ebook img

Decomposing edge-colored graphs under color degree constraints PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decomposing edge-colored graphs under color degree constraints

Decomposing edge-colored graphs under color degree constraints Ruonan Li∗1,2,ShinyaFujita†3 andGuanghuiWang‡4 1DepartmentofAppliedMathematics,NorthwesternPolytechnicalUniversity,Xi’an,710072,P.R.China 2FacultyofEEMCS,UniversityofTwente,P.O.Box217,7500AEEnschede,TheNetherlands 3InternationalCollegeofArtsandSciences,YokohamaCityUniversity,22-2,Seto,Kanazawa-ku,Yokohama,236-0027 Japan 4SchoolofMathematics,ShandongUniversity,Jinan,250100,P.R.China 7 1 0 January12, 2017 2 n a J 1 Abstract 1 Foranedge-coloredgraphG,theminimumcolordegreeofGmeanstheminimumnumberofcolorsonedges ] whichareadjacenttoeachvertexofG.WeprovethatifGisanedge-coloredgraphwithminimumcolordegree O atleast5thenV(G)canbepartitionedintotwopartssuchthateachpartinducesasubgraphwithminimumcolor C degreeatleast2.Weshowthistheorembyprovingamuchstrongerform. Moreover,wepointoutanimportant relationshipbetweenourtheoremandBermond-Thomassen’sconjectureindigraphs. . h t a m Keywords:Bermond-Thomassen’sconjecture;edge-coloredgraph;vertexpartition [ 1 v 1 Introduction 7 0 0 Whenwetrytosolveaproblemindensegraphs,decomposingagraphintotwodensepartssometimesplaysan 3 importantroleintheproofargument.Thisisbecauseonecanapplyaninductionhypothesistooneofthepartsso 0 astoobtainapartialconfiguration,andthenusetheotherparttoobtainadesiredconfiguration.Motivatedbythis . 1 naturalstrategy,manyworkhasbeendonealongthisline,andnowwe havea varietyofresultsinthispartition 0 problem.Tonameafew,Stiebitz[8]showedanicetheorem,whichstatesthateverygraphwithminimumdegree 7 atleasta+b+1canbedecomposedintotwopartsAandBsuchthatAhasminimumdegreeatleastaandBhas 1 : minimumdegreeatleastb. Weseethatthebounda+b+1isbestpossiblebyconsideringthecompletegraphof v ordera+b+1.Bythesameexample,Thomassen[12,13]conjecturedthatevery(a+b+1)-connectedgraphcan i X bedecomposedintotwoparts Aand Binsuchawaythat A isa-connectedand Bisb-connected. Itwasshown r byThomassenhimself[10] thatif b ≤ 2, thenthe conjectureis true. However,rathersurprisingly,evenforthe a caseb= 3thisconjectureiswidelyopenuntilnow. Likewise,therearesomeotherpartitionproblemstofindthe partition V(G) = A∪ B so that both A and B have a certain property,respectively. The digraphversion of this problemwasproposedatthePragueMidsummerCombinatorialWorkshopin1995:ForadigraphD,letδ+(D)be theminimumoutdegreeofD. Forintegerssandt,doesthereexistsasmallestvalue f(s,t)suchthateachdigraph D with δ+(D) ≥ f(s,t) admitsa vertexpartition(D ,D ) satisfyingδ+(D ) ≥ s andδ+(D ) ≥ t? In[1, 2] Alon 1 2 1 2 posedtheproblem: Isthereaconstantcsuchthat f(1,2)≤ c?Weonlyknowthat f(1,1)= 3holdsbyaresultof Thomassen[11]. Nomuchprogresshasbeenmadeforthisproblem. RecentlyStiebitz[9]proposethisproblem againwhenhedealswiththecoloringnumberofgraphs.Asobservedfromtheaboveknownresults,itseemsthat thesepartitionproblemsareverydifficultevenifwerestrictourconsiderationtoaveryspecificcase. ∗SupportedbyCSC(No.201506290097);E-mail:[email protected] †SupportedbyJSPSKAKENHI(No.15K04979);E-mail:[email protected] ‡SupportedbyNSFC(No.11471193,11631014);E-mail:[email protected] 1 In this paper, we would like to consider a similar problemin edge-coloredgraphs. To state our results, we introduce some notation and definitions. Throughoutthis paper, all graphs are finite and simple. Let G be an edge-coloredgraph.Foranedgee∈E(G),weusecol (e)todenotethecolorofe.Foravertexv∈V(G),letdc(v) G G bethecolordegreeofvinG,thatis,thenumberofcolorsonedgeswhichareadjacenttov. Theminimumcolor degreeofGisdenotedbyδc(G)(:=min{dc(v): v∈V(G)}). ForasubgraphHofGwithE(H),∅,letcol (H)be G G thesetofcolorsappearedinE(H).Also,forapairofvertex-disjointsubgraphsM,NinG,letcol (M,N)betheset G ofcolorsonedgesbetweenMandN inG. ForavertexvofG,letNc(v)=col (v,N (v)).Bydefinition,notethat G G G dc(v)= |Nc(v)|. Whenthereisnoambiguity,weoftenwritecol(e)forcol (e),col(H)forcol (H),col(M,N)for G G G G col (M,N)anddc(v)fordc(v). Agraphiscalledaproperlycoloredgraph(briefly,PCgraph)ifnotwoadjacent G G edgeshavethesamecolor. Letaandbbeintegerswitha ≥ b ≥ 1. Apair(A,B)iscalled(a,b)-feasibleifAand Baredisjoint,non-emptysubsetsofV(G)suchthatδc(G[A])≥aandδc(G[B])≥b;inparticular,ifGcontainsan (a,b)-feasiblepair(A,B)withV(G)= A∪BthenwesaythatGhasan(a,b)-feasiblepartition. Again, motivated by the same complete graph having mutually distinct colored edges (that is, the rainbow K ),weproposethefollowingconjecture. a+b+1 Conjecture1.1. Let a,bbeintegerswith a ≥ b ≥ 2, andG be anedge-coloredgraphwith δc(G) ≥ a+b+1. ThenGhasan(a,b)-feasiblepartition. Themainpurposeofourpaperistogivethesolutionofthisconjectureforthecasea=b=2. Theorem1.1. Conjecture1.1istruefora=b=2. Toconsiderourproblem,utilizingthestructureofminimalsubgraphsHwithδc(H)≥2willbeveryimportant. An edge-colored graph G is 2-colored if δc(G) ≥ 2. Specifically, we say a graph G is minimally 2-colored if δc(G)≥ 2holdsbutanypropersubgraphH ofGhasminimumcolordegreelessthan2inH. Bydefinition,note that,everyPCcycleisaminimally2-coloredgraph. Anedge-coloredgraphobtainedfromtwodisjointcyclesby joiningapathisageneralizedbowtie(morebriefly,callitg-bowtie).Weallowthecasewherethepathjoiningtwo cyclesisempty. Inthatcase,theg-bowtiebecomesagraphobtainedfromtwodisjointcyclesbyidentifyingone vertexineachcycle. NotealsothatK +2K (thatis,agraphobtainedfromtwodisjointtrianglesbyidentifying 1 2 onevertexofeachtriangle)isag-bowtiewithminimumorder. Wehavethefollowingcharacterizationofminimally2-coloredgraphs,whichwillbeusedtoproveourmain result. Theorem 1.2. If an edge-colored graph G is minimally 2-colored, then G is either a PC cycle or a 2-colored g-bowtiewithoutcontainingPCcycles. In fact Theorem 1.1 will be given by proving a much stronger result. We generalize the concept of (a,b)- feasiblepartitionsasfollows.Fork≥2ifV(G)canbepartitionedintokpartsA ,A ,...,A suchthatδc(G[A])≥ 1 2 k i a holds for each 1 ≤ i ≤ k then we say thatG hasan (a ,a ,...,a )-feasible partition. In this paper, we will i 1 2 k mainlyfocusonthecase where(a ,a ,...,a ) = (2,2,...,2). Forsimplicity,letuscall2k-feasiblepartitionin 1 2 k this special case (thus, (2,2)-feasiblepartitions are equivalentto 22-feasible partitions). To state our result, we shallintroducethefollowingtheorem,whichisontheexistenceofvertex-disjointdirectedcyclesindigraphs. Theorem1.3(Thomassen[11]). Foreachnaturalnumberkthereexistsa(smallest)number f(k)suchthatevery digraphDwithδ+(D)≥ f(k)containskvertex-disjointdirectedcycles. BermondandThomassen[3]conjecturedthat f(k)=2k−1andAlon[1]showedthat f(k)≤64k. Asabove,fork ≥1let f(k)beafunctionsuchthateverydirectedgraphDsatisfyingδ+(D)≥ f(k)containsk disjointdirectedcycles. Defineafunctiong(k)asfollows. 2, k =1; g(k)= max{f(k)+1,g(k−1)+3}, k ≥2.   Ourmainresultisfollowing. 2 Theorem1.4. LetGbeanedge-coloredgraphwithδc(G)≥g(k).ThenGhasa2k-feasiblepartition. Wethenfocusonthecaseb=2inConjecture1.1. Weobtainedthefollowingpartialresult. Theorem 1.5. Let a be an integer with a ≥ 2, and let K be an edge-colored complete graph of order n with n δc(K )≥a+3. ThenK hasan(a,2)-feasiblepartition. n n Also,in[4],itisshownthatanyedge-coloredcompletebipartitegraphK withδc(K ) ≥ 3containsaPC m,n m,n C . Thisyieldsthefollowing. 4 Theorem1.6. Ifan edge-coloredcompletebipartitegraph K satisfiesδc(K ) ≥ a+2, then K admitsan m,n m,n m,n (a,2)-feasiblepartition. RegardingConjecture1.1inthegeneralcase,byusingtheprobabilisticmethod,wegetthefollowingresult. Theorem1.7. Leta,bbeintegerswith a ≥ b ≥ 1. IfG isanedge-coloredgraphwith |V(G)| = n andδc(G) ≥ 2lnn+4(a−1),thenGhasan(a,b)-feasiblepartition. Althoughourresultsmightlookabitmodest,provingConjecture1.1evenforthecaseb=2seemsquitehard. ThisisbecausewecouldgiveabigimprovementontheAlon’sbound“64k”ifitistrue. Theorem1.8. IfConjecture1.1istrueforb=2,then f(k)≤3k−1. InviewofTheorem1.8,ittellsusthatsolvingConjecture1.1completelyseemsaverydifficultproblem. Thispaperisorganizedasfollows. InSections2, 3and4, wegivetheproofsofTheorems1.2, 1.4and1.7, respectively. In Section 5, we prove Theorems 1.5 and 1.8. In particular, Theorem 1.8 is obtained by a much strongerresult(seeProposition4inSection5). 2 Proof of Theorem 1.2 Inordertoprovethistheorem,wefirstintroduceastructuraltheoremcharacterizingedge-coloredgraphswithout containingPCcycles. Theorem2.1(GrossmanandHa¨ggkist[6],Yeo[14]). LetGbeanedge-coloredgraphcontainingnoPCcycles. Thenthereisavertexz∈V(G)suchthatnocomponentofG−zisjointtozwithedgesofmorethanonecolor. ProofofTheorem1.2. Let G be a minimally 2-colored graph. If G contains a subgraph H which is a PC cycle or a 2-colored g- bowtie without containing PC cycles, thenG = H (otherwise, by deleting vertices in V(G)\V(H) or edges in E(G)\E(H),weobtainasmaller2-coloredgraph).Hence,itissufficienttoprovethatifGcontainsnoPCcycle, thenGcontainsa2-coloredg-bowtie. ApplyTheorem2.1toG. SinceGisminimally2-colored,wemayassume thatGisconnectedandthereisavertexz∈V(G)suchthatG−zconsistsoftwocomponentsH andH withall 1 2 theedgesbetweenzandH hascolorifori=1,2. i Let zx x ···x and zy y ···y , respectively, be longest PC paths in G\H and G\H starting from z. Set 1 2 p 1 2 q 2 1 x = z and y = z. Since dc (x) ≥ 2 and dc (y) ≥ 2 for arbitrary vertices x ∈ V(H ) and y ∈ V(H ), w0ehave p,q ≥0 2andthereexGis\tH2vertices x andyG\Hfo1rsomei, jwith0 ≤ i ≤ p−2and0 ≤ 1j ≤ q−2suchth2at i j col(x x),col(x x )andcol(y y ),col(y y ).SinceGcontainsnoPCcycle,wehavecol(x x)=col(xx ) p i p−1 p q j q−1 q p i i i+1 andcol(y y )=col(y y ). Together,thepathxx ···x zy y ···y andcyclesx x ···x x andy y ···y y q j j j+1 i i−1 1 1 2 j i i+1 p i j j+1 q j forma2-coloredg-bowtie. Theproofiscomplete. (cid:3) 3 3 Proof of Theorem 1.4 Firstweprovethefollowingproposition. Proposition1. LetGbeanedge-coloredgraphwithδc(G)≥a+b−1. IfGcontainsan(a,b)-feasiblepair,then thereexistsan(a,b)-feasiblepartitionofG. Proof. Let(A,B)bean(a,b)-feasiblepairsuchthatA∪Bismaximal.If(A,B)isnotan(a,b)-feasiblepartition, thenA∪B= V(G)\S withS , ∅. Since(A,B)ismaximal,(A,B∪S)isnotafeasiblepair. Hencethereexistsa vertex xinS suchthatdc (x) ≤ b−1. Recallthatdc(x) ≥ a+b−1. Sodc (x) ≥ a. Thus(A∪x,B)is G[B∪S] G G[A∪x] afeasiblepair,whichisacontradictionwiththemaximalityof(A,B). Thisprovesthat(A,B)isan(a,b)-feasible partitionofG. (cid:3) Itiseasytocheckthatthefollowingpropositionisalsotrue. Proposition2. LetGbeanedge-coloredgraphwithδc(G)≥ k (a −1)+1. IfGcontainskdisjointsubgraphs i=1 i H1,H2,...,Hk suchthatδc(Hi)≥aifori=1,2,...,k,thenGPadmitsan(a1,a2,...,ak)-feasiblepartition. Inwhatfollows,wewillkeeptheabovepropositionsinmindandusethesefactsasamatterofcourse. ProofofTheorem1.4. We provethe theoremby contradiction. LetG be a counterexamplesuch thatG is chosen accordingto the followingorderofpreferences. (i)kisminimum;(ii)|G|isminimum;(iii)|E(G)|isminimum;(iv)|col(G)|ismaximum. By the choice ofG, we knowthat δc(G) = g(k), k ≥ 2 andG containsno rainbowtriangles. Let S = {u : v dc (u)=dc(u)−1}. Thenthefollowingtwoclaimsobviouslyhold: G−v G Claim1. S ,∅forallv∈V(G). v Claim2. Foreachedgeuv∈ E(G),eitheru∈S orv∈S . v u Nowweprovethefollowingclaims. Claim3. Foreachcolori∈col(G),thesubgraphG inducedbyedgescoloredbyiisastar. i Proof. BythechoiceofG,weknowthatG containsnomonochromatictrianglesormonochromaticP ’s. Thus 3 foreverycolori ∈ col(G), eachcomponentofG is a star. IfG containsmorethan onecomponent,thencolor i i oneofthecomponentswithacolornotincol(G).Thus,wegetacounterexamplewithmorecolorsthanG,which contradictstothechoiceofG. (cid:3) Claim4. Foru,v∈V(G),ifu∈S andv<S ,thenS ∩N (v),∅. v u u G Proof. Supposetothecontrarythatthereexistverticesu,v∈V(G)satisfyingu∈S ,v<S andS ∩N (v)=∅. v u u G Then col(vu) appears only once at u and more than once at v. By Claim 3, the color col(vu) can only appear at {v}∪S , particularly, not at S . Now we construct a colored graph G′ by deleting the vertex u and adding v u edges {vx : x ∈ S } to G with all of them colored by col(vu) (since S ∩ N (v) = ∅, this is possible without u u G resultingmulti-edges). Foreachvertex x ∈ V(G′)\S ,wehavedc (x) = dc(x). Foreachvertexy ∈ S ,wehave u G′ G u Nc (y) ⊆ (Nc(y)\col(uy))∪col(vu). Since thecolorcol(vu)doesnotappearatS , we havedc (y) = |Nc (y)| = G′ G u G′ G′ |Nc(y)| = dc(y). Thisimpliesthatδc(G′) ≥ δc(G) = g(k). Notethat|G′| = |G|−1. BytheassumptionofG,we G G knowthatG′mustadmita2k-feasiblepartition.ByTheorem1.2,G′containskdisjointsubgraphsH ,H ,...,H 1 2 k suchthatH iseitheraPCcycleoraminimally2-coloredg-bowtiewithoutcontainingPCcyclesfori=1,2,...,k. i If k E(H)⊆ E(G),thenwecanfinda2k-partitionofGasdesired,acontradiction.If k E(H)* E(G),then i=1 i i=1 i allStheedgesinT = ( ki=1E(Hi))\E(G)formamonochromaticstarwiththevertexvasSacenter. Thus,without lossofgenerality,assuSmethatT ⊆ E(H1). 4 x x v u v x v x v u y y (a) |T|=1 (b) |T|=2 Fig.1:Casesof|T| SinceH iseitheraPCcycleoraminimally2-coloredg-bowtiewithoutcontainingPCcycles,foreachvertex 1 a∈H andeachcolor j∈col(H ),thecolor jappearsatmost2timesatainH . Thuswehave1≤|T|≤2. 1 1 1 If|T|=1,thenletxvbetheuniqueedgeinT. ReplacexvinH withthepathxuv(seeFigure3(a)).Weobtain 1 acoloredgraphH′ inGwithδc(H′)≥2.ThusH′,H ,...,H impliesa2k-feasiblepartitionofG,acontradiction. 1 1 1 2 k If|T| = 2,thenletT = {vx,vy}. Sincecol(vx) = col(vy),weknowthatH isaminimally2-coloredg-bowtie 1 with v being an end vertex of the connecting path in H . Delete the edges vx,vy and add vertex u and edges 1 uv,ux,uyinH (seeFigure3(b)). Weobtainag-bowtieH′ inG withδc(H′) ≥ 2. ThusH′,H ,...,H impliesa 1 1 1 1 2 k 2k-feasiblepartitionofG,acontradiction. (cid:3) Claim5. Thereexistsanedgexy∈E(G)suchthatx∈S andy∈S . y x Proof. Supposenot. ThenbyClaim 2 , we canconstructanorientedgraph D byorientingeachedgee = uv ∈ E(G)fromutovifandonlyifv∈S . Thend+(v)≥2foreachvertexv∈V(D). LetT(v)={u:col(uv)=i}. u D i Subclaim1. Foreachvertexv ∈ V(G)andcolorsi, j ∈ col(G)withi , j, if|T(v)| ≥ 2and|T (v)| ≥ 2,thenthe i j followingstatementshold: (a)T(v)∩T (v)=∅andE(T(v),T (v))=∅. i j i j (b)G[T(v)]containsatleastoneedge. i Proof. (a) By the definition, we know that T(v)∩T (v) = ∅. Since |T(v)| ≥ 2 and |T (v)| ≥ 2, we know that i j i j T(v)∪T (v)⊆ S . Letu ∈ T(v)andu ∈T (v). Thencolorsiand