Deciphering the period spacing pattern in the oscillation spectrum of the SPB star KIC7760680 WojciechSzewczuk1,⋆,JadwigaDaszyn´ska-Daszkiewicz1,andPrzemysławWalczak1 7 1AstronomicalInstituteoftheWrocławUniversity,Kopernika11,51–622Wrocław,Poland 1 0 2 Abstract. We present the analysis of KIC7760680, the rotating Slowly Pulsating B–type star identified in n the Kepler photometry. The oscillation spectrum of the star exhibits a series of 36 frequencies which are a quasi-equally spaced in period. We confirm that this series can be associated with prograde dipole modes J of consecutive radial orders. In our studies, the effects of rotation were included in the MESA equilibrium 5 modelsaswellasinthepuslational calculationsintheframeworkofthetraditionalapproximation. Wefind thatpulsationalmodelscomputedwiththeOPLIBopacitiesbestreproducetheobservedfrequencyrange. The ] modifiedopacitydatawithanenhancement oftheopacityatlogT = 5.3, 5.46and5.06weretestedaswell. R IncreasingtheOPLIBopacitiesbyabout50%atlogT =5.3issufficienttoexcitemodesinthewholerangeof S 36frequencypeaksofKIC7760680. . h p - o 1 Introduction 2 Seismic modelling r t s Knowledge of the geometry of pulsational modes is es- a [ sentialinseismicmodelling. InthecaseofKIC7760680, KIC7760680 was classified as the Slowly Pulsating B- the quasi-equally spaced in period frequency peaks sug- 1 type star by Pápics et al. [1] who found a series of 36 gestthatthesearethemodeswiththesamedegree,ℓ,az- v frequencies quasi-equally spaced in period from the Ke- imuthal order, m, and consecutive radial orders, n. Ac- 6 5 plerphotometry. Fromspectroscopicobservationstheau- cordingtoPápicsetal[1], the frequenciesareassociated 2 thors derived the effective temperature, Teff = 11650 ± withprogradedipolemodes(ℓ=1, m=+1). 1 210K, surface gravity, logg = 3.97 ± 0.08, metallic- Inordertocheckwhetherthisstatementisvalidifthe 0 ity, [M/H] = 0.14 ± 0.09 (which correspond to about effectsofrotationareincluded,bothintheequilibriumand . 1 Z = 0.017) and the minimum value of the rotational ve- pulsationalcalculations,weconstructedagridofrotating 70 locity, Vrotsini = 61.5 ± 5 kms−1. Based on the zero- stellarmodelswithinthe3σerrorboxinTeffandlogg.To rotation asymptotic theory, Pápics et al. [1] attributed thisendweusedMESAcode[10–12]consideringawide 1 : these frequencies to the prograde dipole gravity modes rangeofthe rotationalvelocity, fromVrot = 62kms−1 to v of high consecutive radial orders. Recently, Moravveji the upper limit of the validity of the traditional approxi- i X et al. [2] made a detailed seismic modelling of the star mation. Astheupperlimitweadopted200kms−1 which r taking into account effects of rotation in the framework is about a half of the break-up velocity. The step was a ofthetraditionalapproximation[e.g.,3–9]appliedtothe ∆V = 1 kms−1. We included various rotational mix- rot non-rotating MESA [10–12] evolutionary models. The ingmechanisms,i.e.,dynamicalshearinstability,Solberg- authors found that KIC7760680is a moderatelyrotating Høiland instability, secular shear instability, Eddington- starwiththerotationalfrequencyamountingto26%ofits Sweet circulation and the Goldreich-Schubert-Fricke in- Roche break up frequency(0.4805 d−1) and with a mass stability[see 11,13,14].Weassumedtheinitialhydrogen ∼ 3.25M⊙. Furthermore, they constrained the exponen- abundance,X0 = 0.7,metallicityZ = 0.017,thechemical tiallydecayingconvectivecoreovershootingparameterto mixture of Asplund et al. [15], and the overshootingpa- fov ≈0.024±0.001.Additionally,theirbestseismicmod- rameterinexponentialdescription, f = 0.02. Threecom- elsemployedextradiffusivemixingintheradiativeenve- monly used opacity data were adopted: OP [16], OPAL lope. Here, we repeat the Moravveji et al. [2] approach [17]andOPLIB[18,19]. butourcomputationsincludetheeffectsofrotationalsoin Then,wecalculatednonadiabaticpulsationmodelsin equilibrium models. In Sect.2 we present results of our theframeworkoftraditionalapproximation(herethestep seismicmodellingandconclusionsendsthepaper. in V was decreased to 0.1 kms−1) for modes which rot seemedtobegoodcandidatestoreproduceobservedseries of frequencies, i.e., (1,+0), (1,+1), (2,+0) and (2,+1). ⋆e-mail:[email protected] Since for modes other than (1,+1) the best models give 0.50 4 ℓ=1 m=+1 OP AGSS09 X =0.7, Z=0.017 3.5 0 f =0.02 ov 3 0.00 ] m 2.5 p p g o l 2 η [ A g o l 1.5 -0.50 1 observations χ2=5348, V =68.1 km s-1, M=3.34M , log T =4.0873 0.5 rot ⊙ eff χ2=5357, V =68.3 km s-1, M=3.34M , log T =4.0868 rot ⊙ eff χ2=5564, V =78.6 km s-1, M=3.46M , log T =4.0811 rot ⊙ eff 0 -1.00 0.7 0.8 0.9 1 1.1 1.2 ν [d-1] Figure 1. The best seismic models calculated with OP opacities. The observed frequencies and their amplitudes are plotted with verticallines(leftY-axis). Colourcirclesmarkedtheoreticalfrequenciesandtheirinstabilityparameter,η,canbeereedontheright Y-axis. worsequalityofthefit, χ2 (definedasinMoravvejietal. plotted. As one can see only 3–4 modes are marginally [2]), by the order of magnitude, we confirm that the fre- stable, η ≈ 0. Parametersof these modelsas wellas ob- quenciesintheseriescanbeassociatedwiththeprograde tainedwiththeOPALopacitiesaresummarisedinTable1. dipolemodes. InFig.1, the theoreticalfrequenciesof(1,+1)modes for the best three OP models are compared with the ob- served ones. The parameters of these models are sum- marisedinTable1. Withoutadoubt,thequalityoffitting Then,werecalculatedthebestOPLIBmodelwithdif- needsimprovement. Forthebestmodels,weobtainedthe ferentvaluesofthemetallicityandovershootingparameter valuesofχ2oftheorderof5500whichisthevaluealmost as well as with the modifiedOPLIB opacityprofile. The three times higherthan the one obtainedby Moravvejiet modificationsoftheOPLIBdataconsistedofanenhance- al. [2]. Thisisbecauseinourcalculationswefixedmetal- mentoftheopacityatthedepthscorrespondingtotemper- licity and overshooting parameter compared to the cited atureslogT =5.3,5.46andlogT =5.06.Theincreaseof authors. Moreover, Moravveji et al. fitted coefficient of theopacityatlogT = 5.06mimicsthenewopacitybump the extra diffusive mixing in the radiatively stable enve- identifiedinKuruczmodelsbyCugier[20]. Themodified lopewhereasweemployedrotationalinducedmixingwith models are shown in Fig.3. The increase of the opacity fixedcoefficients.InFig.1ontherightY-axisthereisalso at logT = 5.3 by