Asset Analytics Performance and Safety Management Series Editors: Ajit Kumar Verma · P. K. Kapur · Uday Kumar Kusum Deep Madhu Jain Said Salhi Editors Decision Science in Action Theory and Applications of Modern Decision Analytic Optimisation Asset Analytics Performance and Safety Management Series editors Ajit Kumar Verma, Western Norway University of Applied Sciences, Haugesund, Rogaland, Norway P.K.Kapur,CentreforInterdisciplinaryResearch,AmityUniversity,Noida,India Uday Kumar, Division of Operation and Maintenance Engineering, Luleå University of Technology, Luleå, Sweden The main aim of this book series is to provide a floor for researchers, industries, assetmanagers,governmentpolicymakersandinfrastructureoperatorstocooperate and collaborate among themselves to improve the performance and safety of the assets with maximum return on assets and improved utilization for the benefit of society and the environment. Assets can be defined as any resource that will create value to the business. Assets include physical (railway, road, buildings, industrial etc.), human, and intangible assets (software, data etc.). The scope of the book series will be but not limited to: (cid:129) Optimization, modelling and analysis of assets (cid:129) Application of RAMS to the system of systems (cid:129) Interdisciplinaryandmultidisciplinaryresearchtodealwithsustainabilityissues (cid:129) Application of advanced analytics for improvement of systems (cid:129) Applicationofcomputationalintelligence,ITandsoftwaresystemsfordecisions (cid:129) Interdisciplinary approach to performance management (cid:129) Integrated approach to system efficiency and effectiveness (cid:129) Life cycle management of the assets (cid:129) Integrated risk, hazard, vulnerability analysis and assurance management (cid:129) Adaptability of the systems to the usage and environment (cid:129) Integration of data-information-knowledge for decision support (cid:129) Production rate enhancement with best practices (cid:129) Optimization of renewable and non-renewable energy resources More information about this series at http://www.springer.com/series/15776 Kusum Deep Madhu Jain Said Salhi (cid:129) (cid:129) Editors Decision Science in Action Theory and Applications of Modern Decision Analytic Optimisation 123 Editors KusumDeep SaidSalhi Department ofMathematics KentBusiness School,Centre for Logistics Indian Institute of Technology Roorkee andHeuristic Optimization (CLHO) Roorkee,Uttarakhand, India University of Kent Canterbury, Kent, UK MadhuJain Department ofMathematics Indian Institute of Technology Roorkee Roorkee,Uttarakhand, India ISSN 2522-5162 ISSN 2522-5170 (electronic) AssetAnalytics ISBN978-981-13-0859-8 ISBN978-981-13-0860-4 (eBook) https://doi.org/10.1007/978-981-13-0860-4 LibraryofCongressControlNumber:2018948716 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Contents p Fraction-Based Optimization of the PBM Antenna Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Richard A. Formato Benchmark Function Generators for Single-Objective Robust Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Seyedali Mirjalili and Andrew Lewis Convergence of Gravitational Search Algorithm on Linear and Quadratic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Anupam Yadav, Anita and Joong Hoon Kim An Algorithm of Multivariant Evolutionary Synthesis of Nonlinear Models with Real-Valued Chromosomes . . . . . . . . . . . . . . . . . . . . . . . . 41 Oleg Monakhov and Emilia Monakhova An Artificial Bee Colony Based Hyper-heuristic for the Single Machine Order Acceptance and Scheduling Problem. . . . . . . . . . . . . . . 