ebook img

Decidability of Logical Theories and Their Combination PDF

185 Pages·2020·1.891 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decidability of Logical Theories and Their Combination

Studies in Universal Logic João Rasga Cristina Sernadas Decidability of Logical Theories and Their Combination Studies in Universal Logic Series Editor Jean-Yves Béziau (Federal University of Rio de Janeiro, Rio de Janeiro, Brazil) Editorial Board Hajnal Andréka (Hungarian Academy of Sciences, Budapest, Hungary) Mark Burgin (University of California, Los Angeles, CA, USA) Răzvan Diaconescu (Romanian Academy, Bucharest, Romania) Andreas Herzig (University Paul Sabatier, Toulouse, France) Arnold Koslow (City University of New York, New York, USA) Jui-Lin Lee (National Formosa University, Huwei Township, Taiwan) Larissa Maksimova (Russian Academy of Sciences, Novosibirsk, Russia) Grzegorz Malinowski (University of Lódz, Lódz, Poland) Francesco Paoli (University of Cagliari, Cagliari, Italy) Darko Sarenac (Colorado State University, Fort Collins, USA) Peter Schröder-Heister (University of Tübingen, Tübingen, Germany) Vladimir Vasyukov (Russian Academy of Sciences, Moscow, Russia) This series is devoted to the universal approach to logic and the development of a general theory of logics. It covers topics such as global set-ups for fundamental theorems of logic and frameworks for the study of logics, in particular logical matrices, Kripke structures, combination of logics, categorical logic, abstract proof theory, consequence operators, and algebraic logic. It includes also books with historical and philosophical discussions about the nature and scope of logic. Three types of books will appear in the series: graduate textbooks, research monographs, and volumes with contributed papers. More information about this series at http://www.springer.com/series/7391 ã Jo o Rasga Cristina Sernadas (cid:129) Decidability of Logical Theories and Their Combination João Rasga Cristina Sernadas Department ofMathematics Department ofMathematics Instituto Superior Técnico, Universidade de Instituto Superior Técnico, Universidade de LisboaandInstituto deTelecomunicações LisboaandInstituto deTelecomunicações Lisboa, Portugal Lisboa, Portugal ISSN 2297-0282 ISSN 2297-0290 (electronic) Studies in UniversalLogic ISBN978-3-030-56553-4 ISBN978-3-030-56554-1 (eBook) https://doi.org/10.1007/978-3-030-56554-1 MathematicsSubjectClassification: 03B10,03B25,03B62 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The main objective of the book is to provide a self-contained introduction to decidability of first-order theories to graduate students of Mathematics and is equally suitable for Computer Science and Philosophy students who are interested in gaining a deeper understanding of the subject. The book is also directed to researchers that intend to get acquainted with first-order theories and their combi- nations. The technical material is presented in a systematic and universal way and illustrated with plenty of examples and a range of proposed exercises. Thebookisorganizedasfollows.InChap.1,westartbyprovidinganoverview ofbasicfirst-orderlogicconceptsandresults(thereadercanfindmoreinformation on these preliminaries in [1–5]). Then, we introduce some important model-theoretic notions like embeddings, diagrams and elementary substructures amongothersandstatesomerelevantproperties(see[6–9]).Moreover,wereferto theoriesandgivesomeexamples.Chapter2concentratesonGentzencalculus(see [10–12]) as a way of reasoning about theories. The chapter begins with the pre- sentationofasequentcalculusforfirst-orderlogicalongwithsometechnicalresults about the calculus, namely, the Inversion Lemma and the Admissibility of WeakeningandContractionLemmas.Thecalculusisshowntobesoundaswellas complete using Hintikka sets (see [13–15]). Then, Gentzen’s Hauptsatz (Cut Elimination Theorem) and Craig’s Interpolation Theorem are proved. Chapter 3 presentssufficientconditionsforatheorytobedecidable,namely,whenthetheory is axiomatizable and either has computable quantifier elimination or is complete. Moreover, we analyze sufficient conditions for a theory to be complete: quantifier elimination(aconceptthatwasfirstusedin[16])andcategoricity(see[17,18,9]). These results are illustrated by showing the decidability of the theories of real closedorderedfields(see [19])anddenselinearorderswithoutendpoints(see[20, 21]). The chapter provides an explicit connection to computability theory and the works of Kurt Gödel, Alan Turing and Alfred Tarski on reduction techniques for proving decidability or undecidability of theories. The reduction technique is illustrated by showing that the theory of Euclidean geometry is decidable via reduction to the theory of real closed ordered fields. Chapter 4 is dedicated to quantifier elimination. After discussing the symbolic approach illustrated with the v vi Preface theoryofalgebraicallyclosedfields,somemodel-theoreticconditionsarepresented (see [6–9]) and exemplified with the Presburger arithmetic (see [22]), divisible torsion-freeAbeliangroups(see[23])andthesuccessortheory.Chapter5addresses the contemporary topic of combination of theories with the aim of obtaining preservation results in a universal way. Namely, we discuss preservation of satis- fiabilityanddecidability when combiningtheories bytheNelson-Oppentechnique (see [24–27]). The theories only share equality and are stably infinite. The book ends with an Appendix presenting a modicum of computability theory (see [28– 30]). The Appendix follows closely [30], namely, adopting as the computational model an abstract high-level programming language. The concepts of computable function, decidable set and listable set are defined and explored. The problem reduction technique is also discussed. Lisbon, Portugal João Rasga October 2019 Cristina Sernadas References 1. E.Mendelson,IntroductiontoMathematicalLogic,6thedn.(ChapmanandHall,2015) 2. R.Cori,D.Lascar, MathematicalLogic,PartI,Propositional Calculus,BooleanAlgebras, PredicateCalculus(OxfordUniversityPress,2000) 3. R. Cori, D. Lascar, Mathematical Logic, Part II, Recursion Theory, Gödel Theorems, Set Theory,ModelTheory(OxfordUniversityPress,2001) 4. H.B.Enderton,AMathematicalIntroductiontoLogic,2ndedn.(AcademicPress,2001) 5. A. Sernadas, C. Sernadas, Foundations of Logic and Theory of Computation, 2nd edn. (CollegePublications,2012) 6. C.C.Chang,H.J.Keisler,.ModelTheory(Dover,2012) 7. W. Hodges, Model theory, in Encyclopedia of Mathematics and its Applications, vol. 42(CambridgeUniversityPress,1993) 8. W.Hodges,AShorterModelTheory(CambridgeUniversityPress,1997) 9. D. Marker, Model theory: an introduction, in Graduate Texts in Mathematics, vol. 217(Springer,2002) 10. G. Gentzen, The Collected Papers of Gerhard Gentzen, in. Studies in Logic and the FoundationsofMathematics,ed.byM.E.Szabo(North-Holland,1969) 11. A.S. Troelstra, H. Schwichtenberg. Basic Proof Theory, vol. 43, 2nd edn. (Cambridge UniversityPress,2000) 12. J.Gallier,LogicforComputerScience:FoundationsofAutomaticTheoremProving(Dover, 2015) 13. R.M.Smullyan,First-OrderLogic(Springer,1968) 14. W.Hodges,AShorterModelTheory(CambridgeUniversityPress,1997) 15. J.Gallier,LogicforComputerScience:FoundationsofAutomaticTheoremProving(Dover, 2015) 16. T. Skolem, Selected Works in Logic by Th. Skolem, ed. by J.E. Fenstad. Scandinavian UniversityBooks(Universitetsforlaget,1970) 17. C.Ryll-Nardzewski,Onthecategoricityinpower (cid:1)N .Bulletindel’AcadémiePolonaise 0 des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, 7, 545–548, (1959) Preface vii 18. R.L.Vaught,Denumerablemodelsofcompletetheories,inInfinitisticMethods(Proceedings oftheSymposiumFoundationsofMathematics,Warsaw,1959) (Pergamon,1961)pp.303– 321 19. A.Tarski,ADecisionMethodforElementaryAlgebraandGeometry,2ndedn.(Universityof CaliforniaPress,1951) 20. C.H.Langford.Sometheoremsondeducibility.Ann.Math.28(1–4),16–40(1927) 21. C.H.Langford,Theoremsondeducibility.Ann.Math.28(1–4),459–471(1927) 22. M.Presburger, On thecompleteness of acertain system ofarithmetic of wholenumbers in whichadditionoccursastheonlyoperation.Hist.PhilosophyofLogic.12(2),225–233(1991) 23. S.Lang,Algebra,inGraduateTextsinMathematics,vol,211,3rdedn.(Springer,2002) 24. G. Nelson, D.C. Oppen, Simplification by cooperating decision procedures. ACM TransactionsonProgrammingLanguagesandSystems,1(2),245–257(1979) 25. D.C. Oppen, Complexity, convexity and combinations of theories. Theoretical Computer Science,12,291–302(1980) 26. A.R. Bradley, Z. Manna, The Calculus of Computation: Decision Procedures with ApplicationstoVerification(Springer,2007) 27. D. Kroening, O. Strichman, Decision Procedures: An Algorithmic Point of View, 2nd edn. (Springer,2016) 28. N.J. Cutland, Computability: An Introduction to Recursive Function Theory (Cambridge UniversityPress,1980) 29. D.S.Bridges,Computability,inGraduateTextsinMathematics,vol.146(Springer,1994) 30. A. Sernadas, C. Sernadas, J. Rasga, J. Ramos, A Mathematical Primer on Computability (CollegePublications,2018) Acknowledgements WewouldliketoexpressourdeepestgratitudetothemanystudentsofMathematics ofInstitutoSuperiorTécnico,whoattendedtheFoundationsofLogicandTheoryof ComputationMSccourse.WearealsogratefultoourcolleaguesWalterA.Carnielli andAmílcarSernadasformanydiscussionsonlogicandcomputabilitytheory.This workwassupportedbytheInstitutodeTelecomunicações,namelyitsSecurityand Quantum Information Group, by the Fundação para a Ciência e a Tecnologia (FCT) through national funds; by FEDER, COMPETE 2020; and by Regional OperationalProgramofLisbon,underUIDB/50008/2020.Lastbutnottheleast,we greatlyacknowledgetheexcellentworkenvironmentprovidedbytheDepartmentof Mathematics of InstitutoSuperior Técnico, Universidade de Lisboa. ix Contents 1 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Elementary Substructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.6 Theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 Reasoning with Theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1 Gentzen Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Soundness of the Gentzen Calculus . . . . . . . . . . . . . . . . . . . . . . . 47 2.3 Completeness of the Gentzen Calculus. . . . . . . . . . . . . . . . . . . . . 50 2.4 Cut Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 Craig Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3 Decidability Results on Theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Decidability via Computable Quantifier Elimination . . . . . . . . . . . 76 3.3 Decidability via Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Decidability via Completeness. . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.5 Completeness via Quantifier Elimination . . . . . . . . . . . . . . . . . . . 84 3.6 Completeness via Categoricity. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1 Constructive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 9-Embeddings and Algebraically Prime Models . . . . . . . . . . . . . . 109 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.