ebook img

Deceptiveness and Neutrality - the ND family of fitness landscapes PDF

0.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deceptiveness and Neutrality - the ND family of fitness landscapes

Deceptiveness and Neutrality The ND Family of Fitness Landscapes William Beaudoin, Se´bastien Verel, Philippe Collard, Cathy Escazut UniversityofNice-SophiaAntipolis I3SLaboratory SophiaAntipolis,France {beaudoin,verel,pc,escazut}@i3s.unice.fr 9 ABSTRACT dynamics of populations evolving on such neutral landscapes are 0 differentfromthoseonadaptivelandscapes:theyarecharacterized 0 Whenaconsiderable number of mutationshaveno effectson fit- by long periods of fitness stasis (population stated on a ’neutral 2 nessvalues,thefitnesslandscapeissaidneutral. Inordertostudy network’) punctuated by shorter periods of innovation withrapid the interplaybetween neutrality, whichexistsin manyreal-world n fitnessincreases[3].Inthefieldofevolutionarycomputation,neu- applications,andperformancesofmetaheuristics,itisusefultode- a trality plays an important role in real-world problems: in design sign landscapes which make it possible to tune precisely neutral J of digital circuits [4] [5] [6], in evolutionary robotics [7] [8]. In degree distribution. Eventhough manyneutral landscape models 3 thoseproblems,neutralityisimplicitlyembeddedinthegenotype have already been designed, none of them are general enough to 2 tophenotypemapping. create landscapes with specific neutral degree distributions. We propose three steps to design such landscapes: first using an al- ] 1.1 Neutrality I gorithm we construct a landscape whose distribution roughly fits A thetargetone,thenweuseasimulatedannealingheuristictobring Werecallafewfundamental concepts about fitnesslandscapes . closer thetwodistributionsand finallyweaffect fitnessvalues to andneutrality(see[9]foramoredetailedtreatment). Alandscape s c eachneutralnetwork. Thenusingthisnewfamilyoffitnessland- isatriplet(S,V,f) where S isaset of potential solutions i.e. a [ scapesweareabletohighlighttheinterplaybetweendeceptiveness searchspace,V : S → 2S,aneighbourhood structure,isafunc- andneutrality. tion that assigns to every s ∈ S a set of neighbours V(s), and 1 f :S →IRisafitnessfunctionthatcanbepicturedasthe“height” v Categories andSubject Descriptors ofthecorrespondingpotentialsolutions.Theneighbourhoodisof- 9 tendefinedbyanoperator likebitflipmutation. Aneutral neigh- 6 I.2.8[ArtificialIntelligence]:ProblemSolving,ControlMethods, bour of sisaneighbour withthesamefitnessf(s). Theneutral 7 andSearch. degree of a solution is the number of its neutral neighbours. A 3 fitness landscape is neutral if there are many solutions with high . 1 General Terms neutral degree. A neutral network, denoted NN, is a connected 0 graphwhereverticesaresolutionswiththesamefitnessvalueand Algorithms,performance,design,experimentation. 9 twoverticesareconnectediftheyareneutralneighbours. 