ebook img

Deconstructing the Antiviral Neutralizing-Antibody Response PDF

22 Pages·2016·3.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deconstructing the Antiviral Neutralizing-Antibody Response

crossmark Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity LauraA.VanBlargan,LeslieGoo,TheodoreC.Pierson ViralPathogenesisSection,LaboratoryofViralDiseases,NationalInstituteofAllergyandInfectiousDiseases,NationalInstitutesofHealth,Bethesda,Maryland,USA SUMMARY..................................................................................................................................................989 INTRODUCTION............................................................................................................................................989 FLAVIVIRUSESANDHIV-1:CLINICALLYSIGNIFICANTCONTEXTSFORSTUDYINGTHEHUMORALIMMUNERESPONSE................................990 Flaviviruses...............................................................................................................................................990 HumanImmunodeficiencyVirusType1.................................................................................................................992 D HUMORALIMMUNERESPONSE............................................................................................................................993 o DiversityoftheHumoralImmuneResponse.............................................................................................................993 w Germinalcenterformationandaffinitymaturation....................................................................................................993 n EffectorFunctionsofAntibodies.........................................................................................................................993 lo WhereDoAntiviralAntibodiesComefrom?..............................................................................................................994 a ANTIBODY-MEDIATEDNEUTRALIZATION.................................................................................................................994 d e NeutralizationbytheNumbers...........................................................................................................................995 d Epitopeoccupancyandneutralization................................................................................................................995 f MechanismsofNeutralization............................................................................................................................995 ro VIRUSEVASIONOFANTIBODY-MEDIATEDNEUTRALIZATION ...........................................................................................996 m SequenceVariationandAntigenicDiversity..............................................................................................................996 h ConformationalMaskingofConservedRegions..........................................................................................................997 t t Regulationofepitopeaccessibilitybyflaviviruses.....................................................................................................997 p LowDensityofSurfaceGlycoproteins....................................................................................................................997 :/ / GlycanShields............................................................................................................................................997 m IDENTIFYINGTHEFUNCTIONALCOMPONENTSOFTHEPOLYCLONALANTIBODYRESPONSE..........................................................998 m NeutralizingAntibodiesAreaRareComponentoftheHumoralResponseagainstViralInfection.......................................................998 b NeutralizingAntibodiesTargetaLimitedNumberofSpecificities.......................................................................................998 r. a EpitopeSpecificitiesofNeutralizingAntibodiesInformVaccineDesign.................................................................................999 s Accessibleepitopes:easytargets......................................................................................................................999 m Crypticepitopes:dynamictargets.....................................................................................................................999 . o Quaternaryepitopes:complextargets...............................................................................................................1000 r g CONCLUDINGREMARKS..................................................................................................................................1000 / ACKNOWLEDGMENTS....................................................................................................................................1001 o REFERENCES...............................................................................................................................................1001 n A p r il SUMMARY INTRODUCTION 7 , The antibody response plays a key role in protection against viral In the evolutionary arms race between viruses and their hosts, 20 infections.Whileantiviralantibodiesmayreducetheviralburdenvia virusesexploitcomparativelyhighmutationrates,shortgener- 1 9 severalmechanisms,theabilitytodirectlyinhibit(neutralize)infec- ation times, and large population sizes to adapt to antiviral de- b tion of cells has been extensively studied. Eliciting a neutralizing- fenses. In jawed vertebrates, the immune response to infection y antibodyresponseisagoalofmanyvaccinedevelopmentprograms includestheproductionofantibodies(Abs)capableofrecogniz- g u andcommonlycorrelateswithprotectionfromdisease.Considerable inganextremelydiversearrayofantigens,includingproteinsand e s insightsintothemechanismsofneutralizationhavebeengainedfrom carbohydratesthatdecoratevirusparticles.Antibodiesareglyco- t studiesofmonoclonalantibodies,yettheindividualcontributions proteinsofthehumoralimmunesystemwithanantigenrecogni- anddynamicsoftherepertoireofcirculatingantibodyspecificities tion surface typically composed of two polyprotein chains en- elicitedbyinfectionandvaccinationarepoorlyunderstoodonthe coded by a complex and dynamic array of gene segments. The functional and molecular levels. Neutralizing antibodies with the extraordinarily broad and adaptive binding specificities of anti- mostprotectivefunctionalitiesmaybeararecomponentofapoly- bodiesareachievedthroughallelic,combinatorial,andjunctional clonal,pathogen-specificantibodyresponse,furthercomplicatingef- fortstoidentifytheelementsofaprotectiveimmuneresponse.This reviewdiscussesadvancesindeconstructingpolyclonalantibodyre- Published26October2016 sponsestoflavivirusinfectionorvaccination.Ourdiscussionsdraw CitationVanBlarganLA,GooL,PiersonTC.2016.Deconstructingtheantiviral neutralizing-antibodyresponse:implicationsforvaccinedevelopmentand comparisonstoHIV-1,aviruswithadistinctstructureandreplica- immunity.MicrobiolMolBiolRev80:989–1010.doi:10.1128/MMBR.00024-15. tioncycleforwhichtheantibodyresponsehasbeenextensivelyinves- AddresscorrespondencetoLeslieGoo,[email protected],or tigated.Progresstowarddeconstructingandunderstandingthecom- TheodoreC.Pierson,[email protected]. ponentsofpolyclonalantibodyresponsesidentifiesnewtargetsand