ebook img

Decomposition of splitting invariants in split real groups PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decomposition of splitting invariants in split real groups

Decompositionofsplittinginvariantsinsplitrealgroups TashoKaletha Abstract Toamaximaltorusinaquasi-splitsemi-simplesimply-connectedgroupover alocalfieldofcharacteristic0,LanglandsandShelstadconstructin[LS1]acoho- mologicalinvariantcalledthesplittinginvariant,whichisanimportantcomponent oftheirendoscopictransferfactors. Westudythisinvariantinthecaseofasplit 0 realgroupandproveadecompositiontheoremwhichexpressesthisinvariantfora 1 generaltorusasaproductofthecorrespondinginvariantsforsimpletori. Wealso 0 showhowthisreductionformulaallowsforthecomparisonofsplittinginvariants 2 betweendifferenttoriinthegivenrealgroup. n a J Inapplicationsofharmonicanalysisandrepresentationtheoryofreductivegroupsover 3 localfieldstoquestionsinnumbertheory,acentralroleisplayedbythetheoryofen- doscopy. This theory associates to a given connected reductive groupG over a local ] field F acollectionofconnectedreductivegroupsover F,oftendenotedby H,which T have smaller dimension (except when H = G), but are usually not subgroups of G. R ThegeometricsideofthetheoryisthenconcernedwithtransferringfunctionsonG(F) . h to functions on H(F) in such a way that suitable linear combinations of their orbital t integralsarecomparable,whilethespectralsideisconcernedwithtransferring“pack- a m ets”ofrepresentationsonH(F)to“packets”ofrepresentationsonG(F)insuchaway thatsuitablelinearcombinationsoftheircharactersarecomparable. Inbothcases,the [ comparisoninvolvescertainnormalizingfactors,calledgeometricorspectraltransfer 1 factors. v 7 Overtherealnumbers,thetheoryofendoscopywasdevelopedinaseriesofprofound 4 3 papersbyDianaShelstad,inwhichshedefinesgeometricandspectraltransferfactors 0 andprovesthatthesefactorsindeedgiveacomparisonoforbitalintegralsandcharacter . formulasbetweenGandH. Averysubtleandcomplicatedfeatureofthetransferfac- 1 0 torswastheneedtoassigna -signtoeachmaximaltorusinGinacoherentmanner, ± 0 andShelstadwasabletoprovethatthisispossible.Auniformandexplicitdefinitionof 1 geometrictransferfactorsforalllocalfieldswasgivenin[LS1]. Anexplicitconstruc- : v tionofspectraltransferfactorsovertherealnumberswasgivenin[S2],whileoverthe i p-adic numbers their existence isstillconjectural. The structureof transferfactorsis X quitecomplex–boththegeometricandtherealspectralonesareaproductofmultiple r a termsofgroup-theoreticorGalois-cohomologicalnature. Therearenumerouschoices involved in the construction of each individual term, but the product is independent of most choices. One term that is common for both the geometric and the real spec- tral transfer factors is called ∆ . It is regarded as the most subtle and is the one that I makesexplicitthechoiceofcoherentcollectionofsignsinShelstad’searlierwork. At