Decision Making Strategies for Probabilistic Aerospace Systems Design A Thesis Presented to The Academic Faculty by Nicholas Keith Borer In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of Aerospace Engineering Georgia Institute of Technology May 2006 Copyright (cid:176)c 2006 by Nicholas Keith Borer Decision Making Strategies for Probabilistic Aerospace Systems Design Approved by: Dr. Dimitri Mavris Craig Nickol Professor, Faculty Advisor Aerospace Engineer Georgia Institute of Technology NASA Langley Research Center Dr. Daniel Schrage Sharon Padula Professor Senior Research Scientist Georgia Institute of Technology NASA Langley Research Center Dr. Alan Wilhite Professor Georgia Institute of Technology Date Approved: 21 February 2006 It would be well if engineering were less thought of, and even defined, as the art of constructing. In a certain important sense it is rather the art of not constructing; or, to define it rudely but not inaptly, it is the art of doing that well with one dollar, which any bungler can do with two after a fashion. - Arthur Mellen Wellington, The Economic Theory of the Location of Railways To mom and dad, for their love, patience, and unwavering support ACKNOWLEDGEMENTS I would like to extend thanks to the many individuals who have helped me through this endeavor. Dr. Dimitri Mavris, my advisor, has given years of support and encouragement throughout my tenure at Georgia Tech. I cannot say enough about the opportunities he has provided for me and am grateful to have had the chance to work with him all these years. Dr. Daniel Schrage and Dr. Alan Wilhite both bring their considerable experience in aerospace systems design to my reading committee and I feel privileged to be able to receive their comments. Craig Nickol of NASA Langley served as my advisor for the GSRP fellowshipand hasgivenmeinvaluableadvice andsupportsince hefirst cameto NASA.His experiences with the Multi-mission Maritime Aircraft (MMA/P-8A) while at the Naval Air Systems Command provided much insight into the practical world of multi-mission systems design. Sharon Padula of NASA was kind enough to meet with me several times during my stay at Langley. She and Dr. Wu Li provided much-needed input regarding optimization and decomposition techniques during our many conversations. They also kept me honest when it came to some of the mathematical techniques I was experimenting with. ManyothersatNASALangleyprovidedguidance,encouragement,andhelpbothduring and after my visits. I would like to extend thanks to my first GSRP technical advisor Bob McKinley, Branch Head Bill Kimmel, and everyone at the Aerospace Systems Analysis Branch for their support. ASDLatGeorgiaTechhasprovidedmewithawealthofcontacts,experiences,andmost importantly,goodfriends. IwouldliketothankDr.MichelleKirbyandJeffSchuttefortheir assistance with the QuEST technology study and for providing the models used to develop the reduced-order surfaces seen in Chapter VII. Newly-minted Dr. Michael Buonanno, who wasalsoaGSRPfellowwithme,providedvaluablehelpwithafewMatlabmodelsaswellas agoodsoundingboardforideas. Dr.BryceRoth,nowanemployeeatGETransportationin Cincinnati, providedsoundadvice. HealsointroducedmetotheCommemorativeAirForce v and vintage aircraft restoration. Rob McDonald spent many hours chewing over various ideas, algorithms, ponderings, LATEX queries...and also made a good carpool partner down to the CAF. During the final weeks of writing, I accosted many ASDLer’s and forced them to proofread a chapter. If there is a typo, misspelling, or grammatical error within this document, it is not for lack of trying to eliminate them all. I will not attempt to list all of my friends at Georgia Tech who have made the past several years so much fun...to do so would take up far too much room. I would like to give aspecialthankstoTheGoldenPheasantregularsformanychallengingnightsofthree-man, the back-porch crew at Rocky who cannot be deterred even in sub-freezing temperatures, all of the current and former residents of Casa de Shalimar, and who can forget The Day of Chili? My time in Atlanta has been very enjoyable because of you, making my upcoming departure that much more bittersweet. I’ll save a seat at Fenway for you. My family and friends from around the globe have given their encouragement and love throughout my life no matter where I hang my hat. I’ve been a long way from home for a long time, and I could not have made it without your understanding and support. Mom, Randy, Dad, Laura, Scott, Mike, Jon...thanks. Last but certainly not least, I would like to thank Mary Margaret Stoeckle for her years ofpatienceandsupport, nevermindfillingoutthelion’sshareofmybibliographydatabase. I’m looking forward to finally being able to share the same area code with you. Thank you all – without you, I could accomplish nothing. vi TABLE OF CONTENTS ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii LIST OF SYMBOLS OR ABBREVIATIONS . . . . . . . . . . . . . . . . . . xvi SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Multi-Mission Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Requirements Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 6 II REQUIREMENTS AND AIRCRAFT SIZING. . . . . . . . . . . . . . . 9 2.1 The Engineering Design Process . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Requirements Specification . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Traditional Single-Objective Approaches . . . . . . . . . . . . . . . . . . . 14 2.3 Modern Sizing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Multidisciplinary Design Optimization and Statistical Techniques . 17 2.3.2 Evolving Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Multi-Mission Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Shortfalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Multipoint Sizing for Multi-Mission Vehicles . . . . . . . . . . . . . 24 III DESIGN AND DECISION MAKING . . . . . . . . . . . . . . . . . . . . 26 3.1 Pareto Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Axiomatic Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Multiple Criteria Decision Making Techniques . . . . . . . . . . . . . . . . 31 3.3.1 The Ideal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Simple Additive Weighting . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 TOPSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.4 Compromise Programming . . . . . . . . . . . . . . . . . . . . . . . 39 vii 3.3.5 MCDM for Systems Design . . . . . . . . . . . . . . . . . . . . . . 40 IV DECISION MAKING FOR LARGE-SCALE PROBLEMS . . . . . . . 42 4.1 Generalized Probabilistic MCDM Formulation . . . . . . . . . . . . . . . . 43 4.2 Case Study: Notional Multi-Role Fighter . . . . . . . . . . . . . . . . . . . 45 4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.2 Results and Implications . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 MCDM Example Application . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Multiple Criteria Beam Design . . . . . . . . . . . . . . . . . . . . 50 4.3.2 Polynomial Surrogate Modeling . . . . . . . . . . . . . . . . . . . . 54 4.4 Initial Experiments for Beam Design Problem . . . . . . . . . . . . . . . . 57 4.4.1 Resolution of Nondominated Solutions . . . . . . . . . . . . . . . . 58 4.4.2 Deterministic Decision Making. . . . . . . . . . . . . . . . . . . . . 61 4.4.3 Design to Probabilistic Requirements . . . . . . . . . . . . . . . . . 65 4.4.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 V IMPORTANCE AND INTERDEPENDENCE . . . . . . . . . . . . . . . 72 5.1 Characterizing Relative Importance . . . . . . . . . . . . . . . . . . . . . . 73 5.1.1 Entropy and Static Relative Importance . . . . . . . . . . . . . . . 74 5.1.2 Constraints, Thresholds, and Dynamic Relative Importance . . . . 82 5.1.3 Experiments with Modified Relative Importance Models . . . . . . 86 5.2 Requirements Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.1 Decomposition Techniques for Linear Systems . . . . . . . . . . . . 98 5.2.2 Singular Value Decomposition for Response Surface Equations . . . 99 5.2.3 Multidimensional Visualization with Characteristic Requirements . 106 5.2.4 Interdependent Relative Importance Modeling . . . . . . . . . . . . 110 VI METHODSFORPROBABILISTICLARGE-SCALEDECISIONMAK- ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.1 Requirements Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Concept Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3.1 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.4 Relative Importance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 viii 6.4.1 Identification of User Preferences . . . . . . . . . . . . . . . . . . . 129 6.4.2 Entropy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.4.3 Interdependence Evaluation . . . . . . . . . . . . . . . . . . . . . . 130 6.4.4 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.4.5 Probabilistic Considerations . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Decision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.5.1 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.6 Multidimensional Visualization . . . . . . . . . . . . . . . . . . . . . . . . 137 VIIEXAMPLE APPLICATION: TRANSPORT DESIGN . . . . . . . . . . 142 7.1 Requirements Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.2 Concept Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.3 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.3.1 Creation of Surrogate Models . . . . . . . . . . . . . . . . . . . . . 149 7.4 Relative Importance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.4.1 User Preferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.4.2 Entropy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.4.3 Interdependence Analysis. . . . . . . . . . . . . . . . . . . . . . . . 154 7.4.4 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.5 Decision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.6 Multidimensional Visualization . . . . . . . . . . . . . . . . . . . . . . . . 167 7.6.1 Requirements Decomposition . . . . . . . . . . . . . . . . . . . . . 171 7.7 Goal Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 VIIICONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . 178 8.1 Contributions to Aerospace Systems Design . . . . . . . . . . . . . . . . . 178 8.2 Lessons from Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.4 New Research Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.5 Caveat Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 APPENDIX A RESPONSE SURFACE METHODOLOGY . . . . . . . . 186 APPENDIX B SINGULAR VALUE DECOMPOSITION . . . . . . . . . 195 ix APPENDIX C BASELINE INPUTS FOR LONG-RANGE TRANSPORT TECHNOLOGY STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 APPENDIXD VALIDATIONOFREDUCED-ORDERRESPONSESUR- FACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 x
Description: