Decomposing edge-colored graphs under color degree constraints Ruonan Li∗1,2,ShinyaFujita†3 andGuanghuiWang‡4 1DepartmentofAppliedMathematics,NorthwesternPolytechnicalUniversity,Xi’an,710072,P.R.China 2FacultyofEEMCS,UniversityofTwente,P.O.Box217,7500AEEnschede,TheNetherlands 3InternationalCollegeofArtsandSciences,YokohamaCityUniversity,22-2,Seto,Kanazawa-ku,Yokohama,236-0027 Japan 4SchoolofMathematics,ShandongUniversity,Jinan,250100,P.R.China 7 1 0 January12, 2017 2 n a J 1 Abstract 1 Foranedge-coloredgraphG,theminimumcolordegreeofGmeanstheminimumnumberofcolorsonedges ] whichareadjacenttoeachvertexofG.WeprovethatifGisanedge-coloredgraphwithminimumcolordegree O atleast5thenV(G)canbepartitionedintotwopartssuchthateachpartinducesasubgraphwithminimumcolor C degreeatleast2.Weshowthistheorembyprovingamuchstrongerform. Moreover,wepointoutanimportant relationshipbetweenourtheoremandBermond-Thomassen’sconjectureindigraphs. . h t a m Keywords:Bermond-Thomassen’sconjecture;edge-coloredgraph;vertexpartition [ 1 v 1 Introduction 7 0 0 Whenwetrytosolveaproblemindensegraphs,decomposingagraphintotwodensepartssometimesplaysan 3 importantroleintheproofargument.Thisisbecauseonecanapplyaninductionhypothesistooneofthepartsso 0 astoobtainapartialconfiguration,andthenusetheotherparttoobtainadesiredconfiguration.Motivatedbythis . 1 naturalstrategy,manyworkhasbeendonealongthisline,andnowwe havea varietyofresultsinthispartition 0 problem.Tonameafew,Stiebitz[8]showedanicetheorem,whichstatesthateverygraphwithminimumdegree 7 atleasta+b+1canbedecomposedintotwopartsAandBsuchthatAhasminimumdegreeatleastaandBhas 1 : minimumdegreeatleastb. Weseethatthebounda+b+1isbestpossiblebyconsideringthecompletegraphof v ordera+b+1.Bythesameexample,Thomassen[12,13]conjecturedthatevery(a+b+1)-connectedgraphcan i X bedecomposedintotwoparts Aand Binsuchawaythat A isa-connectedand Bisb-connected. Itwasshown r byThomassenhimself[10] thatif b ≤ 2, thenthe conjectureis true. However,rathersurprisingly,evenforthe a caseb= 3thisconjectureiswidelyopenuntilnow. Likewise,therearesomeotherpartitionproblemstofindthe partition V(G) = A∪ B so that both A and B have a certain property,respectively. The digraphversion of this problemwasproposedatthePragueMidsummerCombinatorialWorkshopin1995:ForadigraphD,letδ+(D)be theminimumoutdegreeofD. Forintegerssandt,doesthereexistsasmallestvalue f(s,t)suchthateachdigraph D with δ+(D) ≥ f(s,t) admitsa vertexpartition(D ,D ) satisfyingδ+(D ) ≥ s andδ+(D ) ≥ t? In[1, 2] Alon 1 2 1 2 posedtheproblem: Isthereaconstantcsuchthat f(1,2)≤ c?Weonlyknowthat f(1,1)= 3holdsbyaresultof Thomassen[11]. Nomuchprogresshasbeenmadeforthisproblem. RecentlyStiebitz[9]proposethisproblem againwhenhedealswiththecoloringnumberofgraphs.Asobservedfromtheaboveknownresults,itseemsthat thesepartitionproblemsareverydifficultevenifwerestrictourconsiderationtoaveryspecificcase. ∗SupportedbyCSC(No.201506290097);E-mail:[email protected] †SupportedbyJSPSKAKENHI(No.15K04979);E-mail:[email protected] ‡SupportedbyNSFC(No.11471193,11631014);E-mail:[email protected] 1 In this paper, we would like to consider a similar problemin edge-coloredgraphs. To state our results, we introduce some notation and definitions. Throughoutthis paper, all graphs are finite and simple. Let G be an edge-coloredgraph.Foranedgee∈E(G),weusecol (e)todenotethecolorofe.Foravertexv∈V(G),letdc(v) G G bethecolordegreeofvinG,thatis,thenumberofcolorsonedgeswhichareadjacenttov. Theminimumcolor degreeofGisdenotedbyδc(G)(:=min{dc(v): v∈V(G)}). ForasubgraphHofGwithE(H),∅,letcol (H)be G G thesetofcolorsappearedinE(H).Also,forapairofvertex-disjointsubgraphsM,NinG,letcol (M,N)betheset G ofcolorsonedgesbetweenMandN inG. ForavertexvofG,letNc(v)=col (v,N (v)).Bydefinition,notethat G G G dc(v)= |Nc(v)|. Whenthereisnoambiguity,weoftenwritecol(e)forcol (e),col(H)forcol (H),col(M,N)for G G G G col (M,N)anddc(v)fordc(v). Agraphiscalledaproperlycoloredgraph(briefly,PCgraph)ifnotwoadjacent G G edgeshavethesamecolor. Letaandbbeintegerswitha ≥ b ≥ 1. Apair(A,B)iscalled(a,b)-feasibleifAand Baredisjoint,non-emptysubsetsofV(G)suchthatδc(G[A])≥aandδc(G[B])≥b;inparticular,ifGcontainsan (a,b)-feasiblepair(A,B)withV(G)= A∪BthenwesaythatGhasan(a,b)-feasiblepartition. Again, motivated by the same complete graph having mutually distinct colored edges (that is, the rainbow K ),weproposethefollowingconjecture. a+b+1 Conjecture1.1. Let a,bbeintegerswith a ≥ b ≥ 2, andG be anedge-coloredgraphwith δc(G) ≥ a+b+1. ThenGhasan(a,b)-feasiblepartition. Themainpurposeofourpaperistogivethesolutionofthisconjectureforthecasea=b=2. Theorem1.1. Conjecture1.1istruefora=b=2. Toconsiderourproblem,utilizingthestructureofminimalsubgraphsHwithδc(H)≥2willbeveryimportant. An edge-colored graph G is 2-colored if δc(G) ≥ 2. Specifically, we say a graph G is minimally 2-colored if δc(G)≥ 2holdsbutanypropersubgraphH ofGhasminimumcolordegreelessthan2inH. Bydefinition,note that,everyPCcycleisaminimally2-coloredgraph. Anedge-coloredgraphobtainedfromtwodisjointcyclesby joiningapathisageneralizedbowtie(morebriefly,callitg-bowtie).Weallowthecasewherethepathjoiningtwo cyclesisempty. Inthatcase,theg-bowtiebecomesagraphobtainedfromtwodisjointcyclesbyidentifyingone vertexineachcycle. NotealsothatK +2K (thatis,agraphobtainedfromtwodisjointtrianglesbyidentifying 1 2 onevertexofeachtriangle)isag-bowtiewithminimumorder. Wehavethefollowingcharacterizationofminimally2-coloredgraphs,whichwillbeusedtoproveourmain result. Theorem 1.2. If an edge-colored graph G is minimally 2-colored, then G is either a PC cycle or a 2-colored g-bowtiewithoutcontainingPCcycles. In fact Theorem 1.1 will be given by proving a much stronger result. We generalize the concept of (a,b)- feasiblepartitionsasfollows.Fork≥2ifV(G)canbepartitionedintokpartsA ,A ,...,A suchthatδc(G[A])≥ 1 2 k i a holds for each 1 ≤ i ≤ k then we say thatG hasan (a ,a ,...,a )-feasible partition. In this paper, we will i 1 2 k mainlyfocusonthecase where(a ,a ,...,a ) = (2,2,...,2). Forsimplicity,letuscall2k-feasiblepartitionin 1 2 k this special case (thus, (2,2)-feasiblepartitions are equivalentto 22-feasible partitions). To state our result, we shallintroducethefollowingtheorem,whichisontheexistenceofvertex-disjointdirectedcyclesindigraphs. Theorem1.3(Thomassen[11]). Foreachnaturalnumberkthereexistsa(smallest)number f(k)suchthatevery digraphDwithδ+(D)≥ f(k)containskvertex-disjointdirectedcycles. BermondandThomassen[3]conjecturedthat f(k)=2k−1andAlon[1]showedthat f(k)≤64k. Asabove,fork ≥1let f(k)beafunctionsuchthateverydirectedgraphDsatisfyingδ+(D)≥ f(k)containsk disjointdirectedcycles. Defineafunctiong(k)asfollows. 2, k =1; g(k)= max{f(k)+1,g(k−1)+3}, k ≥2. Ourmainresultisfollowing. 2 Theorem1.4. LetGbeanedge-coloredgraphwithδc(G)≥g(k).ThenGhasa2k-feasiblepartition. Wethenfocusonthecaseb=2inConjecture1.1. Weobtainedthefollowingpartialresult. Theorem 1.5. Let a be an integer with a ≥ 2, and let K be an edge-colored complete graph of order n with n δc(K )≥a+3. ThenK hasan(a,2)-feasiblepartition. n n Also,in[4],itisshownthatanyedge-coloredcompletebipartitegraphK withδc(K ) ≥ 3containsaPC m,n m,n C . Thisyieldsthefollowing. 