHammersteinOutput-ErrorSystems Reprintedfrom:Machines2021,9,247,doi:10.3390/machines9110247 . . . . . . . . . . . . . . . . 245 NingChen,FuhaiHu,JiayaoChen,ZhiwenChen,WeihuaGuiandXuLi AProcessMonitoringMethodBasedonDynamicAutoregressiveLatentVariableModelandIts ApplicationintheSinteringProcessofTernaryCathodeMaterials Reprintedfrom:Machines2021,9,229,doi:10.3390/machines9100229 . . . . . . . . . . . . . . . . 261 vi About the Editors HongtianChen HongtianChen(Member,IEEE)receivedtheB.S.andM.S.degreesinSchoolofElectricaland Automation Engineering from Nanjing Normal University, China, in 2012 and 2015, respectively; andhereceivedthePh.D.degreeinCollegeofAutomationEngineeringfromNanjingUniversityof AeronauticsandAstronautics,China,in2019.HehadeverbeenaVisitingScholarattheInstitutefor AutomaticControlandComplexSystems,UniversityofDuisburg-Essen,Germany,in2018.Nowhe isaPost-DoctoralFellowwiththeDepartmentofChemicalandMaterialsEngineering,Universityof Alberta,Canada.Hisresearchinterestsincludeprocessmonitoringandfaultdiagnosis,datamining and analytics, machinelearning, and quantum computation; and their applications in high-speed trains,newenergysystems,andindustrialprocesses. Dr. ChenwasarecipientoftheGrandPrizeofInnovationAwardofMinistryofIndustryand InformationTechnologyofthePeople’sRepublicofChinain2019,theExcellentPh.D.ThesisAward ofJiangsuProvincein2020,andtheExcellentDoctoralDissertationAwardfromChineseAssociation of Automation (CAA) in 2020. He currently serves as Associate Editors and Guest Editors of a number of scholarly journals such as IEEE Transactions on Instrumentation and Measurement, IEEETransactionsonNeuralNetworksandLearningSystemsandIEEETransactionsonArtificial Intelligence. KaiZhong KaiZhong(Professor)receivedthePh.D.fromDalianUniversityofTechnologyin2020.Nowhe isanassociateprofessorwiththeInstitutesofPhysicalScienceandInformationTechnology,Anhui University. Hismainresearchinterestsincludeprocessmonitoring,faultdiagnosisanddeepneural networks. GuangtaoRan GuangtaoRanreceivedtheB.E.andM.E.degreesfromQiqiharUniversity,Qiqihar,China,in 2016 and 2019, respectively. He is currently pursuing the Ph.D. degree with the Department of ControlScienceandEngineering,HarbinInstituteofTechnology,Harbin,China. Nowheisalsoa jointtrainingstudentwiththeDepartmentofElectricalandComputerEngineering, Universityof Alberta,Edmonton,ABT6G1H9,Canada. Hisresearchinterestsincludefuzzycontrol,reinforcementlearning,networkedcontrolsystems, multi-agentsystems,androbustcontrol. ChaoCheng Chao Cheng (Professor) received the M.Eng. and Ph.D. degrees from Jilin University, Changchun,China,in2011and2014,respectively. HeiscurrentlyaprofessorwiththeChangchun University of Technology, Changchun. He has been a Post-Doctoral Fellow in process control engineeringwiththeDepartmentofAutomation,TsinghuaUniversity,Beijing,China,since2018.He hasalsobeenaPost-DoctoralFellowwiththeNationalEngineeringLaboratory,CRRCChangchun Railway Vehicles Co., Ltd., China, since 2018. His research interest includes dynamic system fault diagnosis and predictive maintenance, wireless sensor network, artificial intelligence, and data-drivenmethod. vii machines Editorial Deep Learning-Based Machinery Fault Diagnostics HongtianChen1,*,KaiZhong2,GuangtaoRan1,3andChaoCheng4 1 DepartmentofChemicalandMaterialsEngineering,UniversityofAlberta,Edmonton,ABT6G1H9,Canada 2 InstitutesofPhysicalScienceandInformationTechnology,AnhuiUniversity,Hefei230601,China 3 DepartmentofControlScienceandEngineering,HarbinInstituteofTechnology,Harbin150001,China 4 SchoolofComputerScienceandEngineering,ChangchunUniversityofTechnology, Changchun130012,China * Correspondence:[email protected] Inrecentyears,deeplearninghasshownitsuniquepotentialandadvantagesinfeature extractionandpatternrecognition. Theapplicationofdeeplearningtofaultdiagnosis ofcomplexmachinerysystemshasbegunitsinitialexplorationstage.ThisSpecialIssue providesaninternationalforumforprofessionals,academics,andresearcherstopresentthe latestdevelopmentsfromtheoreticalstudiesandcomputationalalgorithmdevelopmentto applicationsofadvanceddeeplearning-basedmachinerysystemfaultdiagnosismethods. Thecontentsofthesestudiesarebrieflydescribedasfollows. In[1],apossibilisticfuzzyC-means(PFCM)algorithmwasproposedtorealizethe faultclassification.Basedontheresultsoffaultdiagnostics,afuzzycontrolstrategywas usedtosolvethefaulttolerantcontrolforAUV.Consideringtheuncertaintyofocean currents,amin-maxrobustoptimizationstrategywascarriedouttooptimizethefuzzycon- troller,whichwassolvedbyacooperativeparticleswarmoptimization(CPSO)algorithm. Simulationandunderwaterexperimentswereusedtoverifytheaccuracyandfeasibilityof theproposedmethodinfaultdiagnosticsandfault-tolerantcontrol. In[2],theauthorsproposedafaultdetection(FD)model,namedasCCA-JITLby usingcanonicalcorrelationanalysis(CCA)andjust-in-timelearning(JITL)toprocess scalarsignalsofhigh-speedtraingears.Afterdatapre-processingandnormalization,CCA Citation:Chen,H.;Zhong,K.;Ran, transformedcovariancematricesofhigh-dimensionhistoricaldataintolow-dimension G.;Cheng,C.DeepLearning-Based subspaceandmaximizedcorrelationsbetweenthemostimportantlatentdimensions.Then, MachineryFaultDiagnostics. JITLcomponentsformulatedthelocalFDmodelbyutilizingthesubsetsoftestingsamples Machines2022,10,690. https:// withlargerEuclideandistancestotrainingdata.AcasestudydemonstratedthataCCA- doi.org/10.3390/machines10080690 JITLFDmodelsignificantlyoutperformedtraditionalCCAmodels.Theproposedapproach Received:8August2022 canalsobeintegratedwithotherdimensionreductionFDmodels,suchastheprincipal Accepted:8August2022 componentanalysisandpartialleastsquaresmodels. Published:13August2022 In [3], the authors designed a Resnet-based classifier with the model-based data Publisher’sNote:MDPIstaysneutral augmentationskill,whichwasappliedforbearingfaultdetection.Inparticular,adynamic withregardtojurisdictionalclaimsin modelwasfirstestablishedtodescribethebearingsystembyadjustingmodelparameters, publishedmapsandinstitutionalaffil- suchasspeed,load,faultsize,andthedifferentfaulttypes.Largeamountsofdataunder iations. variousoperationconditionscanthenbegenerated.Thetrainingdatasetwasconstructed throughthesimulateddata,whichwasthenappliedtotraintheResnetclassifier.Moreover, inordertoreducethegapbetweenthesimulationdataandtherealdata,theenvelopsignals wereusedinsteadoftheoriginalsignalsinthetrainingprocess.Finally,theeffectiveness Copyright: © 2022 by the authors. oftheproposedmethodwasdemonstratedbytherealbearingdata. Itwasremarkable Licensee MDPI, Basel, Switzerland. thattheapplicationoftheproposedmethodcanbefurtherextendedtoothermechatronic Thisarticleisanopenaccessarticle systemswithadeterministicdynamicmodel. distributed under the terms and In[4],alocaldensity-basedabnormalcaseremovalmethodwasproposedtoremove conditionsoftheCreativeCommons theabnormalcasessoastopreventperformancedeteriorationinindustrialoperational Attribution(CCBY)license(https:// optimization.Morespecifically,thereasonswhyclassiccase-basedreasoning(CBR)would creativecommons.org/licenses/by/ retrieveabnormalcaseswereanalyzedfromtheperspectiveofcaseretrieval.Then,alocal 4.0/). Machines2022,10,690.https://doi.org/10.3390/machines10080690 1 https://www.mdpi.com/journal/machines

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.