0 : Keywords 1.2 Fitness Landscapes withNeutrality v i Fitnesslandscapes,geneticalgorithms,search,benchmark. Inordertostudytherelationshipbetweenneutrality,dynamicsof X EvolutionaryAlgorithms(EA)andsearchdifficulty, somebench- r 1. INTRODUCTION marksofneutrallandscapeshavebeenproposed. Moreoftenneu- a tralityiseitheranadd-onfeature,asinNK-landscapes,oraninci- TheAdaptativeLandscapemetaphorintroducedbyS.Wright [1] dentalproperty,asinRoyal-Roadfunctions. Inmostcasesthede- hasdominatedtheviewofadaptiveevolution: anuphillwalkofa signactsupontheamountofsolutionswiththesamefitness.Royal- populationonamountainousfitnesslandscapeinwhichitcanget Roadfunctions [10] aredefinedon binarystringsof lengthN = stuckonsuboptimalpeaks. Resultsfrommolecularevolutionhas n.k wherenisthenumberofblocksandkthesizeofoneblock. changed this picture: Kimura’s model [2] assumes that the over- Thefitnessfunctioncorrespondstothenumberofblockswhichare whelming majority of mutations are either effectively neutral or setwithk bitsvalue1andneutralityincreaseswithk. Numerous lethalandinthelattercasepurgedbynegativeselection. Thisas- landscapesarevariantofNK-Landscapes[11].Thefitnessfunction sumption iscalled theneutral hypothesis. Under thishypothesis, of anNK-landscape isafunction f : {0,1}N → [0,1) defined onbinarystringswithN bits. An’atom’withfixedepistasislevel isrepresentedbyafitnesscomponentfi :{0,1}K+1 →[0,1)as- sociatedtoeachbiti. Itdependsonthevalueatbitiandalsoon Permission tomake digital orhardcopies ofall orpartofthis workfor the values at K other epistatic bits. The fitness f is the average personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare ofthevaluesoftheN fitnesscomponents fi. Severalvariantsof notmadeordistributedforprofitorcommercialadvantageandthatcopies NK-landscapes try to reduce the number of fitness values in or- breepaurbthliisshn,ototicpeosatnodnthseerfvuelrlscoitrattoiornedoinsttrhibeufitersttoplaisgtes.,rTeoquciorpeysporthioerrwspiesec,ifitoc dertoaddsomeneutrality. InNKp-landscapes[12],fi(x)hasa permissionand/orafee. probabilityptobeequalto0; inNKq-landscapes[13],fi(x)is Copyright200XACMX-XXXXX-XX-X/XX/XX...$5.00. uniformlydistributedintheinterval[0,q−1]∩IN;inTechnological Landscapes [14], tunedbyanaturalnumber M, f(x)isrounded sothatitcanonlytakeM differentvalues. Forallthoseproblems, neutralityistunedbyoneparameteronly: neutralityincreasesac- cording top and decreases with q or M (see for example Figure 2). Dynamics of a population on a neutral network are complex, evenonflatlandscapesasshownbyDerrida[15]. Theworks[16] [17][18][19],attheinterplayofmolecularevolutionandoptimiza- 00000 00010 00100 10101 11001 tion,studytheconvergenceofapopulationonneutralnetworks.In thecase ofinfinitepopulation under mutationand selection, they showdistributiononaNN isonlydeterminedbythetopologyof 00001 10000 01000 00011 10010 00101 01001 01010 00110 10100 10111 11101 11011 thisnetwork. Thatistosay,thepopulationconvergestothesolu- tionsintheNN withhighneutraldegree.Thus,theneutraldegree distributionisanimportantfeatureofneutrallandscapes. 10001 11000 01100 00111 10011 11010 01101 01011 01110 Inordertostudymorepreciselyneutrality,forinstancelinkbe- tweenneutralityandsearchdifficulty,weneedfor“neutrality-driven design” whereneutralityreallyguidesthedesignprocess. Inthis 10110 11100 01111 paper we propose to generate a family of landscapes where it is possibletotuneaccuratelytheneutraldegreeofsolutions. 