ebook img

Decoherence-free creation of atom-atom entanglement in cavity via fractional adiabatic passage PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decoherence-free creation of atom-atom entanglement in cavity via fractional adiabatic passage

Decoherence-free creationofatom-atom entanglement incavityvia fractionaladiabaticpassage Mahdi Amniat-Talab1,2,∗ Ste´phane Gue´rin1,† and Hans-Rudolf Jauslin1‡ 1LaboratoiredePhysique,UMRCNRS5027, Universite´ deBourgogne, B.P.47870, F-21078Dijon,France. 2Physics Department, Faculty of Sciences, Urmia University, P.B.165, Urmia, Iran. (Dated:February1,2008) We propose a robust and decoherence insensitive scheme to generate controllable entangled states of two three-levelatomsinteractingwithanopticalcavityandalaserbeam. Lossesduetoatomicspontaneoustransi- tionsandtocavitydecayareefficientlysuppressedbyemployingfractionaladiabaticpassageandappropriately designed atom-fieldcouplings. Inthisschemethetwoatomstraversethecavity-mode andthelaserbeamin opposite directionsas opposed to other entanglement schemes inwhichtheatoms arerequired tohavefixed locationsinsideacavity.Wealsoshowthatthecoherenceofatravelingatomcanbetransferredtotheotherone withoutpopulatingthecavity-mode. 5 0 PACSnumbers:42.50.Dv,03.65.Ud,03.67.Mn,32.80.Qk 0 2 Thephysicsofentanglementprovidesthebasisofapplica- gates[6,7,8,9,10]usingopticalcavitieshavebeenproposed. n tions such as quantum information processing and quantum Toavoiddecoherenceeffects,itismostconvenienttodesign a communications. Particles can then be viewed as carriersof transferstrategiesthatdonotpopulatethedecoherencechan- J quantumbitsofinformationandtherealizationofengineered nelsduringthetime-evolutionofthesystem. 6 2 entanglementisanessentialingredientoftheimplementation Inthispaperweproposeanalternativewaytoentangletwo ofquantumgates[1], cryptography[2] andteleportation[3]. travelingatomsinteractingwith an opticalcavity anda laser 1 Thecreationoflong-livedentangledpairsofatomsmaypro- beam,basedon3-levelinteractionsinaΛ-configuration.This v videreliablequantuminformationstorage. Theideaistoap- methodisbasedonthe coherentcreationof superpositionof 4 plyasetofcontrolledcoherentinteractionstotheatomsofthe atom-atom-cavitystatesviafractionalstimulatedRamanadi- 5 system inordertobringthemintoa tailoredentangledstate. abatic passage (f-STIRAP) [11], that keeps the cavity-mode 1 Theproblemofcontrollingentanglementisthusdirectlycon- and the excited atomic states unpopulated during the whole 1 0 nectedtotheproblemofcoherentcontrolofpopulationtrans- interaction. In Ref. [12], using f-STIRAP and a one-atom 5 ferinmultilevelsystems. dark state, a robust scheme to generate atom-atomentangle- 0 InthecontextofcavityQED,oneofthemainobstaclesto mentwasproposed,wherethetwotravelingatomsencounter h/ realize atom-atomentanglementis the decoherenceresulting thecavity-modeonebyone.Here,thetwoatomsentersimul- p fromthecavitydecay. Additionally,thecavitycouplestoan taneouslyintothecavityinsuchawaythatthesystemfollows - excited state of the atom that undergoes spontaneous emis- a two-atomdark state that allowsusto keepadditionallythe t n sion. Regardingthese considerations,in recentyearsseveral cavity-modeempty. a schemesto entangleatoms[4, 5] andtoimplementquantum WeconsiderthesituationdescribedinFig.1,wherethetwo u atomsmoveinplanesorthogonaltothezaxisasfollows: q : z = z , x = x +v tcosθ , y = y +v tsinθ , v atom1 1 0 1 − 0 1 1 1 − 0 1 1 i z = 0, x =x +v (t τ)cosθ , X z0 2 2 0 2 − 2 y = y +v (t τ)sinθ , (1) ar x0 2 − 0 2 − 2 cavity field where(x ,y ,z ),i=1,2arethecoordinatesofthei-thatom i i i (x ,y > 0), τ is the time-delay of the second atom with 0 0 d z laser beam respect to the first one, θ is the angle that the i-th atom i x constructs with the positive direction of the x axis (θ1 0 ∈ [0,π/2[, θ ]π/2,π]),andv isthevelocityofthei-thatom. 2 i ∈ Sincethelaserfieldpropagatesindirectionofthey axis,the atom2 time-dependentoptical phase of the laser field seen by each x atomis ϕ (t)=ω t kv tsinθ , ϕ (t τ)=ω t kv (t τ)sinθ , FIG.1: Geometricalconfigurationoftheatoms-cavity-lasersystem 1 L 1 1 2 L 2 2 − − − − intheproposedscheme.Thepropagationdirectionofthelaserbeam (2) isparalleltoyaxisandperpendiculartothepage. where k is the wavevectormagnitudeof the laser field. Fig- ure 2 represents the linkage pattern of the atom-cavity-laser system.ThelaserpulseassociatedtotheRabifrequencyΩ(t) couplesthestates g and e ,andthecavity-modewithRabi 1 | i | i frequencyG(t)couplesthestates e and g . TheRabifre- ∗Electronicaddress:[email protected] | i | 2i †Electronicaddress:[email protected] quenciesΩ(t) and G(t) are chosenreal withoutloss of gen- ‡Electronicaddress:[email protected] erality. These two fields interact with the atom with a time 2 |e,0> |e,0> bewrittenas(¯h=1) Ω G Ω G 1 1 2 2 |ag1 t,o0>m1−cav|git2 ,y1> |ag1 t,o0>m2−cav|gi2 ,t1y> H(t) = iX=1,2(cid:2)ωe|eiiihe|+(cid:0)Gi(t)a|eiiihg2|+H.c.(cid:1) + Ω (t)eiϕi(t) g e +H.c. +ω a†a, (4) |e , g2 , 0> |g2 , e , 0> i | 1iiih | C (cid:0) (cid:1)(cid:3) Ω G G Ω 1 1 2 2 wherethesubscriptionthestatesdenotesthetwoatoms,ais |g1 , g 2, 0> atom1−a|gt2 o, gm2 , 21>−cavity|g2 , g 1, 0> othfethaennaithoimlaitcioenxocpiteerdatsotratoef(tωheca=vitωymo=de0,)ω,eanisdthωeenisertghye g1 g2 C frequencyofthecavitymodetakingresonantω =ω =ω C L e FIG.2: Linkagepatternofthesystemcorrespondingtotheeffective whichimplieskv sinθ ω . Inthefollowingweconsider i i L Hamiltonian. the state of the atom1-a≪tom2-cavity system as A1,A2,n | i where A1,A2 = g ,e,g , and n = 0,1 is the number 1 2 { } { } ofphotonsinthecavity-mode. delay, each of the fields is in one-photonresonancewith the respective transition. The semiclassical Hamiltonian of this Regarding Figure 2, the subspace generated by the S systemintheresonantapproximationwhere states g1,g2,0 , e,g2,0 ,g2,g2,1 , g2,e,0 ,g2,g1,0 is {| i | i| i | i| i} decoupled under H from the rest of the Hilbert space of Ω , G ω ,ω , ∂ϕ /∂t, ∂ϕ /∂t, (3) the system. If we consider the initial state of the system as 0 0 e C 1 2 | | | |≪ | | | | g ,g ,0 , the Hamiltonian of the system in the subspace 1 2 | i S withΩ ,G thepeakvaluesoftheRabifrequencies,canthen willbe 0 0 0 Ω (t)e+iϕ1(t) 0 0 0 1  Ω (t)e−iϕ1(t) ω G (t) 0 0  1 e 1 H (t):=PHP = 0 G (t) ω G (t τ) 0 , (5) P  1 C 2 −   0 0 G (t τ) ω Ω (t τ)e−iϕ2(t−τ)   2 − e 2 −   0 0 0 Ω (t τ)e+iϕ2(t−τ) 0   2 −  whereP istheprojectoronthesubspace . TheeffectiveHamiltonianisthusgivenby S 0 Ω (t) 0 0 0 1 Ω (t) kv sinθ G (t) 0 0 ∂R  1 1 1 1  Heff :=R†H R iR† = 0 G (t) kv sinθ G (t τ) 0 , (6) P 1 1 1 2 − ∂t  0 0 G (t τ) kv si−nθ Ω (t τ)   2 − 1 1 2 −   0 0 0 Ω (t τ) k(v sinθ v sinθ )  2 − 1 1− 2 2  wheretheunitarytransformationRis mericsshowsthat,inpractice,thecondition(8)issatisfiedfor ∆ < Ω ,G /100. Assuming thisconditionallowsone to 1 0 0 0 0 con∼sid{er0∆ 0}kv sinθ 0 in Eq. (8), if we additionally  0 e−iϕ1(t) 0 0 0  assumev ∼v 1 v. In1t∼hiscaseτ isthedelayofarrivalat R= 0 0 e−iϕ1(t) 0 0 . 