jappearsonlyonceatu andu ,respectively. i j v i i j j i j Ifuu ∈ E(G),thenvuu visarainbowtriangle,acontradiction.SowehaveE(T(v),T (v))=∅. i j i j i j (b)SupposethatG[T(v)]isemptyforsomecoloriwith|T(v)| ≥ 2. Thenchooseu ∈ T(v). Wehaveu ∈ S i i i v andv < S . ApplyClaim4touandv,weobtainS ∩N (v) , ∅. Foreachcolori′ ∈ col(G)with|T (v)|≥ 2,by u u G i′ Subclaim1(a)andtheassumptionthatG[T(v)]isempty,wehaveE(u,T (v))=∅. Notethat i i′ N+(v)= T (v). D i′ |Ti′(v)|≥[2,i′∈col(G) WehaveN (u)∩N+(v)=∅.RecallthatS ∩N (v),∅andS ⊆ N (u).Theremustexistavertexx∈S ∩N−(v). G D u G u G u D ItiseasytocheckthatC = xuvxisarainbowtriangleinG,acontradiction. (cid:3) Subclaim2. Foreachvertexv∈V(G),thereisexactlyonecolori∈col(G)suchthat|T(v)|≥2. i Proof. Givenavertexv,byClaim1,wecanfindavertexu ∈ S . BytheassumptionofG,wehavev < S . Let v u i = col(uv). Then |T(v)| ≥ 2. This impliesthatfor each vertexv ∈ V(G), there is at least one colori ∈ col(G) i such that |T(v)| ≥ 2. Now, suppose to the contrarythat there exists a vertex v ∈ V(G) and colors i, j ∈ col(G) i withi, jsatisfying|T(v)|≥2and|T (v)|≥2. BySubclaim1,wecanchooseedgesuw fromG[T(v)]andu w i j i i i j j fromG[T (v)]. LetF =G[v,u,w,u ,w ]. Thenδc(F)≥2. Nowwewilldiscussontheminimumcolordegreeof j i i j j G−F. Ifδc(G−F)≥g(k−1),thenbytheassumptionofG,G−Fhasa2k−1-feasiblepartition.TogetherwithG[V(F)], weobtaina2k-feasiblepartitionofG,acontradiction. Sowehaveδc(G−F) < g(k−1). Let x ∈ V(G−F)bea vertexsatisfyingdc (x)=δc(G−F). Sinceδc(G)≥g(k)≥g(k−1)+3and|F|=5,wehave G−F 4≤|col(x,F)|≤5. 5 Forverticesa∈{u,w}andb∈{u ,w },if|col(x,{a,b,v})|≥3,thenitiseasytocheckthateitherxavxorxbvx i i j j isarainbowtriangle,acontradiction. Sowehave|col(x,{a,b,v})|≤ 2. Notethat|col(x,F)|≥ 4. Thisforcesthat vx < E(G)and|col(x,{u,w,u ,w })| = 4. ThusC = xuvu x isa rainbowcycleoflength4. Supposethatthere i i j j i j existsavertexy∈V(G−C)suchthatdc (y)<g(k−1). Then|col(y,C)|≥4. Notethatu,u ∈S . Thuseither G−C i j v yuvyor yu vy is a rainbowtriangle, a contradiction. Hence we have δc(G−C) ≥ g(k−1). By the assumption i j ofG,thegraphG−C hasa2k−1-feasiblepartition. TogetherwithG[V(C)],wegeta2k-feasiblepartitionofG,a contradiction. (cid:3) Subclaim2impliesthatthereareatleastg(k)−1colorsappearonlyonceatvforeachvertexv∈V(G). Thus, we have δ−(D) ≥ g(k)−1 ≥ f(k). So D containsk disjoint directedcycles, which correspondto k disjointPC cyclesinG,acontradiction. (cid:3) Claim6. Foreachedgexy∈E(G)satisfyingx∈S andy∈S ,wehave y x (a)|Nc(x)∪Nc(y)−col(xy)|≤g(k)−1,and G G (b) N (x) −y = N (y)− x = {v : 1 ≤ i ≤ g(k)− 1}, where col(xv) = col(yv) and col(xv) , col(xv ) for G G i i i i j i, j∈[1,g(k)−1]withi, j. Proof. (a)SinceGcontainsnorainbowtrianglesandcol(xy)appearsonlyonceatxandy,respectively.wehave col(xu) = col(yu)forallu ∈ N (x)∩N (y). NowletG′ =G/xy. ThenG′ iswelldefinedanddc (v) = dc(v)for G G G′ G allverticesinV(G)\{x,y}.Letzbethenewvertexresultedbycontractingtheedgexy. Supposethat|Nc(x)∪Nc(y)−col(xy)|≥g(k),thendc (z)≥g(k).Thuswehaveδc(G′)≥g(k). Bythechoice G G G′ of G, we know that G′ must admit a 2k-feasible partition. By Theorem 1.2, G′ contains k disjoint subgraphs H ,H ,...,H such that H (i = 1,2,...,k) is either a PC cycle or a minimally 2-colored g-bowtie without 1 2 k i containingPCcycles. Ifz< k V(H),thenH ,H ,...,H arek-disjointsubgraphsofG. Thisimpliesa2k-feasiblepartitionofG, i=1 i 1 2 k acontradiSction.Sowecanassumethatz∈V(H1). Apparently,2≤dH1(z)≤4. Ifd (z) = 2,thenlet N (z) = {u,v}(seeFigure2). Ifu,v ∈ N (x),thenreplacezwith x. Ifu ∈ N (x)and H1 H1 G G v < N (x),thenreplacethepathuzvwithuxyv. Inallcases,wecantransformH