11110 11111 2. ND-LANDSCAPES In this section, we first present an algorithm to create a land- Figure1: ExampleofatinyND-Landscape. Eachnoderepre- scapewithagivenneutraldegreedistribution.Thenwewillrefine sentsasolutionand twonodesareconnected iftheyhave the themethodtoobtainmoreaccuratelandscapesandfinallywewill samefitnessvalueandareHammingneighbours.Inthisexam- studytimeandspacecomplexityofthealgorithm. pletherearefiveneutralnetworks. 2.1 An algorithmto design smallND-Landscape Wenow introduce asimplemodel ofneutral landscapes called ND-LandscapeswhereNreferstothenumberofbitsofasolution andDtotheneutraldegreedistribution.Inthisfirststepouraimis toprovideanexhaustivedefinitionofthelandscapeassigningone fitnessvaluetoeachsolution.WefixNto16bitsandsothesizeof searchspaceis216. BuildingaND-Landscapeisdonebysplitting thesearchspaceintoneutralnetworks. Howeverthefitnessvalue ofeachneutralnetworkhasnoinfluenceontheneutrality. Thisis whythesefitnessvaluesarerandomlychosen. LetDbeanarrayofsizeN+1representinganeutraldegreedis- tribution. NandDaregivenasinputsandthealgorithm(seealgo- Algorithm1GenerationofND-Landscapes rithm1) returnsafitnessfunction f from{0,1}N toIRsuch that ∀s∈S, f[s]←unaffected theneutraldegreedistributionofthefitnesslandscapeissimilarto randomlychooseonesolutions . 0 D.For moresimplicity, wechosetogiveadifferentfitnessvalue CandidatesList←Ssortedbydistancefroms . 0 toeachneutralnetwork.WedefineRouletteWheel(D)asarandom whilenotempty(CandidatesList) do variablewhosedensityisgivenbydistributionD.Itisdirectlyin- s←head(CandidatesList) spiredfromthegeneticalgorithmselectionoperator. Forexample: ford=0toNdo let∆bethefollowingdistribution: ifscan’thavedneutralneighbours ∆[0]=0 ∆[1]=0.25 ∆[2]=0.5 ∆[3]=0.25.RouletteWheel(∆) thenD’[d]←0 willreturnvalue1in25%ofthetime,2in50%ofthetimeand elseD’[d]←D[d] 3in25%ofthetime. Figure1showstheneutralnetworksofan endfor idealND-Landscape(size=25)forthedistribution∆. n←RouletteWheel(D’[d]) 2.2 AmetaheuristictoimprovetheNDdesign Giveavaluetosomeunaffectedneighbourssothatshasex- actlynneutral neighbours and sothat theneutral degreesof Usingalgorithm1,exhaustivefitnessallocationdoesnotcreate alreadychosensolutions(6∈CandidatesList)areunchanged. alandscapewithaneutraldegreedistributioncloseenoughtothe D[n]←D[n]- 1 inputdistribution. Thereasonisthefitnessfunctioniscompletely 2N CandidatesList←next(CandidatesList) defined beforetheneutral degree ofevery solutionhasbeen con- endwhile sidered. Hence,weuseasimulatedannealingmetaheuristictoim- prove the landscape created by algorithm 1. Here, simulated an- nealingisnotusedtofindagoodsolutionofaND-Landscapebut toadjustthelandscapebymodifyingthefitnessofsomesolutions suchasneutraldistributionofaND-Landscapebeclosertothein- put distribution. The local operator is the changement of fitness valueofonesolutionofthelandscape,whichcanalteratmostN+1 0.35 0.25 0.3 0.2 0.25 Frequency 0 0.1.25 Frequency 0 0.1.15 0.1 0.05 0.05 0 0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 Neutral Degree Neutral Degree NKpwithN =16,K =5,p=0.8 NKqwithN =16,K =4,q=2 average:5.16stddev:2.37 average:3.94stddev:1.74 0.25 0.35 0.3 0.2 0.25 Frequency 0 0.1.15 Frequency 0 0.1.25 0.1 0.05 0.05 0 0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16 Neutral Degree Neutral Degree TechnologicallandscapewithN =16,K =4,M =20 RoyalRoadwithN =16,n=4,k=4 average:5.49stddev:1.99 average:14.0stddev:2.00 Figure2:Neutraldegreedistributionforsomeneutrallandscapes