1 ∼ 2 ≡ thecenterofthecavity(x = y = 0)ofthesecondatomwith    0 0 0 e−iϕ1(t)  respecttothefirstone.    0 0 0 0 e−i[ϕ1(t)−ϕ2(t−τ)]  Thesystemistakentobeinitiallyinthestate g ,g ,0 ,  (7) | 1 2 i The dynamicsof the system is governedby the Schro¨dinger Φ(ti) = g1,g2,0 . (9) | i | i equationi∂ Φ(t) =Heff(t)Φ(t) . ∂t| i | i The goal is to transform it at the end of interaction into an An essential condition for the STIRAP and f-STIRAP atom-atomentangledstate processes is the four-photon resonance between the states |g1,g2,0iand|g2,g1,0iwhichmeans: |Φ(tf)i = cosϑ|g1,g2,0i+sinϑ|g2,g1,0i |∆:=k(v1sinθ1−v2sinθ2)|≪|Ω0|,|G0|. (8) = (cosϑ|g1,g2i+sinϑ|g2,g1i)|0i, (10) This condition can be achieved by controlof the velocity of where ϑ is a constant mixing angle (0 ϑ π/2), and ≤ ≤ atoms, andof the deflectionanglesof the atomsθ . Nu- the cavity-mode state factorizes and is left in the vacuum i=1,2 3 state. The qubits are stored in the two degenerate ground states of the atoms. The decoherence due to atomic sponta- 10 neousemissionisproducedifthestates e,g ,0 , g ,e,0 8 0.4 are populated, and the cavity decay {o|ccur2s iif |th2e stait}e m)6 • 0.3 µ g2,g2,1 is populated during the adiabatic evolution of the d (4 0.2 | i system. Therefore we will design the Rabi frequencies 2 0.1 Ω (t),G (t),Ω (t),G (t) in our scheme such that these 0 { 1 1 1 2 } 0 5 10 z (1µ5 m) 20 25 30 statesarenotpopulatedduringthedynamics. 0 One of the instantaneous eigenstates (the two-atom dark 10 0.6 state) of Heff(t) which corresponds to a zero eigenvalue is 8 0.5 [10] m)6 • 0.4 µd ( 4 00..23 D(t) = C G1Ω2 g1,g2,0 Ω1Ω2 g2,g2,1 2 0.1 | i (cid:16) | i− | i 0 0 5 10 15 20 25 30 + G2Ω1 g2,g1,0 , (11) z0 (µ m) | i(cid:17) where C is a normalization factor. The possibility of FIG. 3: Top panel: contour plot at the final time tf of |12 − decoherence-free generation of atom-atom entanglement P|g1,g2,0i(tf)| as a function of z0 and d (black areas correspond to approximately half population transfer) with the pulse parame- arisesfromthefollowingbehaviorofthedarkstate: ters as WL = 20µm, WC = 40µm, v = 2 m/s, λ = 780nm, tl→imti ΩΩ12((tt)) =0, |D(ti)i∼|g1,g2,0i (12a) sPΩu|0mg2=,go2f2,10tihW(evtLffi),na+Gl0pPo=|gp2u,1lea0,0t0iioW(ntvsCf).inwBihonetttreoermmbelpadacinkaetela:rseTtaahsteecssoaPrmr|eees,pgp2ol,no0dti(fttoofr)athp+e- proximatelyzeropopulation.Thewhitedotshowsspecificvaluesof Ω (t) lim 1 =tanϑ, z0anddusedinFig.4toobtainahalf-STIRAPprocess. t→tf Ω2(t) D(t ) cosϑg ,g ,0 +sinϑg ,g ,0 (12b) f 1 2 2 1 | i∼ | i | i velocityv(onthey =0planeatz =z line)throughanopti- 0 calcavityinitiallyinthevacuumstate 0 andthenencounters ti <t<tf, G1(t)∼G2(t)≫Ω1(t),Ω2(t), the laser beam, whichis parallelto th|eiy axis(orthogonalto D(t) Ω2(t)g1,g2,0 +Ω1(t)g2,g1,0 . (12c) thecavityaxisandthetrajectoryoftheatom).Thelaserbeam | i∼ | i | i is resonant with the e g transition. The distance be- Equations(12a)and(12b)areknownasf-STIRAPconditions | i ↔ | 1i tween the center of the cavity and the laser axis is d. The [11, 12], and the condition (12c) guarantees the absence of second atom, synchronized with the first one τ = 0, moves populationinthestate g ,g ,1 duringthetime-evolutionof | 2 2 i with the same velocity v on the y = 0 plane at z = 0 in thesystem[13, 14]. Equation(12b)meansthattheRabifre- theoppositedirectionwithrespecttothefirstatom. Thetrav- quencies fall off in a constant ratio, during the time interval eling atoms encounter the time-dependentand delayed Rabi where they are non-negligible. We remark that this formu- frequenciesofthecavity-modeandthelaserfieldsasfollows lation opens up the possibility to implement f-STIRAP with Gsuacuhssaiapnulpsuelsseesq.ueTnhcee cgaonalbiendtehseigfnoelldowininagcaisvittoysbhyowantahpa-t G1(t) = G0e−(vt)2/WC2 cos 2πz0 , (15a) (cid:18) λ (cid:19) propriatechoiceoftheparameters. In an optical cavity, the spatial variation of the atom-field Ω1(t) = Ω0e−z02/WL2 e−(vt−d)2/WL2, (15b) coupling for the maximum coupling TEM00 mode, resonant G2(t) = G0e−(vt)2/WC2, (15c) withthe e g atomictransition,isgivenby | i↔| 2i Ω2(t) = Ω0e−(vt+d)2/WL2 (15d) G(x,y,z)=G0e−(x2+y2)/WC2 cos 2πz , (13) wherethetimeoriginisdefinedwhentheatomsmeetthecen- (cid:18) λ (cid:19) ter of the cavity at x = y = 0. The appropriate values of where WL is the waist of the cavity mode, and G0 = z0 and d that lead to the f-STIRAPprocesscan be extracted µ ωC/(2ǫ0Vmode)withµandVmoderespectivelythedipole from a contour plot of the final population P|g1,g2,0i(tf) := −mompentof the atomic transition and the effectivevolume of g1,g2,0Φ(tf) 2 as a function of z0 and d that we calcu- |h | i| thecavitymode. Thespatialvariationoftheatom-lasercou- lated numerically (see Fig. 3). The white dot in Fig. 3 plingforthelaserbeamofFig. 1is showsvaluesofz0anddtoobtainanf-STIRAPprocesswith ϑ π/4(calledhalf-STIRAP).Ithasbeenchosensuchthat Ω(x,z)=Ω0e−(x2+z2)/WL2, (14) at≃theendofinteractionP|g1,g2,0i(tf)≃P|g2,g1,0i(tf)≃0.5, andthe populationsofthe otherstates of the subspace are S whereW is the waist of the laser beam, and Ω = µ /2 zero. L 0 − E with theamplitudeofthelaserfield. Figure1showsasitu- Figure4showsforparametervaluesassociatedtothewhite E ationwherethefirstatom,initiallyinthestate g ,goeswith dot in Fig. 3, (a) the time dependence of the Rabi frequen- 1 | i 4 (a) is split at 50% among the states g ,g ,0 , g ,g ,0 and is MHz)5 G almost zero for the other states o|f1 2duriing| 2the1inteiraction ncies (34 2 G1 tfhoer mGa0xi∼ma3lΩly0a.toTmh-iastocmaseenctoarnrgelsepdoSnstdasteto1/th√e2gegne,rgati,o0n o+f e 1 2 u | i Rabi Freq−01250 −40 −30 −20 Ω−210 Ω10 10 20 30 40 50 |pWgr2o,fi/glv1e,sr0efios(cid:1)prebΩcy(titva)edaliyan,bdtahGtiec(stpu)afofisfscaiwgenied.ttchAosnsTsdLuitmi=oinnWgofGLa/a(cid:0)duvisaasbniaadtnicTpiCtuyls=ies C (b) Ω T ,G T 1. 