intoagraphH′ ⊆ G suchthat G 1 1 δc(H′) ≥ 2 andV(H′)∩V(H) = ∅ fori = 2,3...,k. Thus H′,H ,...,H implythe existenceofa 2k-feasible 1 1 i 1 2 k partitionofG,acontradiction. u v u v u, v ∈ NG(x) x z u∈NG(x),v6∈N u v G(x) x y Fig.2: d (z)=2 H1 Ifd (z) = 3,then H mustbeaminimally2-coloredg-bowtiewithzbeinganend-vertexoftheconnecting H1 1 path. LetN (z)={u,v,w}withu,vonasamecycleinH (seeFigure3). If{u,v,w}⊆ N (x),thenreplacezwith H1 1 G x. If{u,v} ⊆ N (x)andw < N (x), thenreplacezw with xyw. If{u,w} ⊆ N (x) andv < N (x), thenreplacezv G G G G with xyv. Constructionsoftheremainingcasesaresimilar. Finally,inallcases,wecantransformH intoagraph 1 H′ ⊆Gsuchthatδc(H′)≥2andV(H′)∩V(H)=∅fori=2,3...,k. ThusH′,H ,...,H impliesa2k-feasible 1 1 1 i 1 2 k partitionofG,acontradiction. If d (z) = 4, then H is a minimally 2-colored g-bowtie with two cycles overlapped on the vertex z. Let H1 1 N (z) = {u,v,u′,v′} with u,v on one cycle and u′,v′ on the other cycle (see Figure 4). If {u,v,u′,v′} ⊆ N (x), H1 G thenreplacezwith x. If{u,v,u′}⊆ Nc(x)andv′ < Nc(x),thenreplacethepathzv′with xyv′. If{u,v}⊆ Nc(x)and {u′,v′}∩Nc(x)=∅,thensplitzintotheedgexysuchthattheresultinggraphisstillag-bowtie. If{u,u′}⊆ Nc(x) and{v,v′}∩Nc(x) = ∅,thensplitzintotheedge xy inanorthogonaldirectionsuchthattheresultinggraphisa cyclewithonechordxy. Constructionsoftheremainingcasesaresimilar. Finally,inallcases,wecantransform 6 u N G(x ) x w ∈ u, v, w v u u z w u,v∈NG(x),w6∈NG(x) x w y v v u,w ∈ NG(x),v6∈N xu w G(x) y v Fig.3: d (z)=3 H1 u u′ z v v′ u,v, u′,v′ ∈ N G(xu,)v,′u∈′vN6∈G(xN)G(x) u,v′6∈′uN,vG(∈NG(x)v,uv,′u6∈′N∈GN(xG)(x) u u′ u u′ ux)u′ u u′ x x x x y v y v v′ v yv′ v′ v v′ Fig.4: d (z)=4 H1 H into a graph H′ ⊆ G such that δc(H′) ≥ 2 and V(H′)∩V(H) = ∅ for i = 2,3...,k. Thus H′,H ,...,H 1 1 1 1 i 1 2 k impliesa2k-feasiblepartitionofG,acontradiction. (b)ByClaim6(a)andthefactthatdc(x),dc(y)≥g(k),wehaveNc(x)=Nc(y)anddc(x)=dc(y)=g(k).For G G G G G G eachcolor j∈ Nc(x)and j,col(xy),sinceG isastarandthecolor jappearsatxandy,weknowthatx,ymust G j beleafverticesofG . Letv bethecenterofG . Theproofiscomplete. (cid:3) j j j Nowlet{x,y}∪{v : 1 ≤ i ≤ g(k)−1}bethesetofverticesdescribedinClaim6. Withoutlossofgenerality, i letcol(xv) = ifori ∈ [1,g(k)−1]. Let H be thesubgraphofG inducedby{x,y}∪{v : 1 ≤ i ≤ g(k)−1}and i i R=G−H. Claim7. For1≤i≤g(k)−1,col(v,S )={i}. i vi Proof. Supposetothecontrarythatthereexistsavertexu ∈ S suchthatcol(uv) , i. Ifu = v forsome jwith vi i j 1 ≤ j ≤ g(k)−1and j , i,thencol(uv) = j(since xvv xisnotarainbowtriangle). Sincethecolor jappearsat i i j least2timesatv (=u),weknowthatu<S ,acontradiction.NowthevertexumustbelongtoV(R). Sinceeach j vi G (1≤ j≤g(k)−1)isastarandcol(uv),i,wehavecol(uv)<[1,g(k)−1].Ifv ∈S ,thenbyapplyingClaim j i i i u 6 to the edgeuv, we have N (u)−v = N (v)−u. Since x ∈ N (v), we have x ∈ N (u), namely,u ∈ N (x), i G i G i G i G G a contradiction. So we have v < S . ApplyingClaim 4 to uv, we obtain a vertex v ∈ S ∩N (v). Note that i u i u G i col(uv) < [1,g(k)−1]andGcontainsnorainbowtriangle,wehavev ∈ R−u. LetF = G[x,y,v,u,v]. Itiseasy i i tocheckthatδc(F)≥2. Wewillshowthatforeachvertexz∈G−F,|col(z,F)|≤3.Forz∈R∩(G−F),theassertionholdssincezhas noneighborto xory. Thuswemayassumethatz = v forsome jwith1 ≤ j ≤ g(k)−1and j , i. Ifzv < E(G) j i orcol(zv) = j, thenwe havethe desiredconclusion. Sowe mayassumethatzisadjacentto v andcol(zv) = i i i i (otherwise, zxvz is a rainbowtriangle). Since thereis no rainbowtriangleandG is a star, we can easily check i i thatzu< E(G).Sozsatisfiesthedesiredproperty. 7 Now,δc(G−F)≥g(k)−3≥g(k−1). SoG−F admitsa2k−1-feasiblepartition. TogetherwithG[V(F)],we obtaina2k-feasiblepartitionofG,acontradiction. (cid:3) Claim8. Thereexistsavertexv with1≤i≤g(k)−1suchthatS ={x,y}. i vi Proof. Suppose not. Then there exists a vertex u ∈ S \{x,y} for all i with 1 ≤ i ≤ g(k)− 1. By Claim 7, i vi col(uv)=ifor1≤i≤g(k)−1. LetG′ =G−{x,y}. Thenδc(G′)≥δc(G)≥g(k). BythechoiceofG,thegraph i i G′mustadmita2k-feasiblepartition,whichimpliesthatGhasa2k-feasiblepartition,acontradiction. (cid:3) Wearenowinapositiontoprovethetheorem. Letv bethevertexinClaim8. Sincedc(v) ≤ g(k)−1and i H i dc(v)≥g(k),thereisavertexu∈R∩N (v). Notethatu<S . ByClaim2,wehavev ∈S . NowapplyClaim G i G i vi i u 4totheedgeuv,wehaveS ∩N (u),∅. Thisimpliesthateitherx∈N (u)ory∈N (u),acontradiction. i vi G G G ThiscompletestheproofofTheorem1.4. (cid:3) 4 Proof of Theorem 1.7 Lemma1. Letk,x ,x ,...,x bepositiveintegersand x anon-negativeintegerwith0 ≤ x ≤ k. Let{vj : 1 ≤ 1 2 k 0 0 2 i i ≤ k,1 ≤ j ≤ x}be asetof k x verticessuchthateachvertex vj is coloredbyi. Dividetheseverticesinto i i=1 i i twosetsS andT,randomlyanPdindependently,with Pr(vj ∈ S) = Pr(vj ∈ T) = 1. Let P (x ,x ,...,x )bethe i i 2 S 0 1 k probabilityoftheeventthatthereareatmostx (0≤ x ≤ k)differentlycoloredverticesinS. Then 0 0 2 x0 k 1 P (x ,x ,...,x )≤ ( )k. (4.1) S 0 1 k j! 2 Xj=0 →− Proof. For convenience,we say a vector x = (x ,x ,x ,...,x ) is goodif k,x ,x ,...,x are positiveintegers 0 1 2 k 1 2 k andx isanon-negativeintegerwith0≤ x ≤ k. ProvingLemma1isequivalenttoverifyInequation(4.1)forall 0 →− 0 2 →− →− →− goodvectors.Forgoodvectors x =(x ,x ,...,x )and y =(y ,y ,··· ,y ),wesay x < y if(a)or(b)holds. 0 1 k 0 1 k′ (a)k<k′. (b)k=k′andthereexistst∈[1,k]suchthatx <y andx =y foralliwith0≤i<t. t t i i →− NowwewillproveInequation(4.1)foreverygoodvector x =(x ,x ,...,x ). 0 1 k Byinduction. First,itiseasytocheckthatInequation(4.1)holdsinthefollowingthreecases: (1) x =0;(2) 0 k = 1;(3) x = 1foralliwith1 ≤ i ≤ k. Nowassumethat x ≥ 1,k ≥ 2, x ≥ 2forsomeiwith1 ≤ i ≤ k,and i 0 i →− →− →− eachgoodvector y with y < x satisfiesInequation(4.1). Considerthevertexv1. Wehave i →− P (x)= Pr(v1 ∈T)P (x ,x ,...,x ,x −1,x ,...,x )+Pr(v1 ∈S)P (x −1,x ,...,x ,x ,...,x ). S i S 0 1 i−1 i i+1 k i S 0 1 i−1 i+1 k →− →− →− Let y =(x ,x ,...,x ,x −1,x ,...,x )and z =(x −1,x ,...,x ,x ,...,x ). Itiseasytoseethat y and 0 1 i−1 i i+1 k 0 1 i−1 i+1 k →− →− →− →− z aregoodvectorswith y, z < x. Byinductionhypothesis,wehave →− x0 k 1 P (y)≤ ( )k S j! 2 Xj=0 and P (→−z)≤ x0−1 k−1 (1)k−1. S j ! 2 Xj=0 8 Thus,wehave P (→−x) ≤ 1 x0 k (1)k+ 1 x0−1 k−1 (1)k−1 S 2 j! 2 2 j ! 2 Xj=0 Xj=0 1 x0 k 1 x0 k−1 1 = ( )k+ ( )k 2 j! 2 j−1! 2 Xj=0 Xj=1 1 x0 k 1 x0 j k 1 = ( )k+ ( )k 2 j! 2 k j! 2 Xj=0 Xj=1 1 x0 k 1 x x0 k 1 ≤ ( )k+ 0 ( )k 2 j! 2 k j! 2 Xj=0 Xj=1 1 x x0 k 1 < ( + 0) ( )k 2 k j! 2 Xj=0 x0 k 1 ≤ ( )k j! 2 Xj=0 Theproofiscomplete. (cid:3) ProofofTheorem1.7. Proof. Assume V(G) = {1,2,··· ,n}. We divide V(G) into two disjoint parts A,B randomlywith Pr(i ∈ A) = Pr(i ∈ B) = 1 for each vertex i ∈ V(G). For each vertex i ∈ A, the bad event A means that for vertex i, 2 i {dc (i)≤a−1}. ByLemma1,wehave G[A] a−1 dc(i) 1 dGc(i) dc(i) 1 Pr(Ai)≤ Gj !(2)dGc(i) = Gj !(2)dGc(i) = Pr(X ≥dGc(i)−a+1), Xj=0 j=dcX(i)−a+1 G whereX ∼ B(dc(i),1). G 2 RecallthatChernoff’sbound:Pr[X−E(X)≥nǫ]<e−2nǫ2,whereX ∼ B(n,1). Weget 2 Pr(X ≥dGc(i)−a+1)= Pr(X− dGc2(i) ≥ dGc2(i) −a+1)<e−2(dGc2(i)−a+1)2/dGc(i). Sincedc(i)≥δc(G)>2(a−1),wehave G Pr(Ai)<e−2(dGc2(i)−a+1)2/dGc(i) ≤e−2(δc2(G)−a+1)2/δc(G). Similarly,foreachvertex j∈ B,thebadeventBjmeansthat{dGc[B](j)≤b−1}andPr(Bj)<e−2(δc2(G)−b+1)2/δc(G) ≤ e−2(δc2(G)−a+1)2/δc(G). So Pr(( Ai)∪( Bj))≤ Pr(Ai)+ Pr(Bj)<ne−2(δc2(G)−a+1)2/δc(G). [i∈A [j∈B Xi∈A Xj∈B Ifne−2(δc2(G)−a+1)2/δc(G) ≤ 1,whichmeans1−Pr[( Ai)∪( Bi)] > 0,then δc(2G) −2(a−1)+ 2δ(ac−(G1))2 ≥ lnn. The i∈A i∈B lastinequalityholdsbytheconditionthatδc(G) ≥S2lnn+4S(a−1). Thusthereexistsapartitionsuchthatneither eventA norB happens.Sowehavean(a,b)-feasiblepartition. (cid:3) i i 9 5 From (a,2)-feasible partitions to Bermond-Thomassen’s conjecture Firstly,wegivetheproofofThorem1.5. ProofofTheorem1.5. Inordertoprovethetheorem,weusethefollowingfact. Lemma2. [5]Inanyrainbowtriangle-freecoloringofacompletegraph,thereexistsavertexpartition(V ,V ...,V) 1 2 t ofV(K )witht≥2suchthatbetweentheparts,thereareatotalofatmosttwocolorsand,betweeneverypairof n partsV,V withi, j,thereisonlyonecolorontheedges. i j IfK containsarainbowtriangleC,thenletA =C andB = K −C. Itfollowsthatδc(A) ≥ 2andδc(B)≥ a. n n So(A,B)isan(a,2)-feasiblepartition.NowweassumethatK containsnorainbowtriangle.UtilizingLemma2, n wecaneasilyfindan(a,2)-feasiblepartition.ThusTheorem1.5holds. (cid:3) Inthissection, wewillpointouta relationshipbetween(a,2)-feasiblepartitionsin edge-coloredgraphsand Bermond-Thomassen’sconjectureindigraphs. Infact,Bermond-Thomassen’sconjecturehasnotevenbeencon- firmed in multi-partite tournaments. Recently, Li et al. [7] revealed a relationship between PC cycles in edge- coloredcompletegraphsandBermond-Thomassen’sconjectureonmulti-partitetournaments. Weprovethefollowingproposition. Proposition3. Fork≥1letd ,...,d bepositiveintegers,andlet f(d ,d ,...,d ),g(d ,d ,...,d )andh(d ,d ,...,d ) 1 k 1 2 k 1 2 k 1 2 k betheminimumvalueswhichmakethefollowingthreestatementstrue: (1)EveryorientedgraphDwithδ+(D)≥ f(d ,d ,...,d )hasavertex-partition(V ,V ,...,V )withδ+(D[V])≥ 1 2 k 1 2 k i d fori=1,2,...,k. i (2)Everyedge-coloredgraphGwithδc(G)≥g(d ,d ,...,d )hasa(d ,d ,...,d )-feasiblepartition. 1 2 k 1 2 k (3)Everyedge-coloredcompletegraphKwithδc(K)≥h(d ,d ,...,d )hasa(d ,d ,...,d )-feasiblepartition. 1 2 k 1 2 k Thenwehave f(d −1,d −1,...,d −1)≤g(d ,d ,...,d )≤h(d +1,d +1,...,d +1). 1 2 k 1 2 k 1 2 k Proof. Given an oriented graph D, we construct an edge-colored graph G with V(G) = V(D), E(G) = {uv : uv ∈ A(D)orvu ∈ A(D)} and col (uv) = v if and only if uv ∈ A(D). If δ+(D) ≥ g(d ,d ,··· ,d ), then by G 1 2 k the construction, we know that δc(G) ≥ g(d ,d ,··· ,d ). Thus, G admits a partition V ,V ,...,V such that 1 2 k 1 2 k δc(G[V])≥d fori=1,2,...,k. Inturn,bytheconstruction,wehaveδ+(D[V])≥d −1fori=1,2,...,k. Recall i i i i thedefinitionoffunction f. Weknowthat f(d −1,d −1,...,d −1)≤g(d ,d ,...,d ). 1 2 k 1 2 k Givenanedge-coloredgraphG,weconstructanedge-coloredcompletegraphKwithV(K)=V(G),col (e)= K col (e)foralle∈E(G),col (e)=c foralle∈ E(K)\E(G)andc <col(G).Ifδc(G)≥h(d +1,d +1,...,d +1), G K 0 0 1 2 k thenδc(K)≥h(d +1,d +1,...,d +1).Bythedefinitionofh,weknowthatthereexistsapartitionV ,V ,...,V 1 2 k 1 2 k of K such that δc(K[V]) ≥ d + 1 for i = 1,2,...,k. By the construction of K, we have δc(G[V]) ≥ d for i i i i i=1,2,...,k. Recallthedefinitionofg. Weknowthat g(d ,d ,...,d )≤h(d +1,d +1,...,d +1). 1 2 k 1 2 k (cid:3) Remark 1. The existence of f(d ,d ,...,d ) for d ≥ 2 (i = 1,2,...,k) and k ≥ 2 is still unknownaccording 1 2 k i to [1]. Proposition 3 implies that we could show the existence of f(d ,d ,...,d ) by proving the existence of 1 2 k g(d +1,d +1,...,d +1)orh(d +2,d +2,...,d +2). 1 2 k 1 2 k 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.