itsheartisaGalois-cohomologicalobject, calledthesplittinginvariant. Thesplitting invariantisanelementof H1(F,T)associatedtoanymaximaltorusT ofaquasi-split semi-simple simply-connected groupG, whose construction occupies the first half of [LS1,Sec.2]. Itisdependsonthechoiceofasplitting(T0,B0, Xα α ∆)ofGaswellas { } ∈ a-data a . β β R(T,G) { } ∈ Thispaperaddressesthefollowingquestion: Ifonehastwotoriinagivenrealgroup whichoriginatefromthesameendoscopicgroup,howcanonecomparetheirsplitting AMSsubjectclassification:Primary11F70,22E47;Secondary11S37,11F72,17B22 1 invariants? While there will in general be no direct relation between H1(F,T ) and 1 H1(F,T )fortwotoriT andT ofG,ifboththosetorioriginatefromHthenthereare 2 1 2 certain natural quotients of their cohomology groups which are comparable, and it is theimageofthesplittinginvariantinthosequotientsthatisrelevanttotheconstruction of ∆ . An example of a situation where this problem arises is the stabilization of the I topologicaltraceformulaofGoresky-MacPherson. Oneisledtoconsidercharactersof virtualrepresentationswhichoccurassumsindexedovertoriinGthatoriginatefrom thesameendoscopicgroupH,andeachsummandcarriesa∆ -factorassociatedtothe I correspondingtorus. Todescribetheresultsofthispaper, letG beasplitsimply-connectedrealgroupand (T0,B0, Xα α ∆)beafixedsplitting. ForasubsetA R,consistingofstronglyorthog- { } ∈ ⊂ onalroots,letS denotetheelementoftheWeylgroupofT givenbytheproductof A 0 thereflectionsassociatedtotheelementsofA(theorderinwhichtheproductistaken isirrelevant). WeshowthatassociatedtoAthereisacanonicalmaximaltorusT ofG A andasetofisomorphismsofrealtoriTSA T ,whereTSA isthetwistbyS ofT . 0 → A 0 A 0 AnymaximaltorusinGisG(R)-conjugatetooneoftheT ,soitisenoughtostudythe A toriT . Wegiveanexpressioninpurelyroot-theoretictermsforacertain1-cocyclein A Z1(R,TSA). ThiscocyclehasthepropertythatitsimageinZ1(R,T )underanyofthe 0 A isomorphismsTSA TA aboveisthesame, andtheclassin H1(R,TA)ofthatimage → is the splitting invariant of T (associated to a specific choice of a-data). Moreover, A we prove a reduction theorem which shows that this cocycle is a product over α A ∈ ofthecocyclesassociatedtothecanonicaltoriT ,therebyreducingthestudyofthe α { } splittinginvariantofT tothoseofthevariousT . Thisproductdecompositiontakes A α place inside the group Z1(R,TSA) – that is, we {sh}ow that the elements of Z1(R,Tsα) 0 0 associatedtothevariousT withα AalsolieinZ1(R,TSA)andthattheirproduct {α} ∈ 0 is the element associated to T . Finally we show that if A A and the tori T and A ′ A ⊂ ′ T originate from the same endoscopic group, then the endoscopic characters on the A cohomology groups H1(R,T ) and H1(R,T ) factor through certain explicitly given A A ′ quotientsofthesegroups,andthequotientofH1(R,T )iscanonicallyembeddedinto A ′ thatof H1(R,T ). This,togetherwiththereductiontheorem,allowsforadirectcom- A parisonofthevaluesthattheendoscopiccharactersassociatetothesplittinginvariants forT andT . A A ′ The paper is organized as follows: Section 1 contains a few basic facts and serves mainly to fix notation for the rest of the paper. Section 2 contains proofs of general facts about subsets of strongly orthogonal roots in reduced root systems, which are neededasapreparationforthereductiontheoremmentionedabove. Thestudyofthe splittinginvariantstakesplaceinsection3,wherefirstthesplittinginvariantforthetori T iscomputed, andafterthattheresultsofsection2areusedtoreducethecaseof α { } T to that of T . While the statement of the reduction theorem appears natural and A α { } clear, the proof contains some subtle points. First, one has to choose the Borel B in 0 thesplittingofGwithcareaccordingtothestronglyorthogonalsetA. Asremarkedin section 3, this choice does not affect the splittinginvariant, but itsignificantly affects itscomputation. Moreover,therootsystemG exhibitsasingularbehavioramongall 2 reducedrootsystemsasfaraspairsofstrongly-orthogonalrootsareconcerned.Section 4 contains explicit computations of the splitting invariants of the tori T for all split α { } almost-simpleclassicalgroups. Insection5weconstructtheaforementionedquotients ofthecohomologygroupsandtheembeddingbetweenthem. 2 1 Notation and preliminaries Throughout this paper G will stand for a split semi-simple simply-connected group over R and (B ,T , X ) will be a splitting ofG. We write R = R(T ,G) for the set 0 0 α 0 ofrootsofT inG,{set}α > 0ifα R(T ,B ),denoteby∆thesetofsimplerootsin 0 0 0 R(T ,B )andbyΩtheWeyl-group∈ofR,whichisidentifiedwithN(T )/T . Moreover 0 0 0 0 we put Γ = Gal(C/R) and denote by σ both the non-trivial element in that group, as well as its action on T . The notation g G will be shorthand for g G(C), and 0 Int(g)h=ghg 1. ∈ ∈ − 1.1 sl -triples 2 For any α R(T ,B ) we have the coroot α : G T and its differential dα : 0 0 ∨ m 0 ∨ G Lie(T∈ ). Weput H := dα (1) Lie(T ). Give→n X Lie(G) non-zero,there a 0 α ∨ 0 α α → ∈ ∈ existsauniqueX Lie(G) sothat[H ,X ,X ]isansl -triple. Themap α α α α α 2 − ∈ − − 1 0 0 1 0 0 H , X , X 0 1 !7→ α 0 0 !7→ α 1 0 !7→ −α − givesahomomorphism sl Lie(G)whichintegratestoahomomorphismSL G 2 2 → → andonehas - sl Lie(G) 2 exp exp ? ? - SL G 2 The image of a b SL under this homomorphism will be called a b . Noticethat t (cid:16) c0 d (cid:17)=∈α (t2). (cid:16) d c (cid:17)Xα (cid:16) 0 t−1 (cid:17)Xα ∨ Fact 1.1. Let α,β R be s.t. α+β < R and α β < R. For any non-zero elements ∈ − X Lie(G) andX Lie(G) ,thehomomorphismsϕ ,ϕ :SL GgivenbyX α ∈ α β ∈ β Xα Xβ 2 → α andX commute. β Proof: Sinceforanyfieldk,SL (k)isgeneratedbyitstwosubgroups 2 1 u 1 0 u k u k ( 0 1 !| ∈ ) ( u 1 !