neutraldegrees.Theacceptanceofatransitionisdeterminedbythe ConsequentlywecanonlyconstructND-Landscapeswithasmall differencebetweenthedistancetotheinputdistributionbeforeand N(≤ 16)butwewillseeinsection4howtocreateAdditiveEx- afterthistransition. Thedistanceweusetocomparetwodistribu- tendedND-Landscapeswithfargreatersearchspaces. tionsistherootmeansquare: 2.4 Sizes ofthe generated Neutral Networks N Figure4shows the diversityof sizesof neutral networks for 4 dist(D,D )= (D[i]−D [i])2 distributions. For every distribution we created 50 different ND- 0 v 0 uuXi=0 Landscapes. Graphicsontheleftshowtheinputandthemeanre- Simulatedannealingappeartedtobeafastandefficientmethod sultingdistribution.Graphicsontherightshowallofthenetworks of these landscapes sorted by decreasing size with a logarithmic forthisparticulartask.Improvementsmadebysimulatedannealing scale. Weclearlyseethattheneutraldegreedistributionisareally areshowninfigure3.Easiestneutraldistributionstoobtainseemed determiningparameterforthestructureofthegeneratedlandscape. tobesmoothoneslikegaussiandistributions(whicharethemost encounteredwhendealingwithrealorartificialneutralproblems). Ontheotherhand,sharpdistributions(likethemiddle-rightoneof 3. TUNING DECEPTIVENESS figure 3) are really hard to approach. In addition, independently OF ND-LANDSCAPES of theshape, distributionswithhigher average neutral degree are hardertoapproximate. Oncewehavegeneratedalandscapewithaspecificneutralde- greedistribution,wecanchangethefitnessvalueofallneutralnet- 2.3 Space and Timecomplexity workswithoutchangingtheneutraldegreedistribution(aslongas Tocreatealandscapewithasearchspaceofsize2N,weusean wedonotgivethesamefitnesstotwoadjacentnetworks). Hence, array of size 2N containing fitness values and a list of forbidden foragivenneutraldistribution,wecantunethedifficultyofaND- values for each solution. Thus we need a memory space of size Landscape. ForinstanceifeachNN havearandomfitnessvalue O(2N ×N).Consequentlythespacecomplexityis:O(2N ×N) from[0,1]thenthelandscape isveryhardtooptimize. Here, we Inordertoknowwhatarethepossibleneutraldegreesofanun- willusethewellknownTrapFunctions[20]toaffectfitnessesto affectedsolutions,wemustconsidereveryinterestingvaluefors NN in order to obtain a ND-Landscape with tunable deceptive- (thefitnessesofallneighbour solutionsandarandomvalue), and ness. foreachofthesevalues, wemustfindoutallpossibleneutralde- Thetrapfunctionsaredefinedfromthedistancetooneparticular grees.ThiscanbedoneinatimeO(N2).Weevaluatethepossible solution. They admit two optima, a global one and a local one. neutraldegreesonceforeachsolution.Timeallowedforsimulated Theyareparametrizedbytwovaluesbandr.Thefirstone,ballows annealing isproportional tothetimeelapsed duringconstruction. tosetthewidthoftheattractivebasinforeachoptima,andr sets Thus,thetimecomplexityofthealgorithmisO(2NN2). theirsrelativeimportance. ThefunctionfT : {0,1}N → IRisso 0.25 D1 : construction D1 : construction D2 : adjustment 0.3 D2 : adjustment D0 : target distribution D0 : target distribution 0.2 0.25 0.15 0.2 0.15 0.1 0.1 0.05 0.05 0 0 0 2 4 6 8 10 0 2 4 6 8 10 dist(D ,D )=0.110 dist(D ,D )=0.119 1 0 1 0 dist(D ,D )=0.00338 dist(D ,D )=0.0175 2 0 2 0 0.25 D1 : construction 0.25 D1 : construction D2 : adjustment D2 : adjustment D0 : target distribution D0 : target distribution 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 dist(D ,D )=0.0937 dist(D ,D )=0.151 1 0 1 0 dist(D ,D )=0.00246 dist(D ,D )=0.0693 2 0 2 0 0.25 D1 : construction D1 : construction D2 : adjustment 0.2 D2 : adjustment D0 : target distribution D0 : target distribution 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 2 4 6 8 10 0 2 4 6 8 10 dist(D ,D )=0.0750 dist(D ,D )=0.0917 1 0 1 0 dist(D ,D )=0.0103 dist(D ,D )=0.00403 2 0 2 0 Figure3:NeutralDegreeDistributionsobtainedbyalgorithm1(D )andthenadjustedbysimulatedannealing(D ).Neutraldegrees 1 2 areonabcissa.Impulsesrepresentthetargetdistributions(D ). 0 definedby: nessvalueoftheNN issetaccordingtoatrapfunction2 andthe distanced. Inordertoensurethatalladjacentnetworkshavedif- 1.0− d(x) ifd(x)≤b, ferentfitnessvalues,itispossibletoaddawhitenoisetothefitness fT(x)=(r(d1.(0x−)−bbb) elsewhere values of each NN. In the following experiments, the length of bitstringisN = 16. ND-landscapesareconstructedwithuniform where d(x) is the Hamming distance to the global optimum, di- neutraldegreedistributions.Weusethedistributionsdefinedby videdbyN,betweenxandoneparticularsolution.Theproblemis mostdeceptiveasrislowandbishigh.Inourexperiment,wewill 1/w ifi∈{p,p+w−1}, usetwokindsofTrapfunctionswithr = 0.9,onewithb = 0.25 Dp,w[i]= andanotheronewithb=0.75(seefigure5(a)and(b)). (0 elsewhere Toaffectafitnessvaluetoeachneutralnetwork,wefirstchoose where p ∈ {0,7}, w ∈ {3,4}, and the two Trap functions de- the optimum neutral network, denoted NNopt, (for example the finedinfigure5. ForeachdistributionandeachTrapfunction,30 onecontainingthesolution0N)andsetitsfitnesstothemaximal landscapesweregenerated. value1.0.Then,foreachneutralnetwork,wecomputethedistance dbetweenitscentroid1 andthecentroidofNNopt ;finallythefit- ofbitvalue1ateachposition. 1ThecentroidofaNN isthestringofthefrequencyofappearance 2Thistrapfunctionisdefinedforallrealnumbersbetween0andN 0.3 DD02 104 0.25 0.2 103 proportion 0.15 size (log) 102 0.1 10 0.05 0 1 0 2 4 6 8 10 12 14 16 1 10 102 103 neutral degree rank (log) meanneutraldegree5.15 0.18 0.16 DD02 104 0.14 0.12 103 proportion 0 0.0.18 size (log) 102 0.06 0.04 10 0.02 0 1 0 2 4 6 8 10 12 14 16 1 10 102 103 neutral degree rank (log) meanneutraldegree5.00 0.09 0.08 DD02 104 0.07 0.06 103 proportion 00..0045 size (log) 102 0.03 0.02 10 0.01 0 1 0 2 4 6 8 10 12 14 16 1 10 102 103 neutral degree rank (log) meanneutraldegree5.50 0.3 DD02 104 0.25 0.2 103 proportion 0.15 size (log) 102 0.1 10 0.05 0 1 0 2 4 6 8 10 12 14 16 1 10 102 103 neutral degree rank (log) meanneutraldegree4.00 Figure4:NeutralnetworkssizesforvariousND-landscapes 3.1 Fitness DistanceCorrelation where: ofND-Landscapes m 1 Toestimatethedifficultytosearchintheselandscapeswewill CFD = (fi−f)(di−d) m useameasureintroducedbyJones[21]calledfitnessdistancecor- i=1 X relation(FDC).GivenasetF = {f1,f2,...,fm}ofmindividual isthecovarianceofF andDandσF,σD,f anddarethestandard fitnessvaluesandacorrespondingsetD={d1,d2,...,dm}ofthe deviations and averages of F and D. Thus, by definition, FDC mdistancestotheglobaloptimum,FDCisdefinedas: stands in the range [−1,1]. As we hope that fitness increases as distancetoglobaloptimumdecreases,weexpectthat,withanideal fitnessfunction, FDCwillassumethevalueof−1. Accordingto Jones[21],problemscanbeclassifiedinthreeclasses,depending FDC = CFD onthevalueoftheFDCcoefficient: σFσD 1 1 deceptive trap (a) 0.9 easy trap (b) 0.8 0.8 0.6 0.6 fitness 0.4 0.4 0.2 0.2 FDC 0 0 -0.2 0 2 4 6 8 10 12 14 16 distance -0.4 (a) -0.6 1 0.9 -0.8 0.8 -1 0 1 2 3 4 5 6 7 8 9 average neutral degree 0.6 fitness 0.4 Figure6:AverageandstandarddeviationofFDCasafunction ofaverageneutraldegreeforND-landscapescreatedfromeasy 0.2 anddeceptiveTrapfunctions. 0 0 2 4 6 8 10 12 14 16 distance (b) degree 5, the landscapes are fully deceptive (a) or fullyeasy (b). Betweenneutraldegree5and7,thedeceptivenessandtheeasiness Figure5:Twotrapfunctions:Deceptiveonewithb=0.25and decrease.Afterneutraldegree7,thetwotrapfunctionshavenearly r=0.9(a),Easyonewithb=0.75andr=0.9(b) asamegoodsuccessrate(0.7). WhereastheFDCcoefficientgave noinformationaboutperformances,examiningthescatterplotfit- ness/distance allowed to predict these good performances (figure 7(c)). Whenneutralityincreasesondeceptivetrap,performances • Deceptive problems (FDC ≥ 0.15), in which fitness in- increasewhereasoneasytraptheydecrease.Theseresultsconfirm creaseswithdistancetooptimum. conclusionsfoundinsection3.1fromFDCmeasures. • Hardproblems(−0.15 < FDC < 0.15)inwhichthereis nocorrelationbetweenfitnessanddistance. 4. ADDITIVEEXTENDED ND-LANDSCAPES • Easyproblems(FDC ≤ −0.15)inwhichfitnessincreases astheglobaloptimumapproaches. Exhaustivefitnessallocationallowsonlytogeneratelandscapes withsmallsearchspace(inourexperiments216solutions). Hence Hardproblemsareinfacthardtopredict,sinceinthiscase,the wemustfindawaytoconstructsimilarproblemsonalargerscale. FDCbringslittleinformation.Thethresholdinterval[−0.15,0.15] We propose here to concatenate several small ND-Landscapes to has been empirically determined by Jones. When FDC does not create an additive ND-Landscape. Even though we are not able give a clear indication i.e., inthe interval [−0.15,0.15], examin- tocreateanadditiveND-Landscapedirectlyfromaneutraldegree ing the scatterplot of fitness versus distance can be useful. The distributionwecanchosethemean,thestandarddeviationandless FDChasbeencriticizedonthegroundsthatcounterexamplescan precisely the shape of his neutral degree distribution. Moreover, beconstructedforwhichthemeasuregiveswrongresults[22,23, thismethodallowsustoknowexactlytheneutraldegreedistribu- 24]. tion of the resulting landscape. Let be P = (E ,V ,f ) and Figure6showstheaverageandstandarddeviationofFDCover 1 1 1 1 P = (E ,V ,f )twofitnesslandscapes.Wedefinetheextended ND-Landscapesforeachsetofparameters,neutraldistributionand 2 2 2 2 landscapeP =P ⊕P = (E,V,f)suchas: deceptiveness. TheabsolutevalueofFDCdecreasesaswegener- 1 2 ateND-Landscapeswithmoreandmoreneutrality. Whenadding • E =E ×E 1 2 neutrality,thelandscapesareincreasinglyflatterandthuslesseasy ordeceptive.Soneutralitysmoothescorrelation.Addingneutrality • ∀(x ,y )∈E2,∀(x ,y )∈E2, 1 1 1 2 2 2 toadeceptivelandscapemakesiteasierandaddingneutralitytoa (x ,x ) ∈ V(y ,y ) ⇐⇒ (x ∈ V (y ) and x = 1 2 1 2 1 1 1 2 easylandscapemakesitharder. y )or(x =y andx ∈V (y )) 2 1 1 2 2 2 3.2 Genetic Algorithm Performances on ND- • f(x ,x )=f (x )+f (x ) 1 2 1 1 2 2 Landscapes ThesizeofthelargerND-landscapewillbetheproductofthesizes Inthissection, difficultyismeasuredbygeneticalgorithmper- ofthesmallones. Theneutraldegreedistributionoftheresulting formanceswhichisthesuccessrateover10independent runs. In landscapeistheconvolutionproductofthetwocomponentsdistri- order to minimize the influence of the random creation of ND- butions. TheconvolutionproductoftwodistributionsD andD 1 2 Landscapes, we consider 30 different landscapes for each distri- isthedistributionD(seefigure9)suchas bution D and each trap function. For the GA, one-bit mutation andone-pointcrossoverareusedwithratesofrespectively0.8and n ∀n∈IN,D(n)= (D (i)×D (n−i)) 0.2. Theevolution, without elitismandwith3-tournament selec- 1 2 tionofapopulationof50individualstookplaceduring50gener- Xi=0 ations. Figure8showsaverageandstandarddeviationofGAper- Wehavethefollowingproperties: formances over the 30 ND-landscapes. Until the average neutral 1 deceptive trap (a) 1 easy trap (b) 0.9 0.8 0.8 0.6 s 00..67 Success rate 0.4 s e 0.5 n fit 0.4 0.2 0.3 0 0.2 1 2 3 4 5 6 7 8 9 average neutral degree 0.1 Figure 8: Average with standard deviation of success rate of 0 aGAonND-landscapescreatedfromeasyanddeceptivetrap 0 2 4 6 8 10 12 14 16 functions distance (a) 0.3 0.3 1 0.25 0.25 0.9 0.2 0.2 0.8 0.15 0.15 0.7 0.1 0.1 0.6 0.05 0.05 s nes 0.5 00 2 4 6 8 10 12 14 00 2 4 6 8 10 12 14 fit 0.4 (D3,4) (D9,4) 0.3 0.3 0.25 0.2 0.2 0.1 0.15 0 0 2 4 6 8 10 12 14 16 0.1 distance 0.05 (b) 0 0 5 10 15 20 25 30 1 convolutionproduct(D ⊕D ) 3 9 0.9 0.8 Figure9:Exampleofconvolutionproduct 0.7 0.6 average(D)=average(D1)+average(D2) ess 0.5 andσ(D) = σ2(D1)+σ2(D2)whereσisthestandardde- n viation. fit 0.4 p Theconvolutionproductoftwonormal(resp. χ2,Poisson)dis- 0.3 tributionsisanormal(resp.χ2,Poisson)distribution. 0.2 Concatenation iscommutative, soit issimple toconcatenate a number of small landscapes. Hence, we can tack together many 0.1 small ND-Landscapes generated exhaustively to obtain a bigger 0 onewithknownneutraldegreedistribution. Moreover,ithasbeen 0 2 4 6 8 10 12 14 16 provenbyJones[21]thattheFDCcoefficientisunchangedwhen distance multiple copies of a problem are concatenated to form a larger (c) problem. Figure7:ND-Landscapes:FDCscatterplotfromeasytrap(cf Conclusion Figure5a)withrespectiveaverageneutraldegree(a)1.5(b)6 (c)8.5 This paper presents the family of ND-Landscapes as a model of neutralfitnesslandscapes.Mostoftheacademicfitnesslandscapes foundintheliteraturedealswithneutrality,eitherasanadd-onfea- [9] P.F.Stadler.Fitnesslandscapes.InM.La¨ssigandValleriani, tureorasanincidentalproperty. Theoreticalstudiesinmolecular editors,BiologicalEvolutionandStatisticalPhysics,volume evolution,aswellasinoptimization,showthatthedistributionof 585ofLectureNotesPhysics,pages187–207,Heidelberg, neutral degree isa key factor inthe evolution of population on a 2002.Springer-Verlag. neutral network. Hence to understand and study the influence of [10] M.Mitchell,S.Forrest,andJ.H.Holland.Theroyalroadfor neutralityonevolutionarysearchprocessitmaybehelpful tode- geneticalgorithms:FitnesslandscapeandGAperformance. signlandscapeswithagivenneutraldistribution.Weproposethree InF.JVarelaandP.Bourgine,editors,Proceedingsofthe stepstodesignsuchlandscapes: firstusinganalgorithmwecon- FirstEuropeanConferenceonArtificialLife,pages245–254, struct a landscