Decoherence-free creationofatom-atom entanglement incavityvia fractionaladiabaticpassage Mahdi Amniat-Talab1,2,∗ Ste´phane Gue´rin1,† and Hans-Rudolf Jauslin1‡ 1LaboratoiredePhysique,UMRCNRS5027, Universite´ deBourgogne, B.P.47870, F-21078Dijon,France. 2Physics Department, Faculty of Sciences, Urmia University, P.B.165, Urmia, Iran. (Dated:February1,2008) We propose a robust and decoherence insensitive scheme to generate controllable entangled states of two three-levelatomsinteractingwithanopticalcavityandalaserbeam. Lossesduetoatomicspontaneoustransi- tionsandtocavitydecayareefficientlysuppressedbyemployingfractionaladiabaticpassageandappropriately designed atom-fieldcouplings. Inthisschemethetwoatomstraversethecavity-mode andthelaserbeamin opposite directionsas opposed to other entanglement schemes inwhichtheatoms arerequired tohavefixed locationsinsideacavity.Wealsoshowthatthecoherenceofatravelingatomcanbetransferredtotheotherone withoutpopulatingthecavity-mode. 5 0 PACSnumbers:42.50.Dv,03.65.Ud,03.67.Mn,32.80.Qk 0 2 Thephysicsofentanglementprovidesthebasisofapplica- gates[6,7,8,9,10]usingopticalcavitieshavebeenproposed. n tions such as quantum information processing and quantum Toavoiddecoherenceeffects,itismostconvenienttodesign a communications. Particles can then be viewed as carriersof transferstrategiesthatdonotpopulatethedecoherencechan- J quantumbitsofinformationandtherealizationofengineered nelsduringthetime-evolutionofthesystem. 6 2 entanglementisanessentialingredientoftheimplementation Inthispaperweproposeanalternativewaytoentangletwo ofquantumgates[1], cryptography[2] andteleportation[3]. travelingatomsinteractingwith an opticalcavity anda laser 1 Thecreationoflong-livedentangledpairsofatomsmaypro- beam,basedon3-levelinteractionsinaΛ-configuration.This v videreliablequantuminformationstorage. Theideaistoap- methodisbasedonthe coherentcreationof superpositionof 4 plyasetofcontrolledcoherentinteractionstotheatomsofthe atom-atom-cavitystatesviafractionalstimulatedRamanadi- 5 system inordertobringthemintoa tailoredentangledstate. abatic passage (f-STIRAP) [11], that keeps the cavity-mode 1 Theproblemofcontrollingentanglementisthusdirectlycon- and the excited atomic states unpopulated during the whole 1 0 nectedtotheproblemofcoherentcontrolofpopulationtrans- interaction. In Ref. [12], using f-STIRAP and a one-atom 5 ferinmultilevelsystems. dark state, a robust scheme to generate atom-atomentangle- 0 InthecontextofcavityQED,oneofthemainobstaclesto mentwasproposed,wherethetwotravelingatomsencounter h/ realize atom-atomentanglementis the decoherenceresulting thecavity-modeonebyone.Here,thetwoatomsentersimul- p fromthecavitydecay. Additionally,thecavitycouplestoan taneouslyintothecavityinsuchawaythatthesystemfollows - excited state of the atom that undergoes spontaneous emis- a two-atomdark state that allowsusto keepadditionallythe t n sion. Regardingthese considerations,in recentyearsseveral cavity-modeempty. a schemesto entangleatoms[4, 5] andtoimplementquantum WeconsiderthesituationdescribedinFig.1,wherethetwo u atomsmoveinplanesorthogonaltothezaxisasfollows: q : z = z , x = x +v tcosθ , y = y +v tsinθ , v atom1 1 0 1 − 0 1 1 1 − 0 1 1 i z = 0, x =x +v (t τ)cosθ , X z0 2 2 0 2 − 2 y = y +v (t τ)sinθ , (1) ar x0 2 − 0 2 − 2 cavity field where(x ,y ,z ),i=1,2arethecoordinatesofthei-thatom i i i (x ,y > 0), τ is the time-delay of the second atom with 0 0 d z laser beam respect to the first one, θ is the angle that the i-th atom i x constructs with the positive direction of the x axis (θ1 0 ∈ [0,π/2[, θ ]π/2,π]),andv isthevelocityofthei-thatom. 2 i ∈ Sincethelaserfieldpropagatesindirectionofthey axis,the atom2 time-dependentoptical phase of the laser field seen by each x atomis ϕ (t)=ω t kv tsinθ , ϕ (t τ)=ω t kv (t τ)sinθ , FIG.1: Geometricalconfigurationoftheatoms-cavity-lasersystem 1 L 1 1 2 L 2 2 − − − − intheproposedscheme.Thepropagationdirectionofthelaserbeam (2) isparalleltoyaxisandperpendiculartothepage. where k is the wavevectormagnitudeof the laser field. Fig- ure 2 represents the linkage pattern of the atom-cavity-laser system.ThelaserpulseassociatedtotheRabifrequencyΩ(t) couplesthestates g and e ,andthecavity-modewithRabi 1 | i | i frequencyG(t)couplesthestates e and g . TheRabifre- ∗Electronicaddress:[email protected] | i | 2i †Electronicaddress:[email protected] quenciesΩ(t) and G(t) are chosenreal withoutloss of gen- ‡Electronicaddress:[email protected] erality. These two fields interact with the atom with a time 2 |e,0> |e,0> bewrittenas(¯h=1) Ω G Ω G 1 1 2 2 |ag1 t,o0>m1−cav|git2 ,y1> |ag1 t,o0>m2−cav|gi2 ,t1y> H(t) = iX=1,2(cid:2)ωe|eiiihe|+(cid:0)Gi(t)a|eiiihg2|+H.c.(cid:1) + Ω (t)eiϕi(t) g e +H.c. +ω a†a, (4) |e , g2 , 0> |g2 , e , 0> i | 1iiih | C (cid:0) (cid:1)(cid:3) Ω G G Ω 1 1 2 2 wherethesubscriptionthestatesdenotesthetwoatoms,ais |g1 , g 2, 0> atom1−a|gt2 o, gm2 , 21>−cavity|g2 , g 1, 0> othfethaennaithoimlaitcioenxocpiteerdatsotratoef(tωheca=vitωymo=de0,)ω,eanisdthωeenisertghye g1 g2 C frequencyofthecavitymodetakingresonantω =ω =ω C L e FIG.2: Linkagepatternofthesystemcorrespondingtotheeffective whichimplieskv sinθ ω . Inthefollowingweconsider i i L Hamiltonian. the state of the atom1-a≪tom2-cavity system as A1,A2,n | i where A1,A2 = g ,e,g , and n = 0,1 is the number 1 2 { } { } ofphotonsinthecavity-mode. delay, each of the fields is in one-photonresonancewith the respective transition. The semiclassical Hamiltonian of this Regarding Figure 2, the subspace generated by the S systemintheresonantapproximationwhere states g1,g2,0 , e,g2,0 ,g2,g2,1 , g2,e,0 ,g2,g1,0 is {| i | i| i | i| i} decoupled under H from the rest of the Hilbert space of Ω , G ω ,ω , ∂ϕ /∂t, ∂ϕ /∂t, (3) the system. If we consider the initial state of the system as 0 0 e C 1 2 | | | |≪ | | | | g ,g ,0 , the Hamiltonian of the system in the subspace 1 2 | i S withΩ ,G thepeakvaluesoftheRabifrequencies,canthen willbe 0 0 0 Ω (t)e+iϕ1(t) 0 0 0 1 Ω (t)e−iϕ1(t) ω G (t) 0 0 1 e 1 H (t):=PHP = 0 G (t) ω G (t τ) 0 , (5) P 1 C 2 − 0 0 G (t τ) ω Ω (t τ)e−iϕ2(t−τ) 2 − e 2 − 0 0 0 Ω (t τ)e+iϕ2(t−τ) 0 2 − whereP istheprojectoronthesubspace . TheeffectiveHamiltonianisthusgivenby S 0 Ω (t) 0 0 0 1 Ω (t) kv sinθ G (t) 0 0 ∂R 1 1 1 1 Heff :=R†H R iR† = 0 G (t) kv sinθ G (t τ) 0 , (6) P 1 1 1 2 − ∂t 0 0 G (t τ) kv si−nθ Ω (t τ) 2 − 1 1 2 − 0 0 0 Ω (t τ) k(v sinθ v sinθ ) 2 − 1 1− 2 2 wheretheunitarytransformationRis mericsshowsthat,inpractice,thecondition(8)issatisfiedfor ∆ < Ω ,G /100. Assuming thisconditionallowsone to 1 0 0 0 0 con∼sid{er0∆ 0}kv sinθ 0 in Eq. (8), if we additionally 0 e−iϕ1(t) 0 0 0 assumev ∼v 1 v. In1t∼hiscaseτ isthedelayofarrivalat R= 0 0 e−iϕ1(t) 0 0 . 