ebook img

Deciphering the period spacing pattern in the oscillation spectrum of the SPB star KIC 7760680 PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deciphering the period spacing pattern in the oscillation spectrum of the SPB star KIC 7760680

Deciphering the period spacing pattern in the oscillation spectrum of the SPB star KIC7760680 WojciechSzewczuk1,⋆,JadwigaDaszyn´ska-Daszkiewicz1,andPrzemysławWalczak1 7 1AstronomicalInstituteoftheWrocławUniversity,Kopernika11,51–622Wrocław,Poland 1 0 2 Abstract. We present the analysis of KIC7760680, the rotating Slowly Pulsating B–type star identified in n the Kepler photometry. The oscillation spectrum of the star exhibits a series of 36 frequencies which are a quasi-equally spaced in period. We confirm that this series can be associated with prograde dipole modes J of consecutive radial orders. In our studies, the effects of rotation were included in the MESA equilibrium 5 modelsaswellasinthepuslational calculationsintheframeworkofthetraditionalapproximation. Wefind thatpulsationalmodelscomputedwiththeOPLIBopacitiesbestreproducetheobservedfrequencyrange. The ] modifiedopacitydatawithanenhancement oftheopacityatlogT = 5.3, 5.46and5.06weretestedaswell. R IncreasingtheOPLIBopacitiesbyabout50%atlogT =5.3issufficienttoexcitemodesinthewholerangeof S 36frequencypeaksofKIC7760680. . h p - o 1 Introduction 2 Seismic modelling r t s Knowledge of the geometry of pulsational modes is es- a [ sentialinseismicmodelling. InthecaseofKIC7760680, KIC7760680 was classified as the Slowly Pulsating B- the quasi-equally spaced in period frequency peaks sug- 1 type star by Pápics et al. [1] who found a series of 36 gestthatthesearethemodeswiththesamedegree,ℓ,az- v frequencies quasi-equally spaced in period from the Ke- imuthal order, m, and consecutive radial orders, n. Ac- 6 5 plerphotometry. Fromspectroscopicobservationstheau- cordingtoPápicsetal[1], the frequenciesareassociated 2 thors derived the effective temperature, Teff = 11650 ± withprogradedipolemodes(ℓ=1, m=+1). 1 210K, surface gravity, logg = 3.97 ± 0.08, metallic- Inordertocheckwhetherthisstatementisvalidifthe 0 ity, [M/H] = 0.14 ± 0.09 (which correspond to about effectsofrotationareincluded,bothintheequilibriumand . 1 Z = 0.017) and the minimum value of the rotational ve- pulsationalcalculations,weconstructedagridofrotating 70 locity, Vrotsini = 61.5 ± 5 kms−1. Based on the zero- stellarmodelswithinthe3σerrorboxinTeffandlogg.To rotation asymptotic theory, Pápics et al. [1] attributed thisendweusedMESAcode[10–12]consideringawide 1 : these frequencies to the prograde dipole gravity modes rangeofthe rotationalvelocity, fromVrot = 62kms−1 to v of high consecutive radial orders. Recently, Moravveji the upper limit of the validity of the traditional approxi- i X et al. [2] made a detailed seismic modelling of the star mation. Astheupperlimitweadopted200kms−1 which r taking into account effects of rotation in the framework is about a half of the break-up velocity. The step was a ofthetraditionalapproximation[e.g.,3–9]appliedtothe ∆V = 1 kms−1. We included various rotational mix- rot non-rotating MESA [10–12] evolutionary models. The ingmechanisms,i.e.,dynamicalshearinstability,Solberg- authors found that KIC7760680is a moderatelyrotating Høiland instability, secular shear instability, Eddington- starwiththerotationalfrequencyamountingto26%ofits Sweet circulation and the Goldreich-Schubert-Fricke in- Roche break up frequency(0.4805 d−1) and with a mass stability[see 11,13,14].Weassumedtheinitialhydrogen ∼ 3.25M⊙. Furthermore, they constrained the exponen- abundance,X0 = 0.7,metallicityZ = 0.017,thechemical tiallydecayingconvectivecoreovershootingparameterto mixture of Asplund et al. [15], and the overshootingpa- fov ≈0.024±0.001.Additionally,theirbestseismicmod- rameterinexponentialdescription, f = 0.02. Threecom- elsemployedextradiffusivemixingintheradiativeenve- monly used opacity data were adopted: OP [16], OPAL lope. Here, we repeat the Moravveji et al. [2] approach [17]andOPLIB[18,19]. butourcomputationsincludetheeffectsofrotationalsoin Then,wecalculatednonadiabaticpulsationmodelsin equilibrium models. In Sect.2 we present results of our theframeworkoftraditionalapproximation(herethestep seismicmodellingandconclusionsendsthepaper. in V was decreased to 0.1 kms−1) for modes which rot seemedtobegoodcandidatestoreproduceobservedseries of frequencies, i.e., (1,+0), (1,+1), (2,+0) and (2,+1). ⋆e-mail:[email protected] Since for modes other than (1,+1) the best models give 0.50 4 ℓ=1 m=+1 OP AGSS09 X =0.7, Z=0.017 3.5 0 f =0.02 ov 3 0.00 ] m 2.5 p p g o l 2 η [ A g o l 1.5 -0.50 1 observations χ2=5348, V =68.1 km s-1, M=3.34M , log T =4.0873 0.5 rot ⊙ eff χ2=5357, V =68.3 km s-1, M=3.34M , log T =4.0868 rot ⊙ eff χ2=5564, V =78.6 km s-1, M=3.46M , log T =4.0811 rot ⊙ eff 0 -1.00 0.7 0.8 0.9 1 1.1 1.2 ν [d-1] Figure 1. The best seismic models calculated with OP opacities. The observed frequencies and their amplitudes are plotted with verticallines(leftY-axis). Colourcirclesmarkedtheoreticalfrequenciesandtheirinstabilityparameter,η,canbeereedontheright Y-axis. worsequalityofthefit, χ2 (definedasinMoravvejietal. plotted. As one can see only 3–4 modes are marginally [2]), by the order of magnitude, we confirm that the fre- stable, η ≈ 0. Parametersof these modelsas wellas ob- quenciesintheseriescanbeassociatedwiththeprograde tainedwiththeOPALopacitiesaresummarisedinTable1. dipolemodes. InFig.1, the theoreticalfrequenciesof(1,+1)modes for the best three OP models are compared with the ob- served ones. The parameters of these models are sum- marisedinTable1. Withoutadoubt,thequalityoffitting Then,werecalculatedthebestOPLIBmodelwithdif- needsimprovement. Forthebestmodels,weobtainedthe ferentvaluesofthemetallicityandovershootingparameter valuesofχ2oftheorderof5500whichisthevaluealmost as well as with the modifiedOPLIB opacityprofile. The three times higherthan the one obtainedby Moravvejiet modificationsoftheOPLIBdataconsistedofanenhance- al. [2]. Thisisbecauseinourcalculationswefixedmetal- mentoftheopacityatthedepthscorrespondingtotemper- licity and overshooting parameter compared to the cited atureslogT =5.3,5.46andlogT =5.06.Theincreaseof authors. Moreover, Moravveji et al. fitted coefficient of theopacityatlogT = 5.06mimicsthenewopacitybump the extra diffusive mixing in the radiatively stable enve- identifiedinKuruczmodelsbyCugier[20]. Themodified lopewhereasweemployedrotationalinducedmixingwith models are shown in Fig.3. The increase of the opacity fixedcoefficients.InFig.1ontherightY-axisthereisalso at logT = 5.3 by about50% gives theoreticalinstability shown the instability parameter η (η ≤ 0 – stable mode, inthewholerangeoftheobservedfrequencies.Moreover, η > 0 – unstable mode). As one can see modeswith the foreachobservedfrequencywefoundacorrespondingun- lowestfrequenciesin ourbestmodelsare predictedtobe stable mode. Increasingopacityat logT = 5.46helps in stable. Thisisobviouslycontrarytotheobservationsand excitinglowfrequencymodeswhereasinstabilityofhigh needstobeimproved. frequenciesis unchanged. On the other hand, addingthe Thequalityofthefitisquantitativelythesameforeach Kuruczbump results in reducingthe pulsationalinstabil- considered opacity source but for models with OPLIB ity, both, at low and high frequencies. Larger value of opacities the theoretical instability domain is in an ex- themetallicitygivestheinstabilitydomainshiftedtowards cellent agreementwith the observedfrequencies. This is higher frequencies whereas more effective overshooting shown in Fig.2, in which three best OPLIB models are fromtheconvectivecoreactsintheoppositedirection. 4 ℓ=1 m=+1 OPLIB AGSS09 X =0.7, Z=0.017 0.20 3.5 0 f =0.02 ov 3 0.00 ] m 2.5 p p g o l 2 η [ A -0.20 g o l 1.5 1 observations -0.40 χ2=5558, V =84.3 km s-1, M=3.52M , log T =4.0772 0.5 rot ⊙ eff χ2=5622, V =84.6 km s-1, M=3.53M , log T =4.0775 rot ⊙ eff χ2=5778, V =84.1 km s-1, M=3.52M , log T =4.0778 rot ⊙ eff 0 0.7 0.8 0.9 1 1.1 1.2 ν [d-1] Figure2.ThesameasinFig.1butOPLIBmodelsareshown. Table1.Theparametersofthebestseismicmodels.Column1 tive temperature for the same mass. Rotational induced –opacitydata(#1–OP,#2–OPAL,#3–OPLIB);Column2– mixing can contribute to the differencesas well. We got mass(inthesolarmassunits)Column3–logarithmofthe a little worse quality of the fit, χ2 ∼ 5500, compared to effectivetemperature;Column4–logarithmoftheluminosity the cited authors, χ2 ∼ 2000 but in our calculations we (inthesolarluminosityunits);Column5–centralhydrogen abundance;Column6–rotationalvelocity(inkms−1);Column have fixed the metallicity and the parameter of the core 7–measureofthefittingquality. overshooting,whichMoravvejietal. [2] setasfree. Itis prominentthatinstabilitydomainofthe(1,+1)modesob- op M logT log L X V χ2 tained with the OPLIB data (see Fig.2) nearly cover the eff L⊙ c rot range of the observed 36 frequency peaks. A slight in- #1 3.340 4.0873 2.222 0.42 68.1 5348 crease of the opacity at logT = 5.3 gives an excellent #1 3.340 4.0868 2.224 0.42 68.3 5357 agreement. On the other hand, adding the Kurucz bump #1 3.460 4.0811 2.327 0.35 78.6 5564 atlogT = 5.06spoilstheagreement. Finally,itshouldbe #2 3.510 4.0807 2.375 0.31 83.3 5786 addedthatseriesoffrequenciesequidistantinperiodmay #2 3.460 4.0834 2.336 0.34 78.8 5851 be accidental as it can be reproduced by modes of vari- #2 3.510 4.0801 2.376 0.31 83.5 5998 ous angular numbers(ℓ, m; see e.g. [21]). Therefore, it #3 3.520 4.0772 2.371 0.30 84.3 5558 is desirable to confirm the results of mode identification #3 3.525 4.0775 2.373 0.30 84.6 5622 usinganothermethod,e.g., usingmulticolourtime-series #3 3.520 4.0778 2.370 0.31 84.1 5778 photometry. 3 Conclusions Acknowledgements This work was financially supported by the Polish National Science Our calculations confirmed Pápics et al. [1] finding that Centre grant 2015/17/B/ST9/02082. Calculations have been carried 36 quasi-equidistant in period frequencies observed in out using resources provided by Wrocław Centre for Networking and Supercomputing(http://wcss.pl),grantno.265. KIC7760680are most probablyassociated with the con- secutiveprogradedipolemodes. However,ourbestmod- els have slightly higher masses (from 3.340M⊙ to 3.525 References M⊙ dependingon theopacitydata) comparedto 3.25M⊙ obtained by Moravveji et al. [2]. The reason is that we [1] P.I. Pápics, A. Tkachenko, C. Aerts, T. Van Reeth, usedrotatingevolutionarymodelswhichgivelowereffec- K.DeSmedt,M.Hillen,R.Østensen,E.Moravveji, 4 V =84.3 km s-1, M=3.52M , log T =4.0772 rot ⊙ eff X =0.7, Z=0.017, f =0.02 0 ov ℓ=1 m=+1 0.20 3.5 3 0.00 ] m 2.5 p p g o l 2 η [ A -0.20 g o l 1.5 observations OPLIB AGSS09 1 OPLIB AGSS09 T53 +50% OPLIB AGSS09 T546 +50% -0.40 OPLIB AGSS09 T506 +50% 0.5 OPLIB AGSS09 f=0.03 OPLIB AGSS09 Z=0.02 0 0.7 0.8 0.9 1 1.1 1.2 ν [d-1] Figure3. BestOPLIBmodelrecalculatedwithincreasedOPLIBopacitiesby50%atlogT = 5.30(greencircles), atlogT = 5.46 (bluecircles)andatlogT =5.06(blackcircles)aswellincreasedovershootingparameter(magentatriangles)andincreasedmetallicity (cyantriangles).OriginalOPLIBmodelismarkedbyredcircles.ThecoordinatesmeaningisthesameasinFig1. Astrophys.J.803,L25(2015) 15(2015) [2] E.Moravveji,R.H.D.Townsend,C.Aerts,S.Mathis, [13] A. Heger, N. Langer, S.E. Woosley, Astrophys. J. Astrophys.J.823,130(2016) 528,368(2000) [3] U.Lee,H.Saio,Astrophys.J.491,839(1997) [14] A. Heger, S.E. Woosley, H.C. Spruit, Astrophys. J. [4] R.H.D.Townsend,MNRAS340,1020(2003) 626,350(2005) [5] R.H.D.Townsend,MNRAS343,125(2003) [15] M.Asplund,N.Grevesse,A.J.Sauval,P.Scott,Ann. Rev.Astron.Astrophys.47,481(2009) [6] R.H.D.Townsend,MNRAS360,465(2005) [16] M.J.Seaton,MNRAS362,L1(2005) [7] R.H.D.Townsend,MNRAS364,573(2005) [17] C.A. Iglesias, F.J. Rogers, Astrophys. J. 464, 943 [8] W.A. Dziembowski, J. Daszyn´ska-Daszkiewicz, (1996) A.A.Pamyatnykh,MNRAS374,248(2007) [18] J. Colgan, D.P. Kilcrease, N.H. Magee, J. Abdal- [9] J. Daszynska-Daszkiewicz, W.A. Dziembowski, lah,M.E.Sherrill,C.J.Fontes,P.Hakel,H.L.Zhang, A.A.Pamyatnykh,ActaAstron.57,11(2007) HighEnergyDensityPhysics14,33(2015) [10] B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, F. Timmes, Astrophys. J. Suppl. 192, 3 [19] J.Colgan,D.P.Kilcrease,N.H.Magee,M.E.Sherrill, J. Abdallah, Jr., P. Hakel, C.J. Fontes, J.A. Guzik, (2011) K.A.Mussack,Astrophys.J.817,116(2016) [11] B. Paxton, M. Cantiello, P. Arras, L. Bildsten, [20] H.Cugier,Astron.&Astrophys.565,A76(2014) E.F. Brown, A. Dotter, C. Mankovich, M.H. Mont- gomery,D.Stello,F.X.Timmesetal.,Astrophys.J. [21] W. Szewczuk, J. Daszyn´ska-Daszkiewicz, Suppl.208,4(2013) W. Dziembowski, Interpretation of the oscilla- tion spectrum of HD 50230 - a failure of richness, [12] B. Paxton, P. Marchant, J. Schwab, E.B. Bauer, inPrecisionAsteroseismology,editedbyJ.A.Guzik, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, W.J. Chaplin, G. Handler, A. Pigulski (2014), Vol. H. Hu, N. Langer et al., Astrophys. J. Suppl. 220, 301ofIAUSymposium,pp.109–112

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.