Copyright©2016,AmericanSocietyforMicrobiology.AllRightsReserved. challengesforvaccinationstrategies. December2016 Volume80 Number4 MicrobiologyandMolecularBiologyReviews mmbr.asm.org 989 VanBlarganetal. diversity of antibody gene segments (reviewed in reference 1). theflavivirusgenus.Toidentifygeneralconcepts,selectedinsights Additionally,followinginfectionorvaccination,iterativerounds into the anti-HIV-1 antibody response are presented; excellent ofsomaticmutationofantibodygenesandanaffinity-basedse- detailed reviews of the HIV-1 antibody response were reported lectionprocessproduceantibodiesthatbindwithhighaffinityto previously(10,13–15).Bothgroupsofviruseshaveaglobalim- viralantigens. pactonpublichealthandvaryconsiderablyinstructureandrep- Antibody-mediatedneutralizationofvirusesisthedirectinhi- licationstrategies. bitionofviralinfectivityresultingfromantibodydockingtovirus particles(reviewedinreference2).Theelicitationofaneutraliz- Flaviviruses ing-antibody(NAb)responseisacorrelateofprotectionformany TheFlavivirusgenusofthefamilyFlaviviridaeconsistsofadiverse vaccines and contributes to long-lived protection against many groupofpositive-strandedRNAvirusestransmittedtovertebrate viralinfections(3).Apotentantiviralresponsemayselectforvari- hostsprincipallybymosquitoortickvectors.Thisgenusof(cid:2)70 antsthatallowescapefromantibodyneutralizationand/oreffec- species includes several viruses of considerable clinical impor- torfunctions.Neutralizationescapemechanismsarediverseand tance,includingdenguevirus(DENV),yellowfevervirus(YFV), includetheselectionofaminoacidvariationinantibodyepitopes WestNilevirus(WNV),Zikavirus(ZIKV),Japaneseencephalitis directlyaswellasthemodulationofstructuralfeaturestoprevent virus (JEV), and tick-borne encephalitis virus (TBEV). An esti- D o antibody binding. Several exciting experimental approaches to mated390millionhumansareinfectedeachyearwiththefour w overcomethesechallengeswererecentlydescribedforseveralviral serotypesofDENValone(16).Flavivirusesarecapableofrapid n systems (reviewed in reference 4). Defining the specificities of emergenceandspreadinnonimmunepopulations,asillustrated lo a NAbselicitedbyinfectionorvaccinationallowedtheidentifica- by the extremely rapid spread of ZIKV through South America d tionofBcelllineagesthatleadtotheproductionofpotentanti- followingitsintroductionin2015(17).Therelativelyrecentin- e d bodies (reviewed in reference 5). Additionally, careful study of troduction and spread of WNV throughout the Western hemi- f r anti-humanimmunodeficiencyvirustype1(HIV-1)antibodies spherearewelldocumented(18).Flaviviruseswereinitiallyclas- o m withanabilitytorecognizeabroadrangeofdiverseviralisolates sified by using serological studies, which were subsequently identifiedconservedstructuresoftheviralenvelopeproteintar- confirmedandextendedviaphylogeneticanalyses(19,20).Viral h t t getedbyhumanNAbs(6).Insightsintoepitopesboundbyfunc- specieswithintheflavivirusgenusgenerallyshareover84%nu- p : tionallydesirableantibodiesmayguidethedesignofimmunogens cleotidesequenceidentity(20).However,althoughthefoursero- // m thatcanelicittheseresponses(7). typesofdenguevirus(DENV1to-4)shareaspeciesclassification, m Significantprogresstowardunderstandingthemolecularand theydifferby~25%to~40%intheiraminoacidsequences(Fig. b structural basis for antibody-mediated neutralization has been 1A)(21). r . a made for several clinically important viruses through studies of Flavivirus virions are small, spherical, enveloped particles s monoclonal antibodies (MAbs) (4, 8–11). How antibodies with roughly50nmindiameterthatarecomposedofthreestructural m . different functional properties act in concert in human sera is proteins:capsid(C),premembrane(prM),andenvelope(E).The o r poorly understood. Despite the fundamental and translational assemblyofnewvirionsisdirectedbyprMandEproteinsatthe g / importanceofcharacterizingpolyclonalantibodies,manyimpor- endoplasmicreticulum(22–24).Onimmaturevirions,thesegly- o tantquestionsremain:(i)howmanyepitopesonavirusaretar- coproteinsareincorporatedas60icosahedrallyarrangedhetero- n A getedbytheneutralizing-antibodyresponse,(ii)howmanyBcell trimericspikesofthreeprM-Edimers(25–28).TheroleofprMon p clonal lineages are expanded during infection and vaccination, immaturevirionsistopreventlow-pH-triggeredconformational r and(iii)howdoesthecomplexityofpolyclonalantibodymixtures changesintheEproteinsthatdrivethefusionofviralandcellular il 7 correlatewithprotectionagainstdiverseandrapidlymutatingvi- membranes(29).Asimmaturevirionstrafficthroughthesecre- , 2 ruses?Inthisreview,wefocusonadvancesineffortstotranslate torypathway,theyundergoamaturationprocessdefinedbythe 0 1 reductionistconceptsarisingfromstudiesofMAbstowarddecon- cleavage of prM by cellular furin-like proteases (30–32). This 9 structingthepolyclonalneutralizing-antibodyresponsetoflavivi- cleavage results in an (cid:2)75-amino-acid M peptide that remains b ruses. associatedwiththematurevirionandan(cid:2)90-amino-acid,solu- y g ble“pr”portionthatdisassociatesfromvirusparticlesuponre- u FLAVIVIRUSESANDHIV-1:CLINICALLYSIGNIFICANT leasefromcells(25).ThefunctionofMonthemature,infectious e s CONTEXTSFORSTUDYINGTHEHUMORALIMMUNE virionisunknown.Onmaturevirions,Eproteinsexistinadense t RESPONSE herringbonearrangementofantiparallelEproteinhomodimers Thevirusestargetedbyantibodiescomeinmanyshapesandsizes (Fig.1BandC)(33–38).Inthisconfiguration,Eproteinslieflat and replicate within the host via numerous strategies. In many againstthesurfaceoftheviralmembrane,incontrasttoHIV-1 respects,thesedifferencesarereflectedinthedetailsofantibody- andmanyotherviruses,whoseenvelopeproteinsexistasspikes virusinteractionsormechanismsofinhibition.Forexample,the thatprojectawayfromthevirionsurface(Fig.2C).Critically,the neutralizationpotencyofantibodiesagainstsomenonenveloped flavivirusmaturationprocessisnotefficient,resultinginthepro- virusesisenhancedbyinteractionswithTRIM21inthecytoplasm ductionofaheterogeneouspopulationofvirions.Thus,inaddi- ofinfectedcells(12).Incontrast,thismechanismofinhibitionis tiontoinfectious,fullymaturevirions(noprM)andnoninfec- unlikelytoplayasignificantroleinpotentiatingantibodyfunc- tious, immature virions (180 uncleaved prM molecules), cells tionforviruseswithalipidenvelopeonwhichtheprincipaltargets producepartiallymaturevirusesthatretainstructuralfeaturesof ofNAbsaretopologicallyinaccessibletoTRIM21.While exciting bothmatureandimmaturevirusparticles(39).Partiallymature advanceshavebeenmadetowardunderstandinghowantibodies virions can be infectious, although the extent of prM cleavage protect against infection by many different viruses, this review requiredforinfectivityisnotknown(reviewedinreference39). focusesontheneutralizing-antibodyresponseagainstmembersof The efficiency of virion maturation has the potential to impact 990 mmbr.asm.org MicrobiologyandMolecularBiologyReviews December2016 Volume80 Number4 DissectingAntiviralNeutralizing-AntibodyResponses D o w n lo a d e FIG1Structureanddiversityofthesurfaceglycoproteinsofflaviviruses.(A)DendrogramdepictingtherelatednessofselectedflavivirusEproteins(thebar d represents0.1aminoacidsubstitutionspersite).JEV,Japaneseencephalitisvirus;MVEV,MurrayValleyencephalitisvirus;WNV,WestNilevirus;SLEV,Saint fr Louisencephalitisvirus;TBEV,tick-borneencephalitisvirus;POWV,Powassanvirus;YFV,yellowfevervirus;DENV,denguevirus.