0 L 0 C 1 P ≫ |g,g,0〉 Thestate g ,g ,0 isstationarystateofthesystem. Ifthe s0.8 1 2 | 2 2 i n secondatomentersinsidethecavitybeforethefirstone(τ < pulatio00..46 0), we can transfer completely the population from the state Po0.2 P|g,g,0〉 |g1d,ugr2i,n0gitthoe|dgy2n,ga1m,i0cisw(sietheoFuitgp.o5p)u.laIntinpgartthiceuolathr,ergisvteantetshoatf 0 2 1 S −50 −40 −30 −20 −10Time0 (µ s)10 20 30 40 50 thefirstatominitiallyispreparedinacoherentsuperposition of the ground states αg +β g , that the second atom is 1 2 | i | i FIG.4:(a)Rabifrequenciesofthecavity-modeandthelaserfieldfor initiallyinthestate g2 , andthatthecavity-modeisinitially | i twoatoms.(b)Timeevolutionofthepopulationswhichrepresentsa inthevacuumstate,atwo-atomSTIRAPwillcoherentlymap two-atomhalf-STIRAP. thissuperpositionontothesecondatom: es (MHz)567 G2 (a) G1 α|g1,g2,0i+β|g2,g2,0i→α|g2,g1,0i+β|g2,g2,0i. (16) nci4 In summary,we haveproposeda robustand decoherence- e bi Frequ123 Ω2 Ω1 ffr-eSeTIsRchAePmetectohngieqnueeraitneΛat-osmys-taetmoms. enTthainsglsecmheemnte, uissinrogbtuhset Ra−060 −40 −20 0 20 40 60 with respect to variations of the velocity of the atoms v, of thepeakRabifrequenciesG ,Ω andofthe fielddetunings, (b) 0 0 1 P|g,g,0〉 but not with respect to the parameters d,z0, describing the s0.8 1 2 relative positionsof the laser beam and the cavity, shown in n atio0.6 Fig. 1. Ourschemecanbeimplementedinanopticalcavity Popul00..24 P|g,g,0〉 cwaivthityGd0ec∼ohκer∼encΓe.isTGhe0n≫eceΩss0awryhiccohndisitsiaotnistfioedsuipnpprerasscttihcee −060 −40 2 1−20 Time0 (µ s) 20 40 60 tfhoerGad0ap∼te3dΩv0al(useeseoFfigds.an4d,5z). Finorthgeivfe-nSTvaIRluAesPopfroWcCes,sWcaLn, 0 be determined from a contour plot of the final populations. FIG.5: (a)Rabi frequencies ofthecavity-modeandthelaserfield Decoherencechannelsare suppressed duringthe whole evo- fortwoatomswiththepulseparametersasv=2m/s,WL=20µm, lutionofthesystem.Inthisscheme,asopposedtothescheme WC = 40µm, λ = 780 nm, Ω0 = 2 MHz, G0 = 6.5 MHz, ofRef. [10],wedonotneedtofixtheatomsinsidetheoptical z0 = 5.5µm, d = 6µm and τ = −9µs. (b) Time evolution of cavitynortoapplytwolaserbeamsforeachoftheindividual thepopulationswhichrepresentsatwo-atomSTIRAP. atoms. M.A-T.wishestoacknowledgethefinancialsupportofthe cies of half-STIRAP for two atoms, and (b) the time evo- MSRTofIranandSFERE.Weacknowledgesupportfromthe lution of the populations which shows that the population ConseilRe´gionaldeBourgogne. [1] A.EkertandR.Jozsa,Rev.Mod.Phys.68,3733(1997). 050302(R)(2002). [2] A.K.Ekert,Phys.Rev.Lett.67,661(1991). [9] X. X. Yi, X. H. Su, and L. You, Phys. Rev. Lett. 90, 097902 [3] C.H.Bennett,G.Brassard,C.Cre´peau,R.Jozsa,A.Peres,and (2003). W.K.Wootters,Phys.Rev.Lett.70,1895(1993). [10] T.Pellizzari,S.A.Gardiner,J.I.Cirac,andP.Zoller,Phys.Rev. [4] M.B.Plenio, S.F.Huelga, A.Beige, andP.L.Knight, Phys. Lett.75,3788(1995). Rev.A59,2468(1999). [11] N.V.Vitanov,K.A.Suominen,andB.W.Shore,J.Phys.B32, [5] A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 90, 127903 4535(1999). (2003). [12] M.Amniat-Talab,S.Gue´rin,N.Sangouard,andH.R.Jauslin, [6] A.Beige,D.Braun,B.Tregenna,andP.L.Knight,Phys.Rev. Phys.Rev.A(inpress),quant-ph/0407233(2005). Lett.85,1762(2000). [13] N.V.Vitanov,Phys.Rev.A58,2295(1998). [7] J.PachosandH.Walther,Phys.Rev.Lett.89,187903(2002). [14] A.M.SteaneandD.M.Lucas,Fortschr.Phys.48,839(2000). [8] E. Jane´, M. B. Plenio, and D. Jonathan, Phys. Rev. A 65,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.