| ∈ ) it is enough to show that, for any u,v C, each of exp(uX ) and exp(uX ) com- α α ∈ − mutes witheach of exp(vX ) and exp(vX ). This follows from[Spr, 10.1.4] and our β β assumptiononα,β. − (cid:3) 1.2 Chevalleybases Forα ∆letn =exp(X )exp( X )exp(X )= 0 1 . Givenµ Ωwehavethe liftn(µ∈) N(Tα)givenbyα − −α α (cid:16) −1 0 (cid:17)Xα ∈ 0 ∈ n(µ)=n n α1··· αq 3 wheres s =µisanyreducedexpression(by[Spr,11.2.9]thisliftisindependent α1··· αq ofthechoiceofreducedexpression). Noticen(µ) N(T )(R)sinceT issplit. Put 0 0 ∈ X :=Int(n(µ)) X µα α | · ThenX Lie(G) isanon-zeroelement. µα µα | ∈ Lemma1.2. Ifα,α ∆andµ,µ Ωares.t. µα=µα thenwehaveinLie(G) the ′ ′ ′ ′ µα ∈ ∈ equality Xµ α = ( 1)hβ∨,µαi Xµα ′| ′ Yβ>0 − · | (µ′)−1β<0 µ−1β>0 Proof: By[Spr,11.2.11]therelation(µ) 1 µα=α implies ′ − ′ · Xα =Int n µ′ −1 µ Xα ′ · h (cid:16)(cid:0) (cid:1) (cid:17)i Theclaimnowfollowsfrom[LS1,2.1.A]andthefollowingcomputation X = Int n µ X µ α ′ α ′| ′ ′ = Int(cid:0)n(cid:0)µ′(cid:1)(cid:1)n µ′ −1µ Xα = Intht (cid:0)µ,(cid:1)(µ(cid:16))(cid:0)1µ(cid:1) n(cid:17)(iµ) X ′ ′ − α · h (cid:16) (cid:17) i = Int t µ,(µ) 1µ X ′ ′ − µα | h (cid:16) (cid:17)i = (µα) t(µ,(µ) 1µ) X ′ ′ − µα · | (cid:16) (cid:17) (cid:3) Remark: Weseethatwhilethe”absolutevalue”ofX onlydependsontherootµ α, µα its”sign”doesdependonbothµandα. | · Definition1.3. Forγ R,µ,µ Ωput ′ ∈ ∈ ǫ(µ′,γ,µ):= ( 1)hβ∨,γi − Yβ>0 (µ′)−1β<0 µ−1β>0 Remark: Withthisdefinitionwecanreformulatetheabovelemmaasfollows Corollary1.4. Ifγ Randµ,µ Ωares.t. µ 1γ,(µ) 1γ ∆then ′ − ′ − ∈ ∈ ∈ X =ǫ(µ,γ,µ) X µ (µ) 1γ ′ µµ 1γ ′| ′− · | − Remark: Ifforeachγ Rwechooseµ Ωsothatµ 1γ ∆,then X isa Chevalleysysteminthe∈senseof[SGAIIIγ.3∈,expXXIII −γ6].∈ { µγ|µ−γ1γ}γ∈R § 1.3 Cayley-transforms Letα R(T ,B )andchooseX Lie(G) (R) 0 . Put 0 0 α α ∈ ∈ −{ } iπ g :=exp (X +X ) α α α (cid:18)4 − (cid:19) 4 Thenσ(g )=exp iπ(X +X ) =g 1 andσ(g ) 1 g =g2 =exp iπ(X +X ) . α −4 α −α −α α − · α α 2 α −α Wehave (cid:16) (cid:17) (cid:16) (cid:17) √2 1 i 0 i 1 0 gα = 2 i 1 ! , g2α = i 0 ! , g4α = −0 1 ! =α∨(−1)  Xα Xα − Xα Fact1.5. TheimagesofT underInt(g )andInt(g 1)arethesame. Theyareatorus 0 α −α T definedoverRandthetransportsoftheΓ-actiononT toT viaInt(g 1)andInt(g ) 0 −α α bothequals ⋊σ. α Proof: Int(g )T =Int(g 1)Int(g2)T =Int(g 1)s T =Int(g 1)T α 0 −α α 0 −α α 0 −α 0 σ(Int(g )T )=Int(σ(g ))T =Int(g 1)T α 0 α 0 −α 0 Int(σ(g ) 1g )=Int(g2)= s =Int(g 2)=Int(σ(g )g 1) α − α α α −α α −α (cid:3) Note: Different choices of X will lead to different (yet conjugate) tori T. However, α sincewehavefixedasplittingthereisuptoasignacanonical X . Changingthesign α ofX changesg tog 1,henceT doesnotchange. Thusweconclude: α α −α Thechoiceofasplittinggivesforeachα R(T ,B )thefollowingcanonicaldata: 0 0 ∈ 1. apair X,X Lie(G) (R) 0 withX = X ′ α ′ { }⊆ −{ } − 2. atorusT onwhichΓactsvias ⋊σ, α α 3. a pair ϕ,ϕ of isomorphisms Tsα T s.t. ϕ = ϕ s , given by the Cayley- ′ 0 → α ′ ◦ α transformswithrespecttoX,X . ′ Corollary1.6. Forα R(T ,B )letT bethecanonicallygiventorusasabove. For 0 0 α µ,µ Ω s.t. µ 1α,(µ∈) 1α ∆ let ϕ,ϕ : Tsα T be the isomorphisms given by ′ ∈ − ′ − ∈ ′ 0 → α Int(g )andInt(g ). Then Xµ|µ−1α Xµ′|(µ′)−1α ϕ ,ǫ(µ,α,µ)=1 ϕ = ′ ′ ϕ s ,ǫ(µ,α,µ)= 1  ◦ α ′ −  Proof: Clear. (cid:3) Notation: Fromnowonwewillwriteg insteadofg . Thisnotationwillonly beemployedinthecasethatα R(T ,Bµ),αandµ 1α ∆X.µ|µ−1α 0 0 − ∈ ∈ 2 Strongly orthogonal subsets of root systems Inthissection,afewtechnicalfactsaboutstronglyorthogonalsubsetsofrootsystems areproved. Definition2.1. 1. α,β Rarecalledstronglyorthogonalifα+β<Randα β<R. ∈ − 2. A R is called a strongly orthogonal subset (SOS) if it consists of pairwise ⊂ stronglyorthogonalroots. 5 3. A Riscalledamaximalstronglyorthogonalsubset(MSOS)ifitisaSOSand ⊂ isnotproperlycontainedinaSOS. A classification of the Weyl group orbits of MSOS in irreducible root systems was givenin[AK]. Insomecases,thereexistsmorethanoneorbit. Tohandlethesecases, wewillusethefollowingdefinitionandlemma. Definition2.2. Let A ,A beSOSinR. A willbecalledadaptedto A ifspan(A ) 1 2 2 1 2 ⊂ span(A )andforalldistinctα,β A 1 2 ∈ a A : (a,α),0 a A : (a,β),0 = 1 1 { ∈ }∩{ ∈ } ∅ where()isanyΩ-invariantscalarproductontherealvectorspacespannedbyR. NotethatanyAisadaptedtoitself. Lemma 2.3. There exist representatives A ,...,A of the Weyl group orbits of MSOS 1 k s.t. A hasmaximallengthandA ,...,A areadaptedtoA . 1 2 k 1 Proof: Thisfollowsfromtheexplicitclassificationin[AK]. (cid:3) Notation: If A is a SOS then all reflections with respect to elements in A commute. TheirproductwillbedenotedbyS . A Definition2.4. ForarootsystemR, achoiceofpositiveroots>andasubset AofR let#(R,>,A)bethefollowingstatement α ,α A β>0 1 2 ∀ ∈ ∀ α ,α s (β)<0= s (β)>0 1 2 ∧ α1 ⇒ α2 andlet##(R,>,A)bethefollowingstatement A ,A A β>0 1 2 ∀ ⊂ ∀ A A = S (β)<0= S (β)>0 S S (β)<0 1∩ 2 ∅ ∧ A1 ⇒ A2 ∧ A1 A2 Remark: Wewillsoonshowthatthesestatementsareequivalent. Moreoverwewill showthatforanySOSA Rwecanchoose>sothatthetriple(R,>,A)verifiesthese ⊂ statements.Forthisitismoreconvenienttoworkwith#.Fortheapplicationshowever, weneed##. Lemma2.5. LetRbeareducedrootsystemand A RaSOS.Thereexistsachoice ⊂ ofpositiveroots>s.t. #(R,>,A)holdsforanyA adaptedtoA. ′ ′ Proof: Let V denote the real vector space spanned by R, and ( , ) be an Ω-invariant scalar product on V. The elements of A are orthogonal wrt ( , ). Extend A to an orthogonalbasis(a ,...,a )ofV. DefinethefollowingnotionofpositivityonR 1 n α>0 (α,a )>0 for i =min i: (α,a),0 ⇐⇒ i0 0 { i } Itisclearfromtheconstructionthatwiththisnotion#(R,>,A)issatisfiedforany A ′ ′ adaptedtoA. Wejustneedtocheckthat> 0definesachoiceofpositiveroots,which wewillnowdo. 6 It is clear that for each α R precisely one of α > 0 or α > 0 is true. We will ∈ − construct p V s.t. forallα R ∈ ∈ α>0 (α,p)>0 ⇐⇒ Let m = min (α,a) : α R,1 i n,(α,a),0 i i {| | ∈ ≤ ≤ } M = max (α,a) : α R,1 i n i {| | ∈ ≤ ≤ } Constructrecursivelyrealnumbers p ,...,p s.t. 1 n M p =1 p > p n i k m Xk>i andput p= pa. Ifα Riss.t. α>0andi isthesmallestis.t. (α,a),0then i i 0 i ∈ P n (α,p)= p(α,a)>mp M p >0 i i i0 − k Xi=i0 Xk>i0 Thus α>0= (α,p)>0 ⇒ Theconverseimplicationfollowsformally: (α>0) α>0 ( α,p)>0 ((α,p)>0) ¬ ⇔− ⇒ − ⇒¬ (cid:3) Remark:Thetruthvalueofthestatement#(R,>,A)andthenotionofbeingadaptedto AareunchangedifonereplaceselementsofAbytheirnegatives. Thuswecanalways assumethattheelementsofAarepositive. Remark: It is necessary to choose the set of positive roots based on A in order for #(R,>,A) to be true. An example that #(R,>,A) may be false is provided by V = R3,R= D withpositiveroots 3 1 1 0 1 1 0  1 , 0 , 1 , 1 , 0 , 1   −0   −1   −1   0   1   1  and 1 1 1 A= 0 , 0 ,β= 1  Fact 2.6. Let R = G and >any−1choice1ofpositiver−o0ots. All MSOS A of R lie in 2 the same Weyl-orbit and moreover automatically satisfy #(R,>,A). Some of these A containsimpleroots. Proof: Thisisanimmediateobservation. (cid:3) Proposition 2.7. Let A R be a SOS and > be a choice of positive roots. Then the ⊂ statements#(R,>,A)and##(R,>,A)areequivalent. 7 Proof: First,weshowthat#impliesthefollowingstatement,tobecalled# : 1 α ,α A β>0 1 2 ∀ ∈ ∀ α ,α s (β)<0= s (β)>0 s s (β)<0 1 2 ∧ α1 ⇒ α2 ∧ α1 α2 Let α ,α A and β > 0 be s.t. s (β) < 0. Put β = s (β). Then β > 0 and s (β1)=2 β∈<0. Then#impliesthaαt1s s (β)= s ′(β)−<0α.1 ′ α1 ′ − α2 α1 − α2 ′ Nextweshowthat# impliesthefollowingstatement,tobecalled# : 1 2 α A A A β>0 1 2 ∀ ∈ ∀ ⊂ ∀ α < A s (β)<0= S (β)>0 s S (β)<0 1 2 ∧ α1 ⇒ A2 ∧ α1 A2 WedothisbyinductionofthecardinalityofA ,thecaseofA singletonbeingprecisely 2 2 # . Nowletα A, A A α ,andβ > 0bes.t. s (β) < 0. Chooseα A and pu1tβ := s (β1)∈. Then2b⊂y# \w{e1h}aveβ > 0and s (βα1) < 0. Applyingthe2 i∈ndu2ctive ′ α2 1 ′ α1 ′ hypothesisweobtainS (β)=S (β)>0ands S (β)= s S (β)<0. A2 A2\{α2} ′ α1 A2 α1 A2\{α2} ′ Nowweshowthat# impliesthefollowingstatement,tobecalled♭: 2 IfA Aandβ>0ares.t. S (β)<0thenthereexistsα A s.t. s (β)<0. 2 ⊂ A2 2 ∈ 2 α2 To see this, let A A be a subset of minimal size s.t. S (β) < 0. Take α A andputβ = S 3 ⊂(β).2ByminimalityofA wehaveβ > 0A3,andmoreover s 3(β∈) =3 S (β)<′0. ThAe3n\{#α3}impliesthats (β)= s 3S (β)′<0. α3 ′ A3 2 α3 α3 A3\{α3} ′ Finallyweshowthat# impliesthestatement##. TakeA ,A As.t. A A = and 2 1 2 1 2 ⊂ ∩ ∅ β > 0s.t. S (β) < 0. By♭thereexistsα A s.t. s (β) < 0. Sinceα < A weget from# thatAS1 (β)>0andS S (β)= 1s ∈S 1S α1(β)<0. 1 2 2 A2 A1 A2 α1 A2 A1\{α1} Thisshowsthat#imples##. Theconverseimplicationistrivial. (cid:3) Proposition2.8. ForanSOSA R,andachoice>ofpositiveroots,let ⊂ R+ = β R: β>0 S β<0 A { ∈ ∧ A } Assumethat>ischosensothat##(R,>,A)istrue. ThenifA,A Aaredisjoint,so ′ ′′ areR+ andR+ ,andR+ = R+ R+ . Moreover,theactionof⊂S onRpreserves R+ . A′ A′′ A′∪A′′ A′ ∪ A′′ A′ A ′′ Proof: Thisfollowsimmediately. (cid:3) Corollary2.9. IfAisaSOSand>ischosensothat#(R,>,A)istruethen R+ = R+ A α aα A ∈ Proof: Clear. Lemma2.10. LetRbearootsystem,V therealvectorspacespannedbyit,Q V the ⊂ rootlattice,and(, )aWeyl-invariantscalarproductonV. Ifv Qiss.t. ∈ v min α : α R | |≤ {| | ∈ } where istheEuclidiannormarisingfrom(,)thenv Randtheaboveinequalityis || ∈ anequality. 8 Proof: Chooseapresentation v= n α, n Z α α 0 Xα R ∈ ≥ ∈ s.t. n is minimal. First we claim that if α,β R contribute to this sum, then α α ∈ (α,βP) 0. If that were not the case, then by [Bou, Ch.VI, 1,no.3,Thm.1] we have thatγ ≥:= α+β R 0 andwecanreplacethecontributio§nα+βinthesumbyγ, ∈ ∪{ } contradictingitsminimality. Now,ifγ Risanyrootcontributingtothesum,weget ∈ v2 = n n (α,β) n2(γ,γ) (γ,γ)= γ2 | | α β ≥ γ ≥ | | αX,β R ∈ withequalitypreciselywhenv=γ. (cid:3) Lemma 2.11. Let R be a root system and α,β R two strongly orthogonal roots. If α +β 2Q ,thenα,βbelongtothesamecop∈yofG . ∨ ∨ ∨ 2 ∈ Proof: Let V denote the real vector space spanned by R. Choose a Weyl-invariant scalarproduct(, )anduseittoidentifyV withitsdualandregardR asarootsystem ∨ inV. Assumenowthatα +β 2Q . Notethatα andβ areorthogonal(butmaynotbe ∨ ∨ ∨ ∨ ∨ ∈ stronglyorthogonalelementsofR ). ∨ First we show that then α,β belong to the same irreducible piece of R. To that end, assumethatRdecomposesasR=R R andV decomposesaccordinglyasV V . 1 2 1 2 If α R and β R , then α V⊔and β V . Then 1(α +β ) Q im⊕plies ∈ 1 ∈ 2 ∨ ∈ 1 ∨ ∈ 2 2 ∨ ∨ ∈ ∨ 1α Q ,1β Q (projectorthogonallyontoV respV ). Thishowevercontradicts 2 ∨ ∈ ∨1 2 ∨ ∈ ∨2 1 2 theabovelemma,because 1α haslengthstrictlylessthentheshortestelementsinR . 2 ∨ ∨1 Knowing that α,β lie in the same irreducible piece we can now assume wlog that R isirreducible. Normalize(, )sothattheshortrootsinRhavelength1. Wehavethe followingcases All elements of R have length 1. Then all elements of R have length 2. The ∨ • length of 1(α +β ) is √2, which by the above lemma is not a length of an 2 ∨ ∨ elementinQ . ∨ Rcontainselementsoflengths1and √2. ThenR containselementsoflengths ∨ • √2and2. – If both α ,β have length √2, then 1(α +β ) has length 1, so is not in ∨ ∨ 2 ∨ ∨ Q . ∨ – Ifα haslength √2andβ haslength2,then 1(α +β )haslength √6,so ∨ ∨ 2 ∨ ∨ 2 againisnotinQ . ∨ – Ifbothα ,β havelength2,then 1(α +β )haslength √2andthuscould ∨ ∨ 2 ∨ ∨ potentially be in Q . If it is, then by the above lemma it is also in R , ∨ ∨ so 1(α +β ) mustbeanelementofR. Oneimmediatelycomputesthat 2 ∨ ∨ ∨ [1(α +β )] =α+β,butthelatterisnotanelementofRbecauseα,βare 2 ∨ ∨ ∨ stronglyorthogonal. R has elements of lengths 1 and √3. Then R is G and R is also G . As 2 ∨ 2 • one sees immediately, up to the action of its Weyl-group,G has a unique pair 2 of orthogonal roots, which are then automatically strongly orthogonal and half theirsumisalsoaroot. (cid:3) 9 3 Splitting invariants Recall that we have fixed a split semi-simple and simply-connected group G over R and a splitting (T ,B , X ) of it. Given a maximal torus T, an element h G s.t. 0 0 α Int(h)T = T and a-dat{a a} for R(T,G), Langlands and Shelstad construct i∈n [LS1, 0 β 2.3]acertainelementofZ{1(Γ},T),whoseimageinH1(Γ,T)theycallλ(T)–the”split- tinginvariant”ofT. Theyshowthatthisimageisindependent ofthechoice ofh. In this section we want to study this splitting invariant in such a way that enables us to seehowitvarieswhenthetorusvaries. Itturnsoutthatacertaintypeofa-dataisvery wellsuitedforthis. Thisa-dataisdeterminedbyaBorelB T asfollows: ⊃ i ,β>0 σ (β)<0 T ∧  i ,β<0 σ (β)>0 αβ =−1 ,β>0∧∧σTT(β)>0 whereσ denotestheGalois-actio−n1on,Xβ<(T0)∧anσdTβ(β>)<00meansβ R(T,B). Wewill T ∗ ∈ call this a-data B-a-data. It should not be confused with Shelstad’s terminology of baseda-data,whichisalsogivenbyaBorel–forbaseda-data,thepositiveimaginary roots are assigned i while all other positive roots are assigned 1; for B-a-data, any positive root whose Galois-conjugate is negative is assigned i. Therefore a splitting invariantcomputedusingShelstad’sbaseda-datawillingeneralbedifferentfromone computedusingB-a-data.Theprecisedifferenceisgivenby[LS1,2.3.2].Itishowever moreimportanttonotethataccordingto[LS1,Lemma2.3.C]thisdifferencedisappears oncethesplittinginvarianthasbeenpairedwithanendoscopiccharacter. Thus,asfar applicationstotransferfactorsareconcerned,baseda-dataandB-a-datagivethesame result. Inviewofthereductiontheoremwhichwewillproveinsection3.2,itwillbehelpful toconsidernotjustthecohomologyclass,buttheactualcocycleconstructedin[LS1, 2.3]. We will denote this cocycle by λ(T,B,h) to record its dependence on the B-a- dataandtheelementh, whilethesplitting(T ,B , X )isnotpresentinthenotation 0 0 α { } becauseitisassumedfixed. SinceweareworkingoverR,wewillidentifya1-cocycle anditsvalueatσ Gal(C/R),andhencewewillviewλ(T,B,h)asanelementofT. ∈ Givenh, thereisanobviouschoicefor B, namelyInt(h)B . Wewillwriteλ(T,h)for 0 λ(T,Int(h)B ,h). Note that in this notation, T is clearly redundant, because it equals 0 Int(h)T . However,wekeepitsothatthenotationisclosetothatin[LS1]. Wewould 0 like to alert the reader of one potential confusion – while the cohomology class of λ(T,B,h)isindependentofthechoiceofh,thatofλ(T,h)isnot,becauseinthelatter hinfluencesnotonlytheidentificationofT withT butalsothechoiceofB-a-datafor 0 T. 3.1 ThesplittinginvariantforT α Recallfromsection1.3thatforeachα R(T ,B )thereisacanonicalmaximaltorus 0 0 T andapairofisomorphismsTsα T∈.Tofixoneofthetwo,fixµ Ωs.t.µ 1α ∆. TαhenInt(g )isoneofthetwoi0so→morpαhismsTsα T . Thegoalo∈fthissect−ion∈isto µ,α 0 → α computeλ(T ,B,g )foragivenBorelB T ,andinparticularλ(T ,g ). Wewill α µ,α α α µ,α ⊃ giveaformulaforthelatterinpurelyroot-theoreticterms. Lemma3.1. Withg:=g wehave µ,α λ(T ,B,g)=Int(g) α (i a ) s (σ(δ))δ 1 α ∨ α Int(g 1) α − (cid:16) · ◦ − · (cid:17) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.