4 Theorem1.6. Ifan edge-coloredcompletebipartitegraph K satisfiesδc(K ) ≥ a+2, then K admitsan m,n m,n m,n (a,2)-feasiblepartition. RegardingConjecture1.1inthegeneralcase,byusingtheprobabilisticmethod,wegetthefollowingresult. Theorem1.7. Leta,bbeintegerswith a ≥ b ≥ 1. IfG isanedge-coloredgraphwith |V(G)| = n andδc(G) ≥ 2lnn+4(a−1),thenGhasan(a,b)-feasiblepartition. Althoughourresultsmightlookabitmodest,provingConjecture1.1evenforthecaseb=2seemsquitehard. ThisisbecausewecouldgiveabigimprovementontheAlon’sbound“64k”ifitistrue. Theorem1.8. IfConjecture1.1istrueforb=2,then f(k)≤3k−1. InviewofTheorem1.8,ittellsusthatsolvingConjecture1.1completelyseemsaverydifficultproblem. Thispaperisorganizedasfollows. InSections2, 3and4, wegivetheproofsofTheorems1.2, 1.4and1.7, respectively. In Section 5, we prove Theorems 1.5 and 1.8. In particular, Theorem 1.8 is obtained by a much strongerresult(seeProposition4inSection5). 2 Proof of Theorem 1.2 Inordertoprovethistheorem,wefirstintroduceastructuraltheoremcharacterizingedge-coloredgraphswithout containingPCcycles. Theorem2.1(GrossmanandHa¨ggkist[6],Yeo[14]). LetGbeanedge-coloredgraphcontainingnoPCcycles. Thenthereisavertexz∈V(G)suchthatnocomponentofG−zisjointtozwithedgesofmorethanonecolor. ProofofTheorem1.2. Let G be a minimally 2-colored graph. If G contains a subgraph H which is a PC cycle or a 2-colored g- bowtie without containing PC cycles, thenG = H (otherwise, by deleting vertices in V(G)\V(H) or edges in E(G)\E(H),weobtainasmaller2-coloredgraph).Hence,itissufficienttoprovethatifGcontainsnoPCcycle, thenGcontainsa2-coloredg-bowtie. ApplyTheorem2.1toG. SinceGisminimally2-colored,wemayassume thatGisconnectedandthereisavertexz∈V(G)suchthatG−zconsistsoftwocomponentsH andH withall 1 2 theedgesbetweenzandH hascolorifori=1,2. i Let zx x ···x and zy y ···y , respectively, be longest PC paths in G\H and G\H starting from z. Set 1 2 p 1 2 q 2 1 x = z and y = z. Since dc (x) ≥ 2 and dc (y) ≥ 2 for arbitrary vertices x ∈ V(H ) and y ∈ V(H ), w0ehave p,q ≥0 2andthereexGis\tH2vertices x andyG\Hfo1rsomei, jwith0 ≤ i ≤ p−2and0 ≤ 1j ≤ q−2suchth2at i j col(x x),col(x x )andcol(y y ),col(y y ).SinceGcontainsnoPCcycle,wehavecol(x x)=col(xx ) p i p−1 p q j q−1 q p i i i+1 andcol(y y )=col(y y ). Together,thepathxx ···x zy y ···y andcyclesx x ···x x andy y ···y y q j j j+1 i i−1 1 1 2 j i i+1 p i j j+1 q j forma2-coloredg-bowtie. Theproofiscomplete. (cid:3) 3 3 Proof of Theorem 1.4 Firstweprovethefollowingproposition. Proposition1. LetGbeanedge-coloredgraphwithδc(G)≥a+b−1. IfGcontainsan(a,b)-feasiblepair,then thereexistsan(a,b)-feasiblepartitionofG. Proof. Let(A,B)bean(a,b)-feasiblepairsuchthatA∪Bismaximal.If(A,B)isnotan(a,b)-feasiblepartition, thenA∪B= V(G)\S withS , ∅. Since(A,B)ismaximal,(A,B∪S)isnotafeasiblepair. Hencethereexistsa vertex xinS suchthatdc (x) ≤ b−1. Recallthatdc(x) ≥ a+b−1. Sodc (x) ≥ a. Thus(A∪x,B)is G[B∪S] G G[A∪x] afeasiblepair,whichisacontradictionwiththemaximalityof(A,B). Thisprovesthat(A,B)isan(a,b)-feasible partitionofG. (cid:3) Itiseasytocheckthatthefollowingpropositionisalsotrue. Proposition2. LetGbeanedge-coloredgraphwithδc(G)≥ k (a −1)+1. IfGcontainskdisjointsubgraphs i=1 i H1,H2,...,Hk suchthatδc(Hi)≥aifori=1,2,...,k,thenGPadmitsan(a1,a2,...,ak)-feasiblepartition. Inwhatfollows,wewillkeeptheabovepropositionsinmindandusethesefactsasamatterofcourse. ProofofTheorem1.4. We provethe theoremby contradiction. LetG be a counterexamplesuch thatG is chosen