1 ∼ 2 ≡ thecenterofthecavity(x = y = 0)ofthesecondatomwith 0 0 0 e−iϕ1(t) respecttothefirstone. 0 0 0 0 e−i[ϕ1(t)−ϕ2(t−τ)] Thesystemistakentobeinitiallyinthestate g ,g ,0 , (7) | 1 2 i The dynamicsof the system is governedby the Schro¨dinger Φ(ti) = g1,g2,0 . (9) | i | i equationi∂ Φ(t) =Heff(t)Φ(t) . ∂t| i | i The goal is to transform it at the end of interaction into an An essential condition for the STIRAP and f-STIRAP atom-atomentangledstate processes is the four-photon resonance between the states |g1,g2,0iand|g2,g1,0iwhichmeans: |Φ(tf)i = cosϑ|g1,g2,0i+sinϑ|g2,g1,0i |∆:=k(v1sinθ1−v2sinθ2)|≪|Ω0|,|G0|. (8) = (cosϑ|g1,g2i+sinϑ|g2,g1i)|0i, (10) This condition can be achieved by controlof the velocity of where ϑ is a constant mixing angle (0 ϑ π/2), and ≤ ≤ atoms, andof the deflectionanglesof the atomsθ . Nu- the cavity-mode state factorizes and is left in the vacuum i=1,2 3 state. The qubits are stored in the two degenerate ground states of the atoms. The decoherence due to atomic sponta- 10 neousemissionisproducedifthestates e,g ,0 , g ,e,0 8 0.4 are populated, and the cavity decay {o|ccur2s iif |th2e stait}e m)6 • 0.3 µ g2,g2,1 is populated during the adiabatic evolution of the d (4 0.2 | i system. Therefore we will design the Rabi frequencies 2 0.1 Ω (t),G (t),Ω (t),G (t) in our scheme such that these 0 { 1 1 1 2 } 0 5 10 z (1µ5 m) 20 25 30 statesarenotpopulatedduringthedynamics. 0 One of the instantaneous eigenstates (the two-atom dark 10 0.6 state) of Heff(t) which corresponds to a zero eigenvalue is 8 0.5 [10] m)6 • 0.4 µd ( 4 00..23 D(t) = C G1Ω2 g1,g2,0 Ω1Ω2 g2,g2,1 2 0.1 | i (cid:16) | i− | i 0 0 5 10 15 20 25 30 + G2Ω1 g2,g1,0 , (11) z0 (µ m) | i(cid:17) where C is a normalization factor. The possibility of FIG. 3: Top panel: contour plot at the final time tf of |12 − decoherence-free generation of atom-atom entanglement P|g1,g2,0i(tf)| as a function of z0 and d (black areas correspond to approximately half population transfer) with the pulse parame- arisesfromthefollowingbehaviorofthedarkstate: ters as WL = 20µm, WC = 40µm, v = 2 m/s, λ = 780nm, tl→imti ΩΩ12((tt)) =0, |D(ti)i∼|g1,g2,0i (12a) sPΩu|0mg2=,go2f2,10tihW(evtLffi),na+Gl0pPo=|gp2u,1lea0,0t0iioW(ntvsCf).inwBihonetttreoermmbelpadacinkaetela:rseTtaahsteecssoaPrmr|eees,pgp2ol,no0dti(fttoofr)athp+e- proximatelyzeropopulation.Thewhitedotshowsspecificvaluesof Ω (t) lim 1 =tanϑ, z0anddusedinFig.4toobtainahalf-STIRAPprocess. t→tf Ω2(t) D(t ) cosϑg ,g ,0 +sinϑg ,g ,0 (12b) f 1 2 2 1 | i∼ | i | i velocityv(onthey =0planeatz =z line)throughanopti- 0 calcavityinitiallyinthevacuumstate 0 andthenencounters ti <t<tf, G1(t)∼G2(t)≫Ω1(t),Ω2(t), the laser beam, whichis parallelto th|eiy axis(orthogonalto D(t) Ω2(t)g1,g2,0 +Ω1(t)g2,g1,0 . (12c) thecavityaxisandthetrajectoryoftheatom).Thelaserbeam | i∼ | i | i is resonant with the e g transition. The distance be- Equations(12a)and(12b)areknownasf-STIRAPconditions | i ↔ | 1i tween the center of the cavity and the laser axis is d. The [11, 12], and the condition (12c) guarantees the absence of second atom, synchronized with the first one τ = 0, moves populationinthestate g ,g ,1 duringthetime-evolutionof | 2 2 i with the same velocity v on the y = 0 plane at z = 0 in thesystem[13, 14]. Equation(12b)meansthattheRabifre- theoppositedirectionwithrespecttothefirstatom. Thetrav- quencies fall off in a constant ratio, during the time interval eling atoms encounter the time-dependentand delayed Rabi where they are non-negligible. We remark that this formu- frequenciesofthecavity-modeandthelaserfieldsasfollows lation opens up the possibility to implement f-STIRAP with Gsuacuhssaiapnulpsuelsseesq.ueTnhcee cgaonalbiendtehseigfnoelldowininagcaisvittoysbhyowantahpa-t G1(t) = G0e−(vt)2/WC2 cos 2πz0 , (15a) (cid:18) λ (cid:19) propriatechoiceoftheparameters. In an optical cavity, the spatial variation of the atom-field Ω1(t) = Ω0e−z02/WL2 e−(vt−d)2/WL2, (15b) coupling for the maximum coupling TEM00 mode, resonant G2(t) = G0e−(vt)2/WC2, (15c) withthe e g atomictransition,isgivenby | i↔| 2i Ω2(t) = Ω0e−(vt+d)2/WL2 (15d) G(x,y,z)=G0e−(x2+y2)/WC2 cos 2πz , (13) wherethetimeoriginisdefinedwhentheatomsmeetthecen- (cid:18) λ (cid:19) ter of the cavity at x = y = 0. The appropriate values of where WL is the waist of the cavity mode, and G0 = z0 and d that lead to the f-STIRAPprocesscan be extracted µ ωC/(2ǫ0Vmode)withµandVmoderespectivelythedipole from a contour plot of the final population P|g1,g2,0i(tf) := −mompentof the atomic transition and the effectivevolume of g1,g2,0Φ(tf) 2 as a function of z0 and d that we calcu- |h | i| thecavitymode. Thespatialvariationoftheatom-lasercou- lated numerically (see Fig. 3). The white dot in Fig. 3 plingforthelaserbeamofFig. 1is showsvaluesofz0anddtoobtainanf-STIRAPprocesswith ϑ π/4(calledhalf-STIRAP).Ithasbeenchosensuchthat Ω(x,z)=Ω0e−(x2+z2)/WL2, (14) at≃theendofinteractionP|g1,g2,0i(tf)≃P|g2,g1,0i(tf)≃0.5, andthe populationsofthe otherstates of the subspace are S whereW is the waist of the laser beam, and Ω = µ /2 zero. L 0 − E with theamplitudeofthelaserfield. Figure1showsasitu- Figure4showsforparametervaluesassociatedtothewhite E ationwherethefirstatom,initiallyinthestate g ,goeswith dot in Fig. 3, (a) the time dependence of the Rabi frequen- 1 | i 4 (a) is split at 50% among the states g ,g ,0 , g ,g ,0 and is MHz)5 G almost zero for the other states o|f1 2duriing| 2the1inteiraction ncies (34 2 G1 tfhoer mGa0xi∼ma3lΩly0a.toTmh-iastocmaseenctoarnrgelsepdoSnstdasteto1/th√e2gegne,rgati,o0n o+f e 1 2 u | i Rabi Freq−01250 −40 −30 −20 Ω−210 Ω10 10 20 30 40 50 |pWgr2o,fi/glv1e,sr0efios(cid:1)prebΩcy(titva)edaliyan,bdtahGtiec(stpu)afofisfscaiwgenied.ttchAosnsTsdLuitmi=oinnWgofGLa/a(cid:0)duvisaasbniaadtnicTpiCtuyls=ies C (b) Ω T ,G T 1. 0 L 0 C 1 P ≫ |g,g,0〉 Thestate g ,g ,0 isstationarystateofthesystem. Ifthe s0.8 1 2 | 2 2 i n secondatomentersinsidethecavitybeforethefirstone(τ < pulatio00..46 0), we can transfer completely the population from the state Po0.2 P|g,g,0〉 |g1d,ugr2i,n0gitthoe|dgy2n,ga1m,i0cisw(sietheoFuitgp.o5p)u.laIntinpgartthiceuolathr,ergisvteantetshoatf 0 2 1 S −50 −40 −30 −20 −10Time0 (µ s)10 20 30 40 50 thefirstatominitiallyispreparedinacoherentsuperposition of the ground states αg +β g , that the second atom is 1 2 | i | i FIG.4:(a)Rabifrequenciesofthecavity-modeandthelaserfieldfor initiallyinthestate g2 , andthatthecavity-modeisinitially | i twoatoms.(b)Timeevolutionofthepopulationswhichrepresentsa inthevacuumstate,atwo-atomSTIRAPwillcoherentlymap two-atomhalf-STIRAP. thissuperpositionontothesecondatom: es (MHz)567 G2 (a) G1 α|g1,g2,0i+β|g2,g2,0i→α|g2,g1,0i+β|g2,g2,0i. (16) nci4 In summary,we haveproposeda robustand decoherence- e bi Frequ123 Ω2 Ω1 ffr-eSeTIsRchAePmetectohngieqnueeraitneΛat-osmys-taetmoms. enTthainsglsecmheemnte, uissinrogbtuhset Ra−060 −40 −20 0 20 40 60 with respect to variations of the velocity of the atoms v, of thepeakRabifrequenciesG ,Ω andofthe fielddetunings, (b) 0 0 1 P|g,g,0〉 but not with respect to the parameters d,z0, describing the s0.8 1 2 relative positionsof the laser beam and the cavity, shown in n atio0.6 Fig. 1. Ourschemecanbeimplementedinanopticalcavity Popul00..24 P|g,g,0〉 cwaivthityGd0ec∼ohκer∼encΓe.isTGhe0n≫eceΩss0awryhiccohndisitsiaotnistfioedsuipnpprerasscttihcee −060 −40 2 1−20 Time0 (µ s) 20 40 60 tfhoerGad0ap∼te3dΩv0al(useeseoFfigds.an4d,5z). Finorthgeivfe-nSTvaIRluAesPopfroWcCes,sWcaLn, 0 be determined from a contour plot of the final populations. FIG.5: (a)Rabi frequencies ofthecavity-modeandthelaserfield Decoherencechannelsare suppressed duringthe whole evo- fortwoatomswiththepulseparametersasv=2m/s,WL=20µm, lutionofthesystem.Inthisscheme,asopposedtothescheme WC = 40µm, λ = 780 nm, Ω0 = 2 MHz, G0 = 6.5 MHz, ofRef. [10],wedonotneedtofixtheatomsinsidetheoptical z0 = 5.5µm, d = 6µm and τ = −9µs. (b) Time evolution of cavitynortoapplytwolaserbeamsforeachoftheindividual thepopulationswhichrepresentsatwo-atomSTIRAP. atoms. M.A-T.wishestoacknowledgethefinancialsupportofthe cies of half-STIRAP for two atoms, and (b) the time evo- MSRTofIranandSFERE.Weacknowledgesupportfromthe lution of the populations which shows that the population ConseilRe´gionaldeBourgogne. [1] A.EkertandR.Jozsa,Rev.Mod.Phys.68,3733(1997). 050302(R)(2002). [2] A.K.Ekert,Phys.Rev.Lett.67,661(1991). [9] X. X. Yi, X. H. Su, and L. You, Phys. Rev. Lett. 90, 097902 [3] C.H.Bennett,G.Brassard,C.Cre´peau,R.Jozsa,A.Peres,and (2003). W.K.Wootters,Phys.Rev.Lett.70,1895(1993). [10] T.Pellizzari,S.A.Gardiner,J.I.Cirac,andP.Zoller,Phys.Rev. [4] M.B.Plenio, S.F.Huelga, A.Beige, andP.L.Knight, Phys. Lett.75,3788(1995). Rev.A59,2468(1999). [11] N.V.Vitanov,K.A.Suominen,andB.W.Shore,J.Phys.B32, [5] A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 90, 127903 4535(1999). (2003). [12] M.Amniat-Talab,S.Gue´rin,N.Sangouard,andH.R.Jauslin, [6] A.Beige,D.Braun,B.Tregenna,andP.L.Knight,Phys.Rev. Phys.Rev.A(inpress),quant-ph/0407233(2005). Lett.85,1762(2000). [13] N.V.Vitanov,Phys.Rev.A58,2295(1998). [7] J.PachosandH.Walther,Phys.Rev.Lett.89,187903(2002). [14] A.M.SteaneandD.M.Lucas,Fortschr.Phys.48,839(2000). [8] E. Jane´, M. B. Plenio, and D. Jonathan, Phys. Rev. A 65,