51 Sachchida Nand Chaurasia and Joong Hoon Kim A New Evolutionary Optimization Method Based on Center of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Jesús-Adolfo Mejía-de-Dios and Efrén Mezura-Montes Adaptive Artificial Physics Optimization Using Proportional Derivative Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Liping Xie, Jianchao Zeng, Qiongqiong Yang and Richard A. Formato NSGA-II Based Decision-Making in Fuzzy Multi-objective Optimization of System Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Hemant Kumar and Shiv Prasad Yadav v vi Contents GA-Based Task Scheduling Algorithm for Efficient Utilization of Available Resources in Computational Grid . . . . . . . . . . . . . . . . . . . 119 Shipra Singh, Anuradha Aggarwal, Harendera Kumar and Pradeep Kumar Yadav Statistical Feature Analysis of Thermal Images from Electrical Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Tamal Dutta, Deepjyoti Santra, Chee Peng-Lim, Jaya Sil and Paramita Chottopadhyay Performance of Sine–Cosine Algorithm on Large-Scale Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Puneet Kumar Pal, Kusum Deep and Atulya K. Nagar Necessary and Sufficient Optimality Conditions for Fractional Interval-Valued Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 155 Indira P. Debnath and S. K. Gupta Application of Constrained Spider Monkey Optimization to Solve Portfolio Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 175 Kavita Gupta, Kusum Deep and Atulya K. Nagar Optimal Configuration Selection in Reconfigurable Manufacturing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Kamal Kumar Mittal, Pramod Kumar Jain and Dinesh Kumar A Comparative Study of Regularized Long Wave Equations (RLW) Using Collocation Method with Cubic B-Spline . . . . . . . . . . . . . 203 Nini Maharana, A. K. Nayak and Pravakar Jena An Enhanced Fractal Dimension Based Feature Extraction for Thermal Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Sandip Joardar, Arnab Sanyal, Dwaipayan Sen, Diparnab Sen and Amitava Chatterjee Seismic Analysis of Multistoried Building with Optimized Damper Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Dipti Singh, Shilpa Pal and Abhishek Singh Effect of Upper Body Motion on Biped Robot Stability . . . . . . . . . . . . . 237 Ruchi Panwar and N. Sukavanam Ant Colony Algorithm for Routing Alternate Fuel Vehicles in Multi-depot Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . 251 Shuai Zhang, Weiheng Zhang, Yuvraj Gajpal and S. S. Appadoo Semidefinite Approximation of Closed Convex Set. . . . . . . . . . . . . . . . . 261 Anusuya Ghosh and Vishnu Narayanan About the Editors Dr.KusumDeep isaprofessorintheDepartmentofMathematics,IndianInstitute of Technology Roorkee. Her research interests include numerical optimization, nature-inspired optimization, computational intelligence, genetic algorithms, parallel genetic algorithms, and parallel particle swarm optimization. Dr. Madhu Jain is an associate professor in the Department of Mathematics, Indian Institute of Technology Roorkee. Her research interests include computer communications networks, performance prediction of wireless systems, mathe- matical modeling, and biomathematics. Dr. Said Salhi is Director of the Centre for Logistics and Heuristic Optimization (CLHO)atKentBusinessSchool,UniversityofKent,UK.Priortohisappointment at Kent in 2005, he served at the University of Birmingham’s School of Mathematics for 15 years, where in the latter years he acted as Head of the Management Mathematics Group. He obtained his B.Sc. in Mathematics from the University of Algiers and his M.Sc. and Ph.D. in OR at Southampton (Institute of Mathematics) and Lancaster (School of Management), respectively. He has edited six special journal issues and chaired the European Working Group in Location Analysis in 1996 and recently the International Symposium on Combinatorial Optimization (CO2016) in Kent from September 1 to 3, 2016. He has published over 100 papers in academic journals. vii π Fraction-Based Optimization of the PBM Antenna Benchmarks RichardA.Formato Abstract Real-world optimization problems often require an external “modeling engine”tocomputefitnesses,andtheseprogramsoftenhavemuchlongerruntimes than evaluating fitnesses solely with built-in compiler routines. Using a stochastic optimizeronreal-worldproblemscanbequitechallengingbecauseeveryrunreturns adifferent“best”fitness.Thisissueisaddressedbymakingmanyruns,oftenhun- dreds,possiblyeventhousands,inordertogeneratemeaningfulstatistics,butdoing so can be prohibitive with external modeling. And even then the statistical nature of the results may obscure true global extrema. Additionally, real-world problems donotcomewithwell-defined,clearlyappropriateobjectivefunctions(atleastmost of the time). The practitioner must define an appropriate function, which in itself can be a daunting task made more difficult using a stochastic optimizer. π frac- tionsmitigatetheseissuesbyintroducingpseudorandomnessinanotherwisetruly randommetaheuristic,forexample,geneticalgorithm.Thispaperillustratestheutil- ityofπ fractionsbyusingthemintwodifferentoptimizers,onedeterministicand theother probabilistic.Theseoptimizers areapplied withquitegood resultstothe PBMantennabenchmarks,asetofdifficultreal-worldengineeringproblems,thereby demonstratingtheutilityofπ fractionsinalltypesofoptimizers. · · · Keywords Optimization Globalsearchandoptimization π fractions CFO · · · · GASR Geneticalgorithm PBM PBMantennabenchmarks Antenna · · Deterministicalgorithm Stochasticalgorithm Pseudorandomness B R.A.Formato( ) ConsultingEngineerandRegisteredPatentAttorneyofCounsel,Emeritus Cataldo&Fisher,LLC,POBox1714,Harwich,MA02645,USA e-mail:[email protected] ©SpringerNatureSingaporePteLtd.2019 1 K.Deepetal.(eds.),DecisionScienceinAction,AssetAnalytics, https://doi.org/10.1007/978-981-13-0860-4_1 2 R.A.Formato 1 Introduction Theutilityofπ fractionsinglobalsearchandoptimizationisinvestigatedbyapply- ingtheπfraction-basedalgorithmsCentralForceOptimization(πCFO)andGenetic AlgorithmwithSiblingRivalry(πGASR)tothePantojaetal.[1]benchmarks(PBM). PBMisagroupoftypicalreal-worldengineeringproblemsthatdonothaveknown analyticalsolutions.Theyaredesignedtotesttheeffectivenessofantennaoptimiza- tionalgorithmsusingtheNumericalElectromagneticsCode[2](NEC)asthemod- elingengine.Amajorconcernwhenexternalmodelingisrequiredishavingtomake multiplerunsifastochasticoptimizerisemployed,forexample,geneticalgorithm. π fractions mitigate this issue by making stochastic algorithms pseudorandom, in effectdeterministic.πCFOandπGASRdataarecomparedtothepublishedPBM dataandtoCFOimplementedwithoutπ fractions.Theresultsarequitegood.They demonstratethegeneralutilityofπ fractionsinglobalsearchandoptimization,in particularinrenderingdeterministicanotherwiseprobabilisticalgorithm. 2 ThePBMSuite PBMcomprisesfiveproblemsinwhichtheantennadirectivityisthefitness(objective function)tobemaximized.Eachproblemhasauniquelandscape(fitness’topology overthedecisionspace,DS).Fouroftheproblemsaretwo-dimensional(2D),while thefifthis(N −1)DwhereN isthenumberofelementsinaco-lineardipolearray. el el Table1summarizesPBM’scharacteristics(λisthefreespacewavelength),andthe appendix contains geometries for the five antennas and perspective landscapes for thefour2Dproblems. Table1 PropertiesofthePBMbenchmarkproblems PBM Problemcharacteristics(ineachcaseobjectiveistomaximizedirectivity) benchmark 1 Variablelengthcenter-feddipole.2D,unimodal,singleglobalmaximum, stronglocalmaxima λ 2 Uniform10-elementarrayofcenter-fed -dipoles.2D,addedGaussiannoise, 2 singleglobalmaximum,multiplestronglocalmaxima λ 3 Eight-elementcirculararrayofcenter-fed -dipoles.2D,highlymultimodal, 2 fourglobalmaxima 4 VeeDipole.2D,unimodal,singleglobalmaximum,“smooth”landscape. 5 CollinearNel-elementarrayofcenter-fed λ2-dipoles.(Nel−1)D,unimodal, singleglobalmaximum