accordingto the followingorderofpreferences. (i)kisminimum;(ii)|G|isminimum;(iii)|E(G)|isminimum;(iv)|col(G)|ismaximum. By the choice ofG, we knowthat δc(G) = g(k), k ≥ 2 andG containsno rainbowtriangles. Let S = {u : v dc (u)=dc(u)−1}. Thenthefollowingtwoclaimsobviouslyhold: G−v G Claim1. S ,∅forallv∈V(G). v Claim2. Foreachedgeuv∈ E(G),eitheru∈S orv∈S . v u Nowweprovethefollowingclaims. Claim3. Foreachcolori∈col(G),thesubgraphG inducedbyedgescoloredbyiisastar. i Proof. BythechoiceofG,weknowthatG containsnomonochromatictrianglesormonochromaticP ’s. Thus 3 foreverycolori ∈ col(G), eachcomponentofG is a star. IfG containsmorethan onecomponent,thencolor i i oneofthecomponentswithacolornotincol(G).Thus,wegetacounterexamplewithmorecolorsthanG,which contradictstothechoiceofG. (cid:3) Claim4. Foru,v∈V(G),ifu∈S andv<S ,thenS ∩N (v),∅. v u u G Proof. Supposetothecontrarythatthereexistverticesu,v∈V(G)satisfyingu∈S ,v<S andS ∩N (v)=∅. v u u G Then col(vu) appears only once at u and more than once at v. By Claim 3, the color col(vu) can only appear at {v}∪S , particularly, not at S . Now we construct a colored graph G′ by deleting the vertex u and adding v u edges {vx : x ∈ S } to G with all of them colored by col(vu) (since S ∩ N (v) = ∅, this is possible without u u G resultingmulti-edges). Foreachvertex x ∈ V(G′)\S ,wehavedc (x) = dc(x). Foreachvertexy ∈ S ,wehave u G′ G u Nc (y) ⊆ (Nc(y)\col(uy))∪col(vu). Since thecolorcol(vu)doesnotappearatS , we havedc (y) = |Nc (y)| = G′ G u G′ G′ |Nc(y)| = dc(y). Thisimpliesthatδc(G′) ≥ δc(G) = g(k). Notethat|G′| = |G|−1. BytheassumptionofG,we G G knowthatG′mustadmita2k-feasiblepartition.ByTheorem1.2,G′containskdisjointsubgraphsH ,H ,...,H 1 2 k suchthatH iseitheraPCcycleoraminimally2-coloredg-bowtiewithoutcontainingPCcyclesfori=1,2,...,k. i If k E(H)⊆ E(G),thenwecanfinda2k-partitionofGasdesired,acontradiction.If k E(H)* E(G),then i=1 i i=1 i allStheedgesinT = ( ki=1E(Hi))\E(G)formamonochromaticstarwiththevertexvasSacenter. Thus,without lossofgenerality,assuSmethatT ⊆ E(H1). 4 x x v u v x v x v u y y (a) |T|=1 (b) |T|=2 Fig.1:Casesof|T| SinceH iseitheraPCcycleoraminimally2-coloredg-bowtiewithoutcontainingPCcycles,foreachvertex 1 a∈H andeachcolor j∈col(H ),thecolor jappearsatmost2timesatainH . Thuswehave1≤|T|≤2. 1 1 1 If|T|=1,thenletxvbetheuniqueedgeinT. ReplacexvinH withthepathxuv(seeFigure3(a)).Weobtain 1 acoloredgraphH′ inGwithδc(H′)≥2.ThusH′,H ,...,H impliesa2k-feasiblepartitionofG,acontradiction. 1 1 1 2 k If|T| = 2,thenletT = {vx,vy}. Sincecol(vx) = col(vy),weknowthatH isaminimally2-coloredg-bowtie 1 with v being an end vertex of the connecting path in H . Delete the edges vx,vy and add vertex u and edges 1 uv,ux,uyinH (seeFigure3(b)). Weobtainag-bowtieH′ inG withδc(H′) ≥ 2. ThusH′,H ,...,H impliesa 1 1 1 1 2 k 2k-feasiblepartitionofG,acontradiction. (cid:3) Claim5. Thereexistsanedgexy∈E(G)suchthatx∈S andy∈S . y x Proof. Supposenot. ThenbyClaim 2 , we canconstructanorientedgraph D byorientingeachedgee = uv ∈ E(G)fromutovifandonlyifv∈S . Thend+(v)≥2foreachvertexv∈V(D). LetT(v)={u:col(uv)=i}. u D i Subclaim1. Foreachvertexv ∈ V(G)andcolorsi, j ∈ col(G)withi , j, if|T(v)| ≥ 2and|T (v)| ≥ 2,thenthe i j followingstatementshold: (a)T(v)∩T (v)=∅andE(T(v),T (v))=∅. i j i j (b)G[T(v)]containsatleastoneedge. i Proof. (a) By the definition, we know that T(v)∩T (v) = ∅. Since |T(v)| ≥ 2 and |T (v)| ≥ 2, we know that i j i j T(v)∪T (v)⊆ S . Letu ∈ T(v)andu ∈T (v). Thencolorsiand jappearsonlyonceatu andu ,respectively. i j v i i j j i j Ifuu ∈ E(G),thenvuu visarainbowtriangle,acontradiction.SowehaveE(T(v),T (v))=∅. i j i j i j (b)SupposethatG[T(v)]isemptyforsomecoloriwith|T(v)| ≥ 2. Thenchooseu ∈ T(v). Wehaveu ∈ S i i i v andv < S . ApplyClaim4touandv,weobtainS ∩N (v) , ∅. Foreachcolori′ ∈ col(G)with|T (v)|≥ 2,by u u G i′ Subclaim1(a)andtheassumptionthatG[T(v)]isempty,wehaveE(u,T (v))=∅. Notethat i i′ N+(v)= T (v). D i′ |Ti′(v)|≥[2,i′∈col(G) WehaveN (u)∩N+(v)=∅.RecallthatS ∩N (v),∅andS ⊆ N (u).Theremustexistavertexx∈S ∩N−(v). G D u G u G u D ItiseasytocheckthatC = xuvxisarainbowtriangleinG,acontradiction. (cid:3) Subclaim2. Foreachvertexv∈V(G),thereisexactlyonecolori∈col(G)suchthat|T(v)|≥2. i Proof. Givenavertexv,byClaim1,wecanfindavertexu ∈ S . BytheassumptionofG,wehavev < S . Let v u i = col(uv). Then |T(v)| ≥ 2. This impliesthatfor each vertexv ∈ V(G), there is at least one colori ∈ col(G) i such that |T(v)| ≥ 2. Now, suppose to the contrarythat there exists a vertex v ∈ V(G) and colors i, j ∈ col(G) i withi, jsatisfying|T(v)|≥2and|T (v)|≥2. BySubclaim1,wecanchooseedgesuw fromG[T(v)]andu w i j i i i j j fromG[T (v)]. LetF =G[v,u,w,u ,w ]. Thenδc(F)≥2. Nowwewilldiscussontheminimumcolordegreeof j i i j j G−F. Ifδc(G−F)≥g(k−1),thenbytheassumptionofG,G−Fhasa2k−1-feasiblepartition.TogetherwithG[V(F)], weobtaina2k-feasiblepartitionofG,acontradiction. Sowehaveδc(G−F) < g(k−1). Let x ∈ V(G−F)bea vertexsatisfyingdc (x)=δc(G−F). Sinceδc(G)≥g(k)≥g(k−1)+3and|F|=5,wehave G−F 4≤|col(x,F)|≤5. 5 Forverticesa∈{u,w}andb∈{u ,w },if|col(x,{a,b,v})|≥3,thenitiseasytocheckthateitherxavxorxbvx i i j j isarainbowtriangle,acontradiction. Sowehave|col(x,{a,b,v})|≤ 2. Notethat|col(x,F)|≥ 4. Thisforcesthat vx < E(G)and|col(x,{u,w,u ,w })| = 4. ThusC = xuvu x isa rainbowcycleoflength4. Supposethatthere i i j j i j existsavertexy∈V(G−C)suchthatdc (y)<g(k−1). Then|col(y,C)|≥4. Notethatu,u ∈S . Thuseither G−C i j v yuvyor yu vy is a rainbowtriangle, a contradiction. Hence we have δc(G−C) ≥ g(k−1). By the assumption i j ofG,thegraphG−C hasa2k−1-feasiblepartition. TogetherwithG[V(C)],wegeta2k-feasiblepartitionofG,a contradiction. (cid:3) Subclaim2impliesthatthereareatleastg(k)−1colorsappearonlyonceatvforeachvertexv∈V(G). Thus, we have δ−(D) ≥ g(k)−1 ≥ f(k). So D containsk disjoint directedcycles, which correspondto k disjointPC cyclesinG,acontradiction. (cid:3) Claim6. Foreachedgexy∈E(G)satisfyingx∈S andy∈S ,wehave y x (a)|Nc(x)∪Nc(y)−col(xy)|≤g(k)−1,and G G (b) N (x) −y = N (y)− x = {v : 1 ≤ i ≤ g(k)− 1}, where col(xv) = col(yv) and col(xv) , col(xv ) for G G i i i i j i, j∈[1,g(k)−1]withi, j. Proof. (a)SinceGcontainsnorainbowtrianglesandcol(xy)appearsonlyonceatxandy,respectively.wehave col(xu) = col(yu)forallu ∈ N (x)∩N (y). NowletG′ =G/xy. ThenG′ iswelldefinedanddc (v) = dc(v)for G G G′ G allverticesinV(G)\{x,y}.Letzbethenewvertexresultedbycontractingtheedgexy. Supposethat|Nc(x)∪Nc(y)−col(xy)|≥g(k),thendc (z)≥g(k).Thuswehaveδc(G′)≥g(k). Bythechoice G G G′ of G, we know that G′ must admit a 2k-feasible partition. By Theorem 1.2, G′ contains k disjoint subgraphs H ,H ,...,H such that H (i = 1,2,...,k) is either a PC cycle or a minimally 2-colored g-bowtie without 1 2 k i containingPCcycles. Ifz< k V(H),thenH ,H ,...,H arek-disjointsubgraphsofG. Thisimpliesa2k-feasiblepartitionofG, i=1 i 1 2 k acontradiSction.Sowecanassumethatz∈V(H1). Apparently,2≤dH1(z)≤4. Ifd (z) = 2,thenlet N (z) = {u,v}(seeFigure2). Ifu,v ∈ N (x),thenreplacezwith x. Ifu ∈ N (x)and H1 H1 G G v < N (x),thenreplacethepathuzvwithuxyv. Inallcases,wecantransformH intoagraphH′ ⊆ G suchthat G 1 1 δc(H′) ≥ 2 andV(H′)∩V(H) = ∅ fori = 2,3...,k. Thus H′,H ,...,H implythe existenceofa 2k-feasible 1 1 i 1 2 k partitionofG,acontradiction. u v u v u, v ∈ NG(x) x z u∈NG(x),v6∈N u v G(x) x y Fig.2: d (z)=2 H1 Ifd (z) = 3,then H mustbeaminimally2-coloredg-bowtiewithzbeinganend-vertexoftheconnecting H1 1 path. LetN (z)={u,v,w}withu,vonasamecycleinH (seeFigure3). If{u,v,w}⊆ N (x),thenreplacezwith H1 1 G x. If{u,v} ⊆ N (x)andw < N (x), thenreplacezw with xyw. If{u,w} ⊆ N (x) andv < N (x), thenreplacezv G G G G with xyv. Constructionsoftheremainingcasesaresimilar. Finally,inallcases,wecantransformH intoagraph 1 H′ ⊆Gsuchthatδc(H′)≥2andV(H′)∩V(H)=∅fori=2,3...,k. ThusH′,H ,...,H impliesa2k-feasible 1 1 1 i 1 2 k partitionofG,acontradiction. If d (z) = 4, then H is a minimally 2-colored g-bowtie with two cycles overlapped on the vertex z. Let H1 1 N (z) = {u,v,u′,v′} with u,v on one cycle and u′,v′ on the other cycle (see Figure 4). If {u,v,u′,v′} ⊆ N (x), H1 G thenreplacezwith x. If{u,v,u′}⊆ Nc(x)andv′ < Nc(x),thenreplacethepathzv′with xyv′. If{u,v}⊆ Nc(x)and {u′,v′}∩Nc(x)=∅,thensplitzintotheedgexysuchthattheresultinggraphisstillag-bowtie. If{u,u′}⊆ Nc(x) and{v,v′}∩Nc(x) = ∅,thensplitzintotheedge xy inanorthogonaldirectionsuchthattheresultinggraphisa cyclewithonechordxy. Constructionsoftheremainingcasesaresimilar. Finally,inallcases,wecantransform 6 u N G(x ) x w ∈ u, v, w v u u z w u,v∈NG(x),w6∈NG(x) x w y v v u,w ∈ NG(x),v6∈N xu w G(x) y v Fig.3: d (z)=3 H1 u u′ z v v′ u,v, u′,v′ ∈ N G(xu,)v,′u∈′vN6∈G(xN)G(x) u,v′6∈′uN,vG(∈NG(x)v,uv,′u6∈′N∈GN(xG)(x) u u′ u u′ ux)u′ u u′ x x x x y v y v v′ v yv′ v′ v v′ Fig.4: d (z)=4 H1 H into a graph H′ ⊆ G such that δc(H′) ≥ 2 and V(H′)∩V(H) = ∅ for i = 2,3...,k. Thus H′,H ,...,H 1 1 1 1 i 1 2 k impliesa2k-feasiblepartitionofG,acontradiction. (b)ByClaim6(a)andthefactthatdc(x),dc(y)≥g(k),wehaveNc(x)=Nc(y)anddc(x)=dc(y)=g(k).For G G G G G G eachcolor j∈ Nc(x)and j,col(xy),sinceG isastarandthecolor jappearsatxandy,weknowthatx,ymust G j beleafverticesofG . Letv bethecenterofG . Theproofiscomplete. (cid:3) j j j Nowlet{x,y}∪{v : 1 ≤ i ≤ g(k)−1}bethesetofverticesdescribedinClaim6. Withoutlossofgenerality, i letcol(xv) = ifori ∈ [1,g(k)−1]. Let H be thesubgraphofG inducedby{x,y}∪{v : 1 ≤ i ≤ g(k)−1}and i i R=G−H. Claim7. For1≤i≤g(k)−1,col(v,S )={i}. i vi Proof. Supposetothecontrarythatthereexistsavertexu ∈ S suchthatcol(uv) , i. Ifu = v forsome jwith vi i j 1 ≤ j ≤ g(k)−1and j , i,thencol(uv) = j(since xvv xisnotarainbowtriangle). Sincethecolor jappearsat i i j least2timesatv (=u),weknowthatu<S ,acontradiction.NowthevertexumustbelongtoV(R). Sinceeach j vi G (1≤ j≤g(k)−1)isastarandcol(uv),i,wehavecol(uv)<[1,g(k)−1].Ifv ∈S ,thenbyapplyingClaim j i i i u 6 to the edgeuv, we have N (u)−v = N (v)−u. Since x ∈ N (v), we have x ∈ N (u), namely,u ∈ N (x), i G i G i G i G G a contradiction. So we have v < S . ApplyingClaim 4 to uv, we obtain a vertex v ∈ S ∩N (v). Note that i u i u G i col(uv) < [1,g(k)−1]andGcontainsnorainbowtriangle,wehavev ∈ R−u. LetF = G[x,y,v,u,v]. Itiseasy i i tocheckthatδc(F)≥2. Wewillshowthatforeachvertexz∈G−F,|col(z,F)|≤3.Forz∈R∩(G−F),theassertionholdssincezhas noneighborto xory. Thuswemayassumethatz = v forsome jwith1 ≤ j ≤ g(k)−1and j , i. Ifzv < E(G) j i orcol(zv) = j, thenwe havethe desiredconclusion. Sowe mayassumethatzisadjacentto v andcol(zv) = i i i i (otherwise, zxvz is a rainbowtriangle). Since thereis no rainbowtriangleandG is a star, we can easily check i i thatzu< E(G).Sozsatisfiesthedesiredproperty. 7 Now,δc(G−F)≥g(k)−3≥g(k−1). SoG−F admitsa2k−1-feasiblepartition. TogetherwithG[V(F)],we obtaina2k-feasiblepartitionofG,acontradiction. (cid:3) Claim8. Thereexistsavertexv with1≤i≤g(k)−1suchthatS ={x,y}. i vi Proof. Suppose not. Then there exists a vertex u ∈ S \{x,y} for all i with 1 ≤ i ≤ g(k)− 1. By Claim 7, i vi col(uv)=ifor1≤i≤g(k)−1. LetG′ =G−{x,y}. Thenδc(G′)≥δc(G)≥g(k). BythechoiceofG,thegraph i i G′mustadmita2k-feasiblepartition,whichimpliesthatGhasa2k-feasiblepartition,acontradiction. (cid:3) Wearenowinapositiontoprovethetheorem. Letv bethevertexinClaim8. Sincedc(v) ≤ g(k)−1and i H i dc(v)≥g(k),thereisavertexu∈R∩N (v). Notethatu<S . ByClaim2,wehavev ∈S . NowapplyClaim G i G i vi i u 4totheedgeuv,wehaveS ∩N (u),∅. Thisimpliesthateitherx∈N (u)ory∈N (u),acontradiction. i vi G G G ThiscompletestheproofofTheorem1.4. (cid:3) 4 Proof of Theorem 1.7 Lemma1. Letk,x ,x ,...,x bepositiveintegersand x anon-negativeintegerwith0 ≤ x ≤ k. Let{vj : 1 ≤ 1 2 k 0 0 2 i i ≤ k,1 ≤ j ≤ x}be asetof k x verticessuchthateachvertex vj is coloredbyi. Dividetheseverticesinto i i=1 i i twosetsS andT,randomlyanPdindependently,with Pr(vj ∈ S) = Pr(vj ∈ T) = 1. Let P (x ,x ,...,x )bethe i i 2 S 0 1 k probabilityoftheeventthatthereareatmostx (0≤ x ≤ k)differentlycoloredverticesinS. Then 0 0 2 x0 k 1 P (x ,x ,...,x )≤ ( )k. (4.1) S 0 1 k j! 2 Xj=0 →− Proof. For convenience,we say a vector x = (x ,x ,x ,...,x ) is goodif k,x ,x ,...,x are positiveintegers 0 1 2 k 1 2 k andx isanon-negativeintegerwith0≤ x ≤ k. ProvingLemma1isequivalenttoverifyInequation(4.1)forall 0 →− 0 2 →− →− →− goodvectors.Forgoodvectors x =(x ,x ,...,x )and y =(y ,y ,··· ,y ),wesay x < y if(a)or(b)holds. 0 1 k 0 1 k′ (a)k<k′. (b)k=k′andthereexistst∈[1,k]suchthatx <y andx =y foralliwith0≤i<t. t t i i →− NowwewillproveInequation(4.1)foreverygoodvector x =(x ,x ,...,x ). 0 1 k Byinduction. First,itiseasytocheckthatInequation(4.1)holdsinthefollowingthreecases: (1) x =0;(2) 0 k = 1;(3) x = 1foralliwith1 ≤ i ≤ k. Nowassumethat x ≥ 1,k ≥ 2, x ≥ 2forsomeiwith1 ≤ i ≤ k,and i 0 i →− →− →− eachgoodvector y with y < x satisfiesInequation(4.1). Considerthevertexv1. Wehave i →− P (x)= Pr(v1 ∈T)P (x ,x ,...,x ,x −1,x ,...,x )+Pr(v1 ∈S)P (x −1,x ,...,x ,x ,...,x ). S i S 0 1 i−1 i i+1 k i S 0 1 i−1 i+1 k →− →− →− Let y =(x ,x ,...,x ,x −1,x ,...,x )and z =(x −1,x ,...,x ,x ,...,x ). Itiseasytoseethat y and 0 1 i−1 i i+1 k 0 1 i−1 i+1 k →− →− →− →− z aregoodvectorswith y, z < x. Byinductionhypothesis,wehave →− x0 k 1 P (y)≤ ( )k S j! 2 Xj=0 and P (→−z)≤ x0−1 k−1 (1)k−1. S j ! 2 Xj=0 8 Thus,wehave P (→−x) ≤ 1 x0 k (1)k+ 1 x0−1 k−1 (1)k−1 S 2 j! 2 2 j ! 2 Xj=0 Xj=0 1 x0 k 1 x0 k−1 1 = ( )k+ ( )k 2 j! 2 j−1! 2 Xj=0 Xj=1 1 x0 k 1 x0 j k 1 = ( )k+ ( )k 2 j! 2 k j! 2 Xj=0 Xj=1 1 x0 k 1 x x0 k 1 ≤ ( )k+ 0 ( )k 2 j! 2 k j! 2 Xj=0 Xj=1 1 x x0 k 1 < ( + 0) ( )k 2 k j! 2 Xj=0 x0 k 1 ≤ ( )k j! 2 Xj=0 Theproofiscomplete. (cid:3) ProofofTheorem1.7. Proof. Assume V(G) = {1,2,··· ,n}. We divide V(G) into two disjoint parts A,B randomlywith Pr(i ∈ A) = Pr(i ∈ B) = 1 for each vertex i ∈ V(G). For each vertex i ∈ A, the bad event A means that for vertex i, 2 i {dc (i)≤a−1}. ByLemma1,wehave G[A] a−1 dc(i) 1 dGc(i) dc(i) 1 Pr(Ai)≤ Gj !(2)dGc(i) = Gj !