(B)Structureofthe o m ectodomainoftheflavivirusEproteindimer(PDBaccessionnumber1OAN)fromasideview(top)andtopview(bottom).DomainsI,II,andIIIareshownin red,yellow,andblue,respectively.ThefusionloopindomainIIisshowningreen.(C)Structureofamatureflavivirusvirion(PDBaccessionnumber4CCT). h TheEproteinisarrangedasantiparallelhomodimersthatdenselycoatthevirionsurface.(D)ThetwopossibleglycansontheEproteinarehighlightedinred tt p intheEproteindimer(PDBaccessionnumber1OAN)fromasideview(top)andtopview(bottom). : / / m virus binding, environmental conditions required to trigger protein is composed of three domains (domain I [DI] to DIII) m membranefusion,cellulartropism,andsensitivitytoantibody- connectedtotheviralmembranebyahelicalstemandtwotrans- b r mediatedneutralization(40–44). membrane domains (Fig. 1B ) (46). A highly conserved, hydro- .a TheEproteinisthemaintargetofNAbs(45).Thiselongated phobicfusionloopcomposedof13aminoacidsislocatedatthe s m . o r g / o n A p r il 7 , 2 0 1 9 b y g u e s t FIG2StructureanddiversityofthesurfaceglycoproteinsofHIV-1.(A)DendrogramdepictingtherelatednessofEnvfromHIV-1groupsM,N,O,andPandSIVcpz (CPZ)(thebarrepresents0.1aminoacidsubstitutionspersite).(B)StructureoftheectodomainoftheHIV-1Envtrimericspike(PDBaccessionnumber4TVP), consistingoftrimersofgp120/gp41heterodimers,fromasideview(left)andtopview(right).gp120andgp41areshowningrayandcyan,respectively.Ongp120, variableloopsareshowningreen,whiletheCD4-bindingsiteisinpurple.(C)SchematicoftheHIV-1virion.Envexistsastrimericspikesthatsparinglypopulatethe virionsurface(showninredandgray).Avarietyofcellularproteinsareincorporatedintothevirion(showninblue)(91).(D)TheHIVglycanshieldishighlightedin redontheEnvtrimer(PDBaccessionnumber4TVP)fromasideview(left)andtopview(right).ThemodelwasgeneratedbyusingGlyProt(298). December2016 Volume80 Number4 MicrobiologyandMolecularBiologyReviews mmbr.asm.org 991 VanBlarganetal. tipofDII(DII-FL).Onmaturevirusparticles,thefusionloopis (91),thesoleviralproteincomplexonthesurfaceisEnv,which buriedinafoldcomposedofDIandDIIIoftheopposingEpro- mediatesentryintohostcellsandisthetargetofNAbs.Following teininthedimer(47).EproteinsmaycontainuptotwoN-linked translationintheendoplasmicreticulum,thegp160polyprotein glycosylationsites(eitheronDIonlyoronbothDIandDII)(Fig. precursorofEnvisprocessedbyafurin-likeproteaseinthetrans- 1D);somestrainsofWNVarenonglycosylated(48,49).Neutral- Golgi network, resulting in the gp120 surface subunit and the izingantibodieshavebeenmappedtoallthreeEproteindomains gp41transmembranesubunitthatremainnoncovalentlyattached and,inmanyinstances,bindepitopescomposedofresiduesfrom toeachother(92).Onthevirionsurface,Envexistsastrimeric multiple domains (50–61). Antibodies that recognize prM have spikes of gp120 and gp41 heterodimers (Fig. 2B). As discussed alsobeenidentified,buttheyhavelimitedneutralizationpotential below,boththeweakassociationofgp120withgp41andthelow (53,62–64). densityofEnvspikesonthevirionsurfaceimpactantibodyrec- TheEproteinsorchestratetheentryofflavivirusesintotarget ognition. cells,whichoccursthroughreceptor-mediatedendocytosis,fol- gp120 consists of five conserved regions (C1 to C5) and five lowedbypH-dependentfusionthattypicallyoccursinlateendo- highlyvariableregions(V1toV5)andisstructurallydefinedby somes,althoughtherelativelyhighpHthresholdof(cid:2)6.6suggests twodomains:oneorientedtowardthecenterofthetrimer(inner thatfusionmayalreadyoccurinearlyendosomes(65–68).Cellu- domain)andtheotherorientedtowardtheperiphery(outerdo- D o lar factors that mediate virus entry are not completely defined, main)(93–98).Thenativestructureofgp41hasnotbeensolvedat w althoughattachmentfactorsthatenhancevirionbindingtocells highresolution(95,96,99),butthissubunitisfunctionallyde- n havebeenidentified,includingtheC-typelectinsDC-SIGNand lo finedbysixmajorregions:thefusionpeptide,heptadrepeatre- a DC-SIGNR, mannose receptor, heparin sulfate, and phosphati- gion 1 (HR1), HR2, the membrane-proximal external region d dylserinereceptorsoftheTIM(Tcell/transmembrane,immuno- e (MPER),thetransmembraneanchor,andthecytoplasmictail.On d globulin,andmucin)andTAM(TYRO3,AXL,andMER)protein gp120,variableregionsformheavilyglycosylateddisulfide-linked fr families(40,69–75).Therolethatthesemoleculesplayinthecell o loopsthatshieldmoreconservedsurfaces(Fig.2D)(100).Indeed, m biologyofvirusentryisincompletelyunderstoodandmayextend ahigh-resolutioncrystalstructureoftheHIV-1Envtrimersug- beyondsimplyfacilitatingvirusattachment.Todate,cellularpro- h geststhatduetothedensearrayofglycansthatdecorateEnv,only t t teins absolutely required for the low-pH-mediated conforma- p 3%ofthepeptidicsurfaceisaccessibletoantibodies,comparedto : tionalchangeinthevirushavenotbeenidentified;flavivirusesare 14%and48%oftheglycoproteinsofinfluenzavirusandrespira- //m capableoffusingdirectlywithsyntheticmembranepreparations torysyncytialvirus,respectively(99).Nevertheless,NAbsagainst m (66,76).Single-particletrackingstudiessuggestthatvirusentry HIV-1havebeenmappedtobothgp120andgp41,andremark- b occurswithin17minofstableattachmentofthevirion(67).In r ably, glycans themselves are also important targets for many .a vitrostudiesclearlydemonstratethatviralfusionoccursveryrap- s idly(withinseconds)afterexposuretomildlyacidicconditions broadlyneutralizingantibodies(98,101).Despitereachinghigh m titers, the initial wave of NAbs elicited by infection is typically . (58,66,76). o strainspecific,targetingexposedvariableloopsingp120andse- r g HumanImmunodeficiencyVirusType1 lectingformutationsthatleadtoNAbescape(102–107).Todate, / o HIV-1,alentivirusintheRetroviridaefamily,isthecausativeagent NAbstargetinggp41arelesscommonthanthosetargetinggp120, n possiblyduetosterichindranceaffordedbythecloseproximityof A ofAIDS.DevelopinganeffectivevaccineagainstHIV-1hasbeen gp41totheviralmembrane(108),althoughNAbsthatbindgp41, p challengingbecauseoftheextensivediversityofthevirus,which r resultsfromtherapidturnoverofalargenumberofinfectedcells includingthefusionpeptide,andthegp41/gp120interfacewere il 7 (77,78),anerror-proneviralreversetranscriptase(79),andahigh characterizedrecently(109–114).ThelatterNAbsareanalogous , 2 to antiflavivirus NAbs that target quaternary epitopes spanning frequencyofrecombinationowingtotemplateswitchingbetween 0 multipleEproteinmonomers(describedbelow). 1 twocopackagedRNAgenomesduringreversetranscription(80). 