about50% gives theoreticalinstability shown the instability parameter η (η ≤ 0 – stable mode, inthewholerangeoftheobservedfrequencies.Moreover, η > 0 – unstable mode). As one can see modeswith the foreachobservedfrequencywefoundacorrespondingun- lowestfrequenciesin ourbestmodelsare predictedtobe stable mode. Increasingopacityat logT = 5.46helps in stable. Thisisobviouslycontrarytotheobservationsand excitinglowfrequencymodeswhereasinstabilityofhigh needstobeimproved. frequenciesis unchanged. On the other hand, addingthe Thequalityofthefitisquantitativelythesameforeach Kuruczbump results in reducingthe pulsationalinstabil- considered opacity source but for models with OPLIB ity, both, at low and high frequencies. Larger value of opacities the theoretical instability domain is in an ex- themetallicitygivestheinstabilitydomainshiftedtowards cellent agreementwith the observedfrequencies. This is higher frequencies whereas more effective overshooting shown in Fig.2, in which three best OPLIB models are fromtheconvectivecoreactsintheoppositedirection. 4 ℓ=1 m=+1 OPLIB AGSS09 X =0.7, Z=0.017 0.20 3.5 0 f =0.02 ov 3 0.00 ] m 2.5 p p g o l 2 η [ A -0.20 g o l 1.5 1 observations -0.40 χ2=5558, V =84.3 km s-1, M=3.52M , log T =4.0772 0.5 rot ⊙ eff χ2=5622, V =84.6 km s-1, M=3.53M , log T =4.0775 rot ⊙ eff χ2=5778, V =84.1 km s-1, M=3.52M , log T =4.0778 rot ⊙ eff 0 0.7 0.8 0.9 1 1.1 1.2 ν [d-1] Figure2.ThesameasinFig.1butOPLIBmodelsareshown. Table1.Theparametersofthebestseismicmodels.Column1 tive temperature for the same mass. Rotational induced –opacitydata(#1–OP,#2–OPAL,#3–OPLIB);Column2– mixing can contribute to the differencesas well. We got mass(inthesolarmassunits)Column3–logarithmofthe a little worse quality of the fit, χ2 ∼ 5500, compared to effectivetemperature;Column4–logarithmoftheluminosity the cited authors, χ2 ∼ 2000 but in our calculations we (inthesolarluminosityunits);Column5–centralhydrogen abundance;Column6–rotationalvelocity(inkms−1);Column have fixed the metallicity and the parameter of the core 7–measureofthefittingquality. overshooting,whichMoravvejietal. [2] setasfree. Itis prominentthatinstabilitydomainofthe(1,+1)modesob- op M logT log L X V χ2 tained with the OPLIB data (see Fig.2) nearly cover the eff L⊙ c rot range of the observed 36 frequency peaks. A slight in- #1 3.340 4.0873 2.222 0.42 68.1 5348 crease of the opacity at logT = 5.3 gives an excellent #1 3.340 4.0868 2.224 0.42 68.3 5357 agreement. On the other hand, adding the Kurucz bump #1 3.460 4.0811 2.327 0.35 78.6 5564 atlogT = 5.06spoilstheagreement. Finally,itshouldbe #2 3.510 4.0807 2.375 0.31 83.3 5786 addedthatseriesoffrequenciesequidistantinperiodmay #2 3.460 4.0834 2.336 0.34 78.8 5851 be accidental as it can be reproduced by modes of vari- #2 3.510 4.0801 2.376 0.31 83.5 5998 ous angular numbers(ℓ, m; see e.g. [21]). Therefore, it #3 3.520 4.0772 2.371 0.30 84.3 5558 is desirable to confirm the results of mode identification #3 3.525 4.0775 2.373 0.30 84.6 5622 usinganothermethod,e.g., usingmulticolourtime-series #3 3.520 4.0778 2.370 0.31 84.1 5778 photometry. 3 Conclusions Acknowledgements This work was financially supported by the Polish National Science Our calculations confirmed Pápics et al. [1] finding that Centre grant 2015/17/B/ST9/02082. Calculations have been carried 36 quasi-equidistant in period frequencies observed in out using resources provided by Wrocław Centre for Networking and Supercomputing(http://wcss.pl),grantno.265. KIC7760680are most probablyassociated with the con- secutiveprogradedipolemodes. However,ourbestmod- els have slightly higher masses (from 3.340M⊙ to 3.525 References M⊙ dependingon theopacitydata) comparedto 3.25M⊙ obtained by Moravveji et al. [2]. The reason is that we [1] P.I. Pápics, A. Tkachenko, C. Aerts, T. Van Reeth, usedrotatingevolutionarymodelswhichgivelowereffec- K.DeSmedt,M.Hillen,R.Østensen,E.Moravveji, 4 V =84.3 km s-1, M=3.52M , log T =4.0772 rot ⊙ eff X =0.7, Z=0.017, f =0.02 0 ov ℓ=1 m=+1 0.20 3.5 3 0.00 ] m 2.5 p p g o l 2 η [ A -0.20 g o l 1.5 observations OPLIB AGSS09 1 OPLIB AGSS09 T53 +50% OPLIB AGSS09 T546 +50% -0.40 OPLIB AGSS09 T506 +50% 0.5 OPLIB AGSS09 f=0.03 OPLIB AGSS09 Z=0.02 0 0.7 0.8 0.9 1 1.1 1.2 ν [d-1] Figure3. BestOPLIBmodelrecalculatedwithincreasedOPLIBopacitiesby50%atlogT = 5.30(greencircles), atlogT = 5.46 (bluecircles)andatlogT =5.06(blackcircles)aswellincreasedovershootingparameter(magentatriangles)andincreasedmetallicity (cyantriangles).OriginalOPLIBmodelismarkedbyredcircles.ThecoordinatesmeaningisthesameasinFig1. Astrophys.J.803,L25(2015) 15(2015) [2] E.Moravveji,R.H.D.Townsend,C.Aerts,S.Mathis, [13] A. Heger, N. Langer, S.E. Woosley, Astrophys. J. Astrophys.J.823,130(2016) 528,368(2000) [3] U.Lee,H.Saio,Astrophys.J.491,839(1997) [14] A. Heger, S.E. Woosley, H.C. Spruit, Astrophys. J. [4] R.H.D.Townsend,MNRAS340,1020(2003) 626,350(2005) [5] R.H.D.Townsend,MNRAS343,125(2003) [15] M.Asplund,N.Grevesse,A.J.Sauval,P.Scott,Ann. Rev.Astron.Astrophys.47,481(2009) [6] R.H.D.Townsend,MNRAS360,465(2005) [16] M.J.Seaton,MNRAS362,L1(2005) [7] R.H.D.Townsend,MNRAS364,573(2005) [17] C.A. Iglesias, F.J. Rogers, Astrophys. J. 464, 943 [8] W.A. Dziembowski, J. Daszyn´ska-Daszkiewicz, (1996) A.A.Pamyatnykh,MNRAS374,248(2007) [18] J. Colgan, D.P. Kilcrease, N.H. Magee, J. Abdal- [9] J. Daszynska-Daszkiewicz, W.A. Dziembowski, lah,M.E.Sherrill,C.J.Fontes,P.Hakel,H.L.Zhang, A.A.Pamyatnykh,ActaAstron.57,11(2007) HighEnergyDensityPhysics14,33(2015) [10] B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, F. Timmes, Astrophys. J. Suppl. 192, 3 [19] J.Colgan,D.P.Kilcrease,N.H.Magee,M.E.Sherrill, J. Abdallah, Jr., P. Hakel, C.J. Fontes, J.A. Guzik, (2011) K.A.Mussack,Astrophys.J.817,116(2016) [11] B. Paxton, M. Cantiello, P. Arras, L. Bildsten, [20] H.Cugier,Astron.&Astrophys.565,A76(2014) E.F. Brown, A. Dotter, C. Mankovich, M.H. Mont- gomery,D.Stello,F.X.Timmesetal.,Astrophys.J. [21] W. Szewczuk, J. Daszyn´ska-Daszkiewicz, Suppl.208,4(2013) W. Dziembowski, Interpretation of the oscilla- tion spectrum of HD 50230 - a failure of richness, [12] B. Paxton, P. Marchant, J. Schwab, E.B. Bauer, inPrecisionAsteroseismology,editedbyJ.A.Guzik, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, W.J. Chaplin, G. Handler, A. Pigulski (2014), Vol. H. Hu, N. Langer et al., Astrophys. J. Suppl. 220, 301ofIAUSymposium,pp.109–112