(2)dGc(i) = Pr(X ≥dGc(i)−a+1), Xj=0 j=dcX(i)−a+1 G whereX ∼ B(dc(i),1). G 2 RecallthatChernoff’sbound:Pr[X−E(X)≥nǫ]<e−2nǫ2,whereX ∼ B(n,1). Weget 2 Pr(X ≥dGc(i)−a+1)= Pr(X− dGc2(i) ≥ dGc2(i) −a+1)<e−2(dGc2(i)−a+1)2/dGc(i). Sincedc(i)≥δc(G)>2(a−1),wehave G Pr(Ai)<e−2(dGc2(i)−a+1)2/dGc(i) ≤e−2(δc2(G)−a+1)2/δc(G). Similarly,foreachvertex j∈ B,thebadeventBjmeansthat{dGc[B](j)≤b−1}andPr(Bj)<e−2(δc2(G)−b+1)2/δc(G) ≤ e−2(δc2(G)−a+1)2/δc(G). So Pr(( Ai)∪( Bj))≤ Pr(Ai)+ Pr(Bj)<ne−2(δc2(G)−a+1)2/δc(G). [i∈A [j∈B Xi∈A Xj∈B Ifne−2(δc2(G)−a+1)2/δc(G) ≤ 1,whichmeans1−Pr[( Ai)∪( Bi)] > 0,then δc(2G) −2(a−1)+ 2δ(ac−(G1))2 ≥ lnn. The i∈A i∈B lastinequalityholdsbytheconditionthatδc(G) ≥S2lnn+4S(a−1). Thusthereexistsapartitionsuchthatneither eventA norB happens.Sowehavean(a,b)-feasiblepartition. (cid:3) i i 9 5 From (a,2)-feasible partitions to Bermond-Thomassen’s conjecture Firstly,wegivetheproofofThorem1.5. ProofofTheorem1.5. Inordertoprovethetheorem,weusethefollowingfact. Lemma2. [5]Inanyrainbowtriangle-freecoloringofacompletegraph,thereexistsavertexpartition(V ,V ...,V) 1 2 t ofV(K )witht≥2suchthatbetweentheparts,thereareatotalofatmosttwocolorsand,betweeneverypairof n partsV,V withi, j,thereisonlyonecolorontheedges. i j IfK containsarainbowtriangleC,thenletA =C andB = K −C. Itfollowsthatδc(A) ≥ 2andδc(B)≥ a. n n So(A,B)isan(a,2)-feasiblepartition.NowweassumethatK containsnorainbowtriangle.UtilizingLemma2, n wecaneasilyfindan(a,2)-feasiblepartition.ThusTheorem1.5holds. (cid:3) Inthissection, wewillpointouta relationshipbetween(a,2)-feasiblepartitionsin edge-coloredgraphsand Bermond-Thomassen’sconjectureindigraphs. Infact,Bermond-Thomassen’sconjecturehasnotevenbeencon- firmed in multi-partite tournaments. Recently, Li et al. [7] revealed a relationship between PC cycles in edge- coloredcompletegraphsandBermond-Thomassen’sconjectureonmulti-partitetournaments. Weprovethefollowingproposition. Proposition3. Fork≥1letd ,...,d bepositiveintegers,andlet f(d ,d ,...,d ),g(d ,d ,...,d )andh(d ,d ,...,d ) 1 k 1 2 k 1 2 k 1 2 k betheminimumvalueswhichmakethefollowingthreestatementstrue: (1)EveryorientedgraphDwithδ+(D)≥ f(d ,d ,...,d )hasavertex-partition(V ,V ,...,V )withδ+(D[V])≥ 1 2 k 1 2 k i d fori=1,2,...,k. i (2)Everyedge-coloredgraphGwithδc(G)≥g(d ,d ,...,d )hasa(d ,d ,...,d )-feasiblepartition. 1 2 k 1 2 k (3)Everyedge-coloredcompletegraphKwithδc(K)≥h(d ,d ,...,d )hasa(d ,d ,...,d )-feasiblepartition. 1 2 k 1 2 k Thenwehave f(d −1,d −1,...,d −1)≤g(d ,d ,...,d )≤h(d +1,d +1,...,d +1). 1 2 k 1 2 k 1 2 k Proof. Given an oriented graph D, we construct an edge-colored graph G with V(G) = V(D), E(G) = {uv : uv ∈ A(D)orvu ∈ A(D)} and col (uv) = v if and only if uv ∈ A(D). If δ+(D) ≥ g(d ,d ,··· ,d ), then by G 1 2 k the construction, we know that δc(G) ≥ g(d ,d ,··· ,d ). Thus, G admits a partition V ,V ,...,V such that 1 2 k 1 2 k δc(G[V])≥d fori=1,2,...,k. Inturn,bytheconstruction,wehaveδ+(D[V])≥d −1fori=1,2,...,k. Recall i i i i thedefinitionoffunction f. Weknowthat f(d −1,d −1,...,d −1)≤g(d ,d ,...,d ). 1 2 k 1 2 k Givenanedge-coloredgraphG,weconstructanedge-coloredcompletegraphKwithV(K)=V(G),col (e)= K col (e)foralle∈E(G),col (e)=c foralle∈ E(K)\E(G)andc <col(G).Ifδc(G)≥h(d +1,d +1,...,d +1), G K 0 0 1 2 k thenδc(K)≥h(d +1,d +1,...,d +1).Bythedefinitionofh,weknowthatthereexistsapartitionV ,V ,...,V 1 2 k 1 2 k of K such that δc(K[V]) ≥ d + 1 for i = 1,2,...,k. By the construction of K, we have δc(G[V]) ≥ d for i i i i i=1,2,...,k. Recallthedefinitionofg. Weknowthat g(d ,d ,...,d )≤h(d +1,d +1,...,d +1). 1 2 k 1 2 k (cid:3) Remark 1. The existence of f(d ,d ,...,d ) for d ≥ 2 (i = 1,2,...,k) and k ≥ 2 is still unknownaccording 1 2 k i to [1]. Proposition 3 implies that we could show the existence of f(d ,d ,...,d ) by proving the existence of 1 2 k g(d +1,d +1,...,d +1)orh(d +2,d +2,...,d +2). 1 2 k 1 2 k 10