9 HIV-1originatedfromsimianimmunodeficiencyvirusinchim- HIV-1primarilyinfectsCD4(cid:3)Tcellsandcellsofthemonocyte/ b macrophagelineageinvivo.EntryispHindependentandoccurs y panzees(SIVcpz)andisdividedintoseveralgroups(groupsM,N, O, and P), each of which resulted from an independent cross- mainlyattheplasmamembranefollowingEnv-receptorinterac- gu species transmission event (81). Group M, which is responsible tions.Otherentrypathways,includingendocytosisormacropi- e s fortheAIDSpandemic,isfurtherdividedinto9subtypes(sub- nocytosis,mayalsobeinvolved(reviewedinreference115).Bind- t typesAtoD,FtoH,J,andK)andanumberofcirculatingrecom- ingofgp120toCD4isthoughttotriggerconformationalchanges binantforms(82).Thesesubtypesdifferingeographicaldistribu- thatenhancetheaffinityofgp120foritscoreceptor(92),although tion(83)andcanbedistinguishedbysequencevariationinthe arecentstudyfromtheMotheslaboratorysuggeststhattheen- envelope gene, which differs by (cid:2)20% at the amino acid level sembleofstructuressampledbygp120includesthosesimilarto withinsubtypesandupto35%betweensubtypes(Fig.2A)(82, theCD4-triggeredstate(116).Interactionwithacoreceptor(G 84).Remarkably,itisestimatedthatthediversityofHIV-1strains protein-coupledreceptorseven-transmembranedomainprotein foundwithinasingleindividualatonetimepointcanrivalthatof CCR5orCXCR4)triggersfurtherconformationalchanges,lead- worldwideinfluenzaviruseswithinayear(85). ingtoafusogenicstateinwhichgp120dissociates,allowingthe HIV-1virionsaresphericalparticlesthatare(cid:2)120nmindiam- fusionpeptideofgp41toextendoutwardintothetargetcellmem- eteranddisplayalowdensityofenvelope(Env)spikesontheir brane.Next,rearrangementsinHR1andHR2facilitatetherefold- surface ((cid:2)14 Env trimers/virion) (Fig. 2B and C) (86–88). Env ingofgp41intoasix-helixbundlethatbringstogetherthecellular incorporationintovirionsisregulatedbyinteractionswithother andviralmembranes,creatingaporethatallowstheviralcoreto viralproteinsandhostfactors(reviewedinreferences89and90). entercells(117).ThenumberoffunctionalEnvtrimersneededto WhileHIV-1virionsincorporatealargenumberofhostproteins interactwithtargetcellreceptorsandmediatevirusentryhasnot 992 mmbr.asm.org MicrobiologyandMolecularBiologyReviews December2016 Volume80 Number4 DissectingAntiviralNeutralizing-AntibodyResponses beenpreciselydeterminedandmayvarybystrainbuthasbeen memoryBcells(MBCs)(discussedfurtherbelow)(125),although estimatedtobebetweenoneandeight(88,118–121). memoryBcellsmayalsoarisefromGC-independentmechanisms (126). HUMORALIMMUNERESPONSE InGCs,Bcellsrefinetheantibodyresponseviatheprocessof Aprincipalcomponentofthehumoralimmuneresponseisthe affinitymaturation.Thisprocessoccursthroughiterativerounds repertoireofantibodymoleculessecretedbyBlymphocytes.An- ofsomatichypermutation,duringwhichpointmutationsarein- tibodies are Y-shaped glycoproteins composed of two identical troducedintotheantibodyVregions,followedbyT cell-based FH heavy chain/light chain heterodimers linked by disulfide bonds selectionofcloneswiththehighestantibodyaffinity.Onestudy (reviewedinreference122).Thearmsofantibodymolecules(or estimatedthattheaveragenumberofmutationsintheV region H Fabs) are connected to the remainder of the protein by flexible ofIgGamongmemoryBcellsandgerminalcentercellswas14, hinges,whichdiversifytheangleswithwhichantibodiesmaybind with88%ofthesequencedV genesencodingbetween3and29 H antigens.Thedistalendofeacharmformstheantigen-binding mutations(127).GCsaresitesofcompetitionamongBcellclones siteofthemolecule,calledthevariable(V)region.Bothheavyand forTcellhelp.Aftermultipleroundsofaffinity-basedselection, light chains contain three hypervariable loops (called comple- GCsmayundergo“monoclonalization,”withonehigh-affinityB mentarity-determining regions [CDRs]) that form the V struc- cellclonebeginningtodominateanygivenmatureGC(reviewed D o turalregion.Theconstant(Fc)portionoftheantibodyismodified inreference128).InGCs,TFHcellsalsosignalBcellstoinitiate w by an N-linked oligosaccharide that contributes to interactions classswitching(129–131). n withmoleculesandcellsoftheimmunesystemtomediatearange lo EffectorFunctionsofAntibodies a ofeffectorfunctions(discussedbelow). d While the Fab region of an antibody defines its specificity, the e d DiversityoftheHumoralImmuneResponse invariant Fc portion of the heavy chain determines its effector f r Thehumoralresponseiscapableofproducinganincrediblydi- function.Theantibodyclass-switchingmechanismofBcellshas o m verserepertoireofantibodymoleculeswithuniqueantigen-bind- thepotentialtogenerateantibodieswithasimilarspecificityca- ing properties. In part, this diversity is encoded directly by the pableoforchestratingdiverseimmuneresponses.TheFcregions h t t germline.Genesencodingthevariableheavychain(V )andvari- of antibody heavy chains interact with Fc receptors (FcRs) on p H : ablelightchain(VL)existasmultiplegenesegments.Theheavy immuneeffectorcellsorsolubleimmunemoleculessuchasthose //m chainisencodedbymultiplevariable(V),joining(J),anddiver- inthecomplementsystem(122).Thestrengthsoftheseinterac- m sity (D) gene segments. Two chromosomes encode the V and J tionsvaryamongantibodyclassesandcanbeinfluencedbythe b genesegmentsthatformthelightchain(the(cid:4)and(cid:5)loci).Full- particular carbohydrate modification on the antibody molecule r . a length antibody molecules are assembled from these gene seg- (132,133).AllIgGsubclassesencodeanN-linkedglycosylation s ments in developing B lymphocytes by a process called V(D)J siteatresidue297oftheheavychain.Whilethepositionofthe m . recombination(reviewedinreference1).Thismechanismcreates glycosylationsiteisconserved,thecompositionandstructureof o r combinatorialdiversitythroughtherandompairingofVDJgene theoligosaccharideaddedtotheantibodyareinfluencedbythe g / segments(attheVHloci)orVJgenesegments(attheV(cid:4)orV(cid:5)loci) hostimmuneactivationstate(134,135).Variationintheantibody o duringsomaticgenerearrangement.Additionaldiversityduring glycoform provides a mechanism by which antibody effector n A V(D)J recombination arises by the introduction or deletion of function can be fine-tuned beyond class switch recombination. p nucleotidesatthejunctionofsegmentsastheyarelinkedtogether. Forexample,theIgGrepertoireofHIV-1-infectedindividualsis r Therecombinedvariableregionoftheheavychainisthenjoined modifiedbysugarswithanagalactosylated,proinflammatorygly- il 7 to(cid:6)and(cid:7)constantgenesegments(tomakeIgMorIgDantibody can profile compared to those of uninfected individuals; this is , 2 classes,respectively).Randompairingofheavyandlightchains particularlypronouncedinelitecontrollersofHIV-1(136).The 0 1 resultsintheformationofanintactantibodymolecule(andBcell skewingtowardagalactosylatedantibodiesininfectedindividuals 9 receptor[BCR]).Theprocessofallelicexclusionensuresthateach andelitecontrollerswascorrelatedwithincreasedantibody-de- b y lymphocyteproducesonlyasingleantibodymolecule(reviewed pendentcellularviralinhibition(ADCVI)activityinvitro. g inreference123). Nonneutralizingantibodieselicitedbyimmunizationorinfec- u Germinalcenterformationandaffinitymaturation.Thean- tionmayofferprotectionfromviralinfectionthroughFc-medi- e s tibodyrepertoireproducedbyBlymphocytesisrefinedanddiver- ated effector functions, including antibody-dependent cellular t sifiedfurtheruponexposuretoanantigen.WithappropriateT cytotoxicity (ADCC), opsonization, mast cell activation, and cellhelp,Bcellrecognitionofanantigenresultsincellularactiva- complement activation. Studies using murine models of both tion, extensive proliferation, and potentially Ig class switching, WNVandHIV-1infectionhavedemonstratedtheimportanceof during which the Fc portion of the antibody gene can be ex- theFceffectorfunctionsofantibodiesinmediatingprotectionin changed for another with different functional properties (124). vivo(137–140).Forexample,anti-WNVMAbswithpoorinvitro Antigen-primedBcellscandevelopintoshort-livedplasmacells neutralizingabilitiescanmediateinvivoprotectioninmiceina (PCs),whichareterminallydifferentiatedcellscharacterizedby manner dependent on IgG binding to complement component high-levelantibodysecretionandlow-levelBCRexpression.PCs C1q and Fc(cid:8) receptors via the N-linked glycan at N297 (137). and their proliferating precursors, plasmablasts, are responsible Conversely,theinabilityofstronglyneutralizingMAbswithmu- fortheproductionoftheearlyantibodyresponse(Fig.3).Anti- tationsatN297tointeractwithFc(cid:8)receptorsmaybeexploitedfor gen-primedBcellscanalsoparticipateintheformationofgermi- thedevelopmentofDENVtherapeutics,asthesenonglycosylated nalcenters(GCs)inlymphnodes,alongwithfollicularhelperT NAbsdonotsupport(andmaycompetitivelyinhibit)theanti- (T )cellsandfolliculardendriticcells(FDCs).GCreactionsre- body-dependentenhancementprocessesthoughttocontributeto FH sult in the production of long-lived plasma cells (LLPCs) and severediseaseoutcomes(141,142). December2016 Volume80 Number4 MicrobiologyandMolecularBiologyReviews mmbr.asm.org 993 VanBlarganetal. D o w n lo a d e d f r o m h t t p : / / m m b r . a FIG3Sourcesofantibodies.UponnaiveBcellrecognitionofanantigenandactivationbyacognateTcell,activatedBcellsarecharacterizedbyextensive s proliferation.ActivatedBcellscanthenfollowoneofseveralpaths:(i)theymayterminallydifferentiateintoshort-livedplasmacells(PCs),whichhavelow m surfaceIglevelsandhighIgsecretionrates;(ii)theymaydifferentiateintomemoryBcells(MBCs),whichretainBCRexpressionbutdonotconstitutivelysecrete . o antibody;and(iii)theycanparticipateintheformationofgerminalcenters(GCs),alongwithfollicularhelperT(TFH)cellsandfolliculardendriticcells(FDC). rg InGCs,Bcellsundergorapidproliferation,furtherdiversificationoftheirantibodygenethroughsomatichypermutation,andclassswitchrecombination(CSR), / duringwhichtheFcregionoftheIggenemaybeexchangedforanothertodetermineantibodyeffectorfunction.SelectedGCBcellsreceivesignalstodifferentiate o intoPCsorMBCs;otherGCBcellsundergoapoptosis.PCsmaybeshort-livedandremaininthelymphoidorgansorbecomelong-livedplasmacells(LLPCs) n andmigratetothebonemarrow,wheretheycontinuetosecreteantibodyindependentofthepresenceoftheantigen.LLPCsaremostlikelyresponsibleforthe A long-lived,pathogen-specificantibodytitersinserumthatcanlastyearsordecadesfollowinginfectionorvaccination.DistinctfromLLPCs,MBCsarelong-lived p r cellsthatremainincirculationandperipherallymphoidtissue.ThroughexpressionoftheirBCR,theycanbereactivatedbyanantigen.Uponrestimulation,they il maysetupgerminalcenters,undergofurthersomatichypermutationandclassswitching,anddifferentiateintoantibody-secretingplasmablastsandPCs. 7 , 2 0 WhereDoAntiviralAntibodiesComefrom? maturationoftheantibodiesthattheyexpress(147).OnlyBcells 1 9 Long-termhumoralimmunityresultsfromatleasttwodistinct capableofproducingantibodieswithahighaffinityfortheanti- b cell populations (Fig. 3). Terminally differentiated LLPCs pre- genareselectedforLLPCformationandpersistentantibodypro- y g dominantlyresideinthebonebarrowandconstitutivelysecrete duction,whereasBcellsthatproduceantibodieswithaloweraf- u antibodyindependentlyofthepresenceofanantigen.LLPCsdo finityfortheantigenmaysurviveasMBCs(147,148).Antibodies e s not possess antigen receptors, are not reactivated upon antigen from these two compartments may differentially contribute to t reexposure, and are most likely responsible for the long-lived, protectionfrominfection.Purthaetal.(149)demonstratedthat pathogen-specificserumantibodiesthatcanlastyearsordecades following infection of mice with WNV, antibodies from MBCs followinginfectionorvaccination(143,144).Incontrast,MBCs wereabletorecognizenotonlytheinfectingstrainofWNVbut remainincirculationandperipherallymphoidtissue,wherethey alsoavariantencodingamutationinaknownneutralizing-anti- mayreencounterantigen(145).MBCsexpressBCRontheirsur- bodyepitope.Incontrast,theLLPCantibodyresponsewasspe- facebutdonotconstitutivelysecreteantibody.Uponrestimula- cificfortheinfectingstrain.Thus,whiletheLLPC-derivedanti- tionbyantigen,MBCsmaydifferentiateintoantibody-secreting bodyresponsewasofahigheraffinityandcapableofconferring plasmacellsandmayformgerminalcenterstoundergofurther immediate protection against homotypic viral reinfection, the affinitymaturationandclassswitching(146).MBCsarerespon- MBCcompartmentmaybecriticalfortherecognitionofagenet- siblefortheanamnesticantibodyresponsethatoccursuponsec- icallydiversesecondarychallenge. ondaryexposuretoanantigen,respondingmorerapidlyandata greatermagnitudetoantigenicstimulationthantheirnaivepre- ANTIBODY-MEDIATEDNEUTRALIZATION decessors. Howantibodiesblockinfectionhasbeenstudiedextensivelyfor LLPCsandMBCsdifferwithrespecttotheextentoftheaffinity decades(reviewedinreferences150and151).BecauseNAbshave 994 mmbr.asm.org MicrobiologyandMolecularBiologyReviews December2016 Volume80 Number4 DissectingAntiviralNeutralizing-AntibodyResponses greatpotentialasantiviraltherapeutics,andNAbtitersoftencor- tiousvirionprovidesthe“denominator”forthisrelationship,as relate with protection following vaccination (3), structural and epitopeaccessibilityultimatelygovernsthenumberofantibody molecularinsightsintomechanismsofneutralizationhavecon- moleculescapableofbindingthevirusparticleatsaturation.An- siderabletranslationalvalue.Recenttechnicaladvancesthaten- tibodiesmaybindepitopesdefinedbyaminoacidcontactsfroma able the isolation and characterization of human monoclonal singleviralstructuralprotein(167)orengageresiduesfoundon antibodies have not only accelerated the development of thera- adjacentproteinsorcarbohydrates(61,110–113,168–172).Com- peuticsanddiagnosticsbutalsodirectedmechanisticstudiesto- plexorquaternaryepitopeshavebeendefinedformanyviruses, ward antibodies with the most relevant specificities in vivo (4, includingflaviviruses(seebelow). 152). Thefractionofepitopesthatantibodiesmustoccupyinorder toexceedastoichiometricneutralizationthreshold(thefractional NeutralizationbytheNumbers “occupancy”) may differ among antibodies as a function of the Howmanyantibodiesarerequiredtoneutralizeavirus?Thestoi- numberoraccessibilityofepitopesonthevirusparticle.Forfla- chiometryofantibody-mediatedneutralizationhasbeenintensely viviruses,epitopeaccessibilitymayvaryasafunctionoftheposi- debated(reviewedinreferences2and153).A“single-hit”model tionofaparticularEproteinonthepseudoicosahedralviruspar- suggeststhatantibodybindingtoavirusparticleintherightloca- ticle (167, 173). All else being equal, antibodies that bind D o tionissufficienttoinactivatethevirion.Thishypothesiswassup- abundanttargetsneedtobindasmallerfractionoftheseepitopes w ported largely by kinetic neutralization studies of poliovirus, inordertoinhibitinfection;theseantibodieshavearelativelylow n Westernequineencephalitisvirus,andinfluenzavirus(154,155). occupancyrequirementforneutralization.Forexample,antibod- lo a However,therearesignificantlimitationsofthismodel,andthey ies that bind the exposed lateral ridge of WNV E protein DIII d havebeenreviewedindetail(151).Analternative“multiple-hit” neutralizeinfectionmoreefficientlythanantibodiesthatbindless e d modelproposesthattheneutralizationofanindividualviruspar- accessiblestructureswithanequivalentaffinity(160).Incontrast, f r ticlerequiresengagementbynumerousantibodymolecules(153). antibodiesthatbindinfrequentorinaccessibledeterminantsare o m Aninterestingextensionofthismodelsuggeststhatthenumberof characterizedbyhighfractionaloccupancyrequirementsforneu- antibodiesnecessaryforneutralizationiscorrelatedwiththesize tralization.Notallepitopesareequallyaccessibleforbinding,and h t t of the virion, which reflects a requirement to fully occlude its many factors with the potential to impact epitope accessibility p : surface(reviewedinreference2).Estimatesofthestoichiometry havebeendescribed(forflaviviruses,seereference165).Reduced // m ofneutralizationhavebeendeterminedformultipleviruses,in- epitope exposure imposes a requirement for a higher fractional m cluding phage MS2 (156), poliovirus (157–159), WNV (160), occupancyoftheremainingexposedepitopesinordertoexceed b papillomavirus (161), influenza virus A (155), and rabies virus thestoichiometricthresholdandthushavethepotentialtocon- r . a (162,163).Whileinmanycases,theneutralizationthresholdfor tribute to immune evasion and antibody-dependent enhance- s structurally distinct groups of viruses correlates positively with mentofinfection(Fig.4,inset). m . virionsize,inagreementwiththe“coatingtheory”(2),factorsthat Critically,therelationshipsbetweenantibodyoccupancyand o r determinethenumberofantibodiesrequiredforneutralization neutralizationmaybecomplicatedbyfactorsbeyondthenumber g / mayvaryamongviruseswithdifferentstructures,compositions, ofepitopesdisplayedbythevirion.Forexample,thebindingofa o andentrymechanisms.Forexample,thesmallnumberoffunc- singleantibodytooneprotomerofanHIV-1envelopetrimermay n A tionaltrimersontheHIV-1surfaceallowsneutralizationwitha besufficienttorenderthatcomplexincapableofpromotingvirus p stoichiometrymuchlowerthanthatpredictedforavirionofthis entry(119,121),andthus,thecontributionofadditionaleventsof r size(119,121).Relationshipsbetweenthenumberandoligomeric bindingtothatsametrimermaybediminished.Antibodybinding il 7 stateoffunctionalviralproteincomplexesrequiredtodrivevirus itselfmaymodulatetheaccessibilityofsurroundingepitopesin , 2 entry and the stoichiometric requirements of neutralization are unpredictablewaysthroughdirectstericmechanisms(174)orby 0 1 notwellunderstood(86–88,118,119,121). trappingalternativeantigenicstatesofthevirion(175). 9 ForWNV,experimentswithMAbsthatbindthelateralridgeof b DIIIindicatethatbindingof(cid:2)30MAbstothevirionisrequired MechanismsofNeutralization y g forneutralization(Fig.4,inset)(160,164).Whetherthestoichio- Antibodieshavetheabilitytoblockviralinfectionatanynumber u metric requirements for the neutralization of flaviviruses vary ofstepsintheprocessofvirusentry(reviewedinreference151). e s amongantibodiesthatbinddifferentepitopes,engagethevirion Thesestepsincludevirusattachmenttothecellsurface,virusin- t bivalently, or inhibit infection via distinct mechanisms is un- teractions with receptors or coreceptors, fusion with the host known(165).Insupportofthesecaveats,thenumbersofantibod- membrane(forenvelopedviruses),membranepenetrationorge- iesrequiredtoneutralizeflavivirusinfectionbyblockingattach- nomeinjection(fornonenvelopedviruses),orviralgenomeun- mentormembranefusionappeartodiffer(61,166). coating(Fig.4).Blockingofcellsurfaceattachmentorreceptor Epitopeoccupancyandneutralization.Atleasttwofactorsde- engagementthroughsterichindrancemaybeacommonmecha- terminethenumberofantibodiesboundtoavirusparticleatany nism and has been suggested to explain the activity of DENV- givenconcentrationofantibody(reviewedinreference165).An- immunesera(176).However,manyantibodiesarealsocapableof tibodyaffinitydefinesthefractionofviralepitopesboundbyan- blockinginfectionatapostattachmentstep(51,59,167,177–179). tibodyundersteady-stateconditions,asexpressedbytheequation TheseNAbsmayinhibitconformationalchangesofaviralprotein fractionofepitopesbound(cid:9)[Ab]/([Ab](cid:3)K )(whereK isthe requiredtomediatevirusentry.Forexample,structuralanalyses d d dissociation constant). Thus, high-affinity antibodies bind a revealedthatWNV-specificMAbE16trapsEproteinsinaradially largerfractionoftheirepitopesthandolower-affinityantibodies extendedintermediateatlowpH(180).LikeE16,MAbCR4354 ofthesamespecificityatadefinedantibodyconcentration.More inhibitsWNVatapostattachmentstepandcaninhibitvirusfu- critically,thenumberofaccessibleepitopesontheintactinfec- sion with synthetic liposomes (59, 170). The structure of the December2016 Volume80 Number4 MicrobiologyandMolecularBiologyReviews mmbr.asm.org 995 VanBlarganetal. D o w n lo a d e d f r o m h t t p : / / m m FIG4Flavivirusentryandmechanismsofantibody-mediatedneutralization.(A)Flavivirusentryoccursfollowingvirusinteractionwithattachment b r factorssuchastheC-typelectinsDC-SIGNandDC-SIGNR,mannosereceptor,glycosaminoglycans(GAGS),andphosphatidylserinereceptorsofthe . a TIMandTAMproteinfamilies.(B)Followingvirusattachment,flavivirusesundergoclathrin-mediatedendocytosis.(C)Flavivirusescanthenentercells s bypH-dependentfusion,typicallyinthelateendosomefordengueviruses(67).Antibody-mediatedneutralizationofflavivirusesmaybeachievedby m inhibitingvirusinfectivityatanumberofvirusentrystepssuchas(i)preventingvirusattachmenttothecellsurface,(ii)promotingvirusdetachment .o fromcells,and(iii)inhibitingvirusfusionwithendosomalmembranes.(Inset)Neutralizationoccurswhenantibodiesbindflaviviruseswithastoichi- r g ometrythatexceedsaparticularthreshold(160).Antibody-dependentenhancementofinfection(ADE)canoccurifthenumberofantibodiesboundto / theviriondoesnotreachthestoichiometricthresholdforneutralization.Thenumberofantibodiesboundpervirionismodulatedbyantibodyaffinity o aswellasbyepitopeaccessibility.Therefore,antibodiesthatbindcrypticepitopesthatarepoorlyaccessibleforantibodyrecognitionmaynotbeableto n achieveastoichiometrysufficienttoexceedthethresholdrequirementsforneutralizationdespitehighaffinityfortheepitope.Incontrast,antibodiesthat A bindhighlyaccessibleepitopescanexceedthestoichiometricthresholdforneutralizationatlowoccupancy. p r il 7 , 2 CR4354FabboundtoWNVrevealedadiscontinuousepitopethat processesthatoccurduringvirusentry(184,185).Forexample, 0 1 spanned neighboring E proteins, suggesting that this MAb and the orientation of the Fc region of virus-bound antibodies has 9 othersthatbindcomplexquaternaryepitopesmightblockfusion beenhypothesizedtocontrolthenumberofWNVDIII-reactive b y bycross-linkingEproteinsonthevirion(61,170–172).Whilethe MAbE33moleculesdockedontovirusesindifferentmaturation g multiple-hithypothesisassumesthatneutralizationisareversible states(174).Thus,thelargesizeoftheantibodymoleculehasthe u process(181),insomecases,antibodybindingresultsinanirre- potential to influence the accessibility of surrounding epitopes e s versiblechangeinvirioninfectivitythatpersistsuponthereversal and thereby impact conditions that support antibody-mediated t ofbinding.Someanti-HIV-1MAbs,suchasthosethatbindthe neutralization. MPERongp41andtheCD4-bindingsiteongp120,inducethe sheddingofviralglycoproteingp120fromthevirion,whichren- VIRUSEVASIONOFANTIBODY-MEDIATEDNEUTRALIZATION dersvirionsnoninfectiousevenwhentheantibodydisassociates fromthevirusparticle(182). SequenceVariationandAntigenicDiversity WhileFabfragmentsofneutralizingantibodiescanblockinfec- Viralgenomesmutateatarelativelyhighrate,allowingtheselec- tion(150),theFcregionofantibodiesalsoplaysaroleinneutral- tion of mutations within antibody epitopes (186, 187). Viruses ization.Althoughthesurfaceareaburiedbyanepitope/paratope thatcantoleratealargenumberofmutationsintheirstructural interactionisrelativelysmall,generally(cid:10)900Å2(183),theintact proteins,suchasHIV-1,hepatitisCvirus(HCV),influenzavirus, antibodymoleculemayoccupyalargerareaduetoitsstructural andnoroviruses,undergorapidandsubstantialantigenicdriftin flexibility. The antiviral activity of antibodies likely reflects the thepresenceofimmunepressure(4,188–191).Thisisevidentin contributionoftheentiremolecule,whichhasthepotentialnot theyearlyrequirementforareformulationoftheseasonalinflu- onlytoinfluencethenumberofantibodymoleculesdockedonthe enzavaccine,asinfluenzavirusesareextremelyadeptatacquiring virion(relativetoFabfragments)butalsotointerferewithmany antibody escape mutations (192, 193). For viruses that cause 996 mmbr.asm.org MicrobiologyandMolecularBiologyReviews December2016 Volume80 Number4 DissectingAntiviralNeutralizing-AntibodyResponses chronic infections, intrahost generation of antigenic diversity is stratedincreaseddynamicsandtransitionedmorefrequentlybe- observed over time as new viral variants emerge to escape the tweenclosedandopenconformationalstatesthantheclinically NAbsgeneratedearlyintheimmuneresponse.Astheantibody isolated,neutralization-resistantstrain(116). response evolves to recognize poorly neutralized variants, new viralvariantsemergetoescapetheseantibodies.Thisiterativese- LowDensityofSurfaceGlycoproteins lectionofneutralizationescapevariantsconstantlyelicitsthepro- ductionofnewantibodies(103,104,194).Rapidantigenicevolu- ThedensearrangementofflavivirusEproteinsmayimposesteric tionisnotapparentforallviruses,evenamongRNAviruseswith constraintsonantibodyepitopeaccessibility(57,160,180,206) error-proneRNApolymerases.Forexample,duetoalackofsig- (see Fig. 6). While flaviviruses incorporate a fixed number of E nificantantigenicdrift,therehasnotbeenaneedtoreformulate proteinsintothevirusparticle,othervirusesmaylimitthenum- the monovalent YFV 17D vaccine, even after 60(cid:3) years of use berofepitopesavailableforantibodybindingbydirectlyreducing (195).Manyfactorsmaymodulateviralantigenicevolution,in- thenumberofsurfaceproteinsincorporatedintovirionsthatare cluding differences in virus host range (196) and the inherent targetedbyNAbs,thuspreventingantibodyengagementfromex- mutationaltoleranceofvirussurfaceglycoproteins(197,198). ceedingthestoichiometricthresholdrequiredforneutralization. Forexample,humancytomegalovirus(HCMV)hasbeenshown D ConformationalMaskingofConservedRegions toreducetheincorporationofthesurfaceglycoproteingHunder o w Conservedstructuralfeaturesthatplayimportantrolesintheviral selectivepressurebyantibodiesinvitro,resultinginresistanceto n lifecyclemaybelesstolerantofsequencevariationandthusrep- neutralizationbyMAbstargetinggH(213). lo a resent sites of vulnerability to antibodies. Many viruses have Arelativelylowdensityofstructuralproteinsonthesurfaceof d therefore evolved mechanisms to conceal conserved regions of virionsmayalsopreventbivalentengagementofthevirusparticle e d their structural proteins. For example, the “canyon hypothesis” bytheantibody,whichinturnlimitsantibodyavidityandimpacts f r speculatesthatthereceptor-bindingdomain(RBD)ofsomepi- antibodyoccupancyatanygivenconcentrationofantibody.The o m cornavirusesisburiedinacanyononthesurfaceoftheviralcapsid lowdensityofEnvonHIV-1virionshasbeensuggestedtolimit toevadeimmunerecognition(199),althoughthisstrategyisim- theneutralizingactivityofsomeHIV-1-reactiveMAbs(reviewed h t t perfect(200).Likewise,theHIV-1gp120RBDsarepositionedin in reference 214). Biochemical and structural studies have esti- p : recessedpocketsoftheenvelopespikethatarenotaccessibleto matedthattheaverageHIV-1virionhasasmallnumberofEnv // m most antibodies (100, 201). DII-FL of flaviviruses is critical for spikesonitssurface((cid:2)14)(86–88).Comparisonsoftheneutral- m mediatingfusionduringvirusentry,ishighlyconservedamong izationpotenciesofIgGandFabfragmentsofanti-HIV-1anti- b distantlyrelatedflaviviruses,andisfrequentlytargetedbythean- bodiesrevealedsimilarpotencies,suggestingthatbivalentrecog- r . a tibodyresponse(discussedbelow)(202–204).However,antibod- nition is uncommon (214). However, an elegant study by s ieswiththisspecificityaretypicallycharacterizedbylimitedneu- Galimidietal.usingengineeredantibody-basedmoleculescapa- m . tralizingactivitybecausethefusionloopispoorlyaccessibledueto bleofintraspikebivalentbindingdemonstratesgreatlyincreased o r theproximitytoresiduesoftheopposingEproteinontheantipa- neutralizationpotenciesforantibodieswithcertainepitopespec- g / ralleldimer(57,205).Numerousotherexamplesofcrypticflavi- ificities (215). While the densely packed, pseudoicosahedral ar- o virusepitopeshavebeenreported(166,175,206,207). rangementofEproteinsonflavivirusvirionsmayallowbivalent n A Regulationofepitopeaccessibilitybyflaviviruses.Atleasttwo engagementbyantibodies,onlyoneDENVEproteinDIII-reac- p factorshavethepotentialtomodulateflavivirusepitopeaccessi- tiveantiflavivirusMAbthatrequiresbivalentbindingforitsneu- r bility.Whilestericconstraintslimitantibodyaccessibilityonthe tralizingactivityhasbeencharacterizedtodate(216). il 7 maturevirion,inefficientmaturationofflavivirusesresultsinthe , 2 releaseofpartiallymaturevirionsonwhichepitopeaccessibility 0 GlycanShields 1 may differ (41, 42, 44, 205). Decreasing the efficiency of virion 9 maturationresultsinanincreaseinsensitivitytoneutralizationby AlthoughflavivirusEproteinscontainonlyalimitednumberof b manyantibodies(41).TheconformationaldynamicsofEproteins glycans(1,2),manyviralstructuralproteinscontainmultiplegly- y g incorporatedintothevirionalsomodulateepitopeaccessibility. cosylationsites,whichcanmediateimmuneevasion(reviewedin u Viral “breathing” has been shown in several systems to impact reference 217). The presence of N- and O-linked glycans may e s neutralizationsensitivity(166,208–211).Antibodieshavethepo- decreasetheimmunogenicityofparticularregionsofviralglyco- t tentialtotraptransientlyexposedepitopes,asflavivirusessample proteins,ascarbohydratestructuresonvirionsmayberecognized anensembleofstructuresatsteadystate.Recentstudieshavedem- as“self”bytheimmunesystem(100).Severalviruses,including onstratedthatthereversibleexposureofcrypticepitopesbyWNV HIV-1,Ebolavirus,andHCV,utilizea“glycanshield”toavoid andDENVcontributestotime-dependentpatternsofneutraliza- antibodyrecognition(103,218).Forexample,theHCVenvelope tion(166,212).Intheseexperiments,anincreaseoftheincuba- glycoproteinsE1andE2togetherhaveupto16N-linkedglycosy- tiontimeofantibody-virusimmunecomplexespriortoinfection lation sites, most of which are highly conserved. Several of the of cells results in corresponding increases in neutralization po- glycansontheE2glycoproteinhavebeenshowntoinfluencethe tency.Similarobservationshavebeenmadewithantibodiestar- susceptibilityofHCVvirionstoneutralization(218).Addition- getinginternalcomponentsofthecapsidofsomepicornaviruses ally,alterationsinthenumber,placement,andtypeofglycanson (208).ConformationaldynamicsofEnvmayalsoimpactepitope HIV-1andsimianimmunodeficiencyvirusgp120occurinorder exposureandneutralizationsensitivityofHIV-1.Whenthecon- to mask NAb epitopes (98, 103, 219, 220). How the E protein formational dynamics of two HIV-1 strains were compared by glycosylationstatusofflavivirusesaffectsantibodyrecognitionis single-moleculefluorescenceresonanceenergytransfer(smFRET), notwellunderstood,althoughantibodiesthatmakecontactswith the laboratory-adapted, neutralization-sensitive strain demon- bothglycansonDENVhavebeenreported(169). December2016 Volume80 Number4 MicrobiologyandMolecularBiologyReviews mmbr.asm.org 997 VanBlarganetal. IDENTIFYINGTHEFUNCTIONALCOMPONENTSOFTHE ity against diverse HIV-1 strains identified only 3 somatically POLYCLONALANTIBODYRESPONSE relatedMAbstargetingtheCD4-bindingsitethatrecapitulated Thehumoralresponsetoviralinfectionhasthepotentialtoyield the broad and potent neutralizing activity of the polyclonal large numbers of B cells that produce antibodies with various serum(230). specificities,antigenaffinities,andfunctionalproperties.Consid- PartofthechallengeofelicitingeffectiveNAbsagainststructur- erableinsightintohowantibodiesprotectagainstviralinfection, ally complex viruses may be a requirement to engage a specific viadirectneutralizationofinfectionorantibodyeffectorfunction, subset of the B cell repertoire. In support of this hypothesis, hascomefromstudiesofMAbs(60,137,160,167,170,171,177, bNAbsagainsttheHIV-1CD4-bindingsiteisolatedfrommultiple 207,221,222).However,howantibodiesfunctioninconcertas donorsappeartoarisefromacommon,limitedsubsetofgerm part of a polyclonal response is not well understood, nor is the line genes that remarkably converge in sequence and structure breadthofthefunctionallysignificantcomponents.Forexample, duringtheaffinitymaturationprocess(231,239–242).Antibodies itisunclearwhyinfectionorvaccinationmayelicitantibodiesthat elicitedfollowingacuteDENVinfectionorinfluenzavaccination displayneutralizingactivityinvitrobutcontributeonlymodestly, among unrelated individuals also display convergent sequence ifatall,toprotectioninthehost.Twocomplementaryapproaches signatures(243,244). have been used successfully to deconstruct the functional com- D NeutralizingAntibodiesTargetaLimitedNumberof o plexity of the polyclonal response. First, large panels of human w Specificities MAbshavebeencreatedformanypathogens,allowingadetailed n analysisinvitroandinvivooftheindividualcomponentsofan To complement studies of human MAb specificities, several lo a antibody response. For flaviviruses, this approach has provided groupshavedevelopedgeneticandbiochemicalmethodstoinves- d insightsintohowantibodiesengagethemanysurfacesofthevi- tigatethecontributionofparticularepitopestotheNAbresponse ed rion(53,62,63,223).Second,severalgroupshavedevelopedmo- toflavivirusinfectionorvaccination.Oneapproachistocompare f r lecular and biochemical approaches to identify epitopes recog- theneutralizingactivityofserapreincubatedwithsolublerecom- o m nizedbyNAbswithinsera(57,224–228). binantantigensrepresentingvariousEproteindomainstothatof untreatedsera.SuchserumdepletionstudieshaveshownthatDIII h t t is not a major target of human NAbs following vaccination or p NeutralizingAntibodiesAreaRareComponentofthe : naturalinfectionwithDENV(227),WNV(236),YFV(245),and // HumoralResponseagainstViralInfection m TBEV(246)despitebeingthetargetofverypotentmurineneu- m Virus-specifichumanMAbsareidentifiedbyscreeningBcells tralizingMAbs(50–52,55,59,247,248).Thesefindingsaresup- b fortheirabilitytoproduceantibodieswithdesiredfunctional ported by genetic approaches demonstrating that mutations in r . a properties.Inmanyinstances,candidateBcells,eitherMBCs DIIIepitopesdonotresultinasignificantreductionintheneu- s orLLPCs,arescreenedfortheabilitytobindrecombinantviral tralizationpotencyofflavivirusimmunehumansera(227,236). m . proteins(53,229–231),virus-likeparticles(232,233),orintact MostoftheserumneutralizingactivityfollowingYFVorDENV o r virions(60,234)andthenimmortalized.Theuseofrelatively infectionorvaccinationisnotaffectedbythedepletionbysoluble g / high-throughput neutralization assays has allowed functional Eprotein,suggestingthatquaternaryepitopesmaybeimportant o screenstoidentifyBcellclonesthatproducepotentNAbsdi- targetsforNAbs(227,245),asdiscussedbelow.Ingeneral,most n A rectly(168).Thecomplexityoftheantigenicsurfaceofviruses studies characterizing antiflavivirus NAb specificities in human p suggests that the nature of the antigen and screening strategy polyclonalserahavelargelyruledouttheimportanceofparticular r usedwillalmostcertainlyimpacttherepertoireofMAbsiden- epitopes,suchasthoseinDIII(227,236,249). il 7 tified(62,168,223). Only two studies have identified residues on the E protein , 2 Inmostinstances,analysesofhumanantiflavivirusMAbssug- targetedbyNAbsinpolyclonalDENV-reactivesera(228,250). 0 1 gestthatantibodieswithlimitedinvitroneutralizingactivitycom- In one study, we analyzed the ability of serum samples from 9 prisealargefractionofthevirus-specificantibodyresponse(53, recipients of a monovalent DENV1 vaccine candidate (251– b 60,62,63,235).Forexample,(cid:10)5%oftheantibodiesisolatedfrom 254)toneutralizeacomprehensivepanelofDENV1variantsin y g flavivirus-infectedorvaccinatedhumansdisplayedpotent(50% which surface-accessible residues of the E protein were re- u effectiveconcentration[EC ]of(cid:10)0.5 (cid:6)g/ml)neutralizingactiv- placedwithcorrespondingsequencesofaDENV2strain(228). e 50 s ity(204,235).Asignificantportion((cid:2)45to60%)ofthetotalE This panel was screened to identify mutations that reduced t protein-specificresponseappearstobedirectedagainstthehighly sensitivity to neutralization by DENV1-immune, but not conservedfusionloopindomainII(DII-FL)(204,236).Antibod- DENV2-immune, sera. Our analysis identified mutations at iesthattargetprMarealsofrequentlyisolated(53,62,63,235). justtworesiduesinDIandDIIthat,whencombined,ablated However,themajorityofbothDII-FL-andprM-reactiveanti- theDENV1serotype-specificresponsetovaccination(Fig.5A bodies inhibit infection only weakly (53, 203, 204, 206, 235). andB)(228).Theobservationthattheantiflavivirusimmune Theseantibodiesbindepitopesthatareeitherpoorlyaccessible responseisfocusedonjustafewspecificitiesalignswithdata forantibodyrecognition(57)ornotpresentonvirionswitha from recent studies on HIV-1, in which some (255–258) but stoichiometrysufficienttoexceedthethresholdrequirements notall(259–262)analysesofpolyclonalserawithbroadlyneu- forneutralization(41,57,160).Similarly,althoughbroadand tralizing activity suggest that just one to two specificities can potent NAbs against HIV-1 have been isolated from infected recapitulatethebreadthandpotencyoftheoverallserumneu- individuals(6,114,237,238),theseNAbsrepresentararecom- tralizingactivity.Follow-upstudieswithmultiplestrainsfrom ponentoftheoverallhumoralimmuneresponse.Forexample, eachDENVserotypewillbeneededtoexplorethefinespeci- ascreenof25millionperipheralbloodmononuclearcells(PB- ficityofserotype-specificNAbs. MCs)fromanindividualwhoseserumdisplayedcross-reactiv- Another recent study investigated the epitope specificity of 998 mmbr.asm.org MicrobiologyandMolecularBiologyReviews December2016 Volume80 Number4

Description:
review discusses advances in deconstructing polyclonal antibody re- Downloaded from Zhang X, Sheng J, Plevka P, Kuhn RJ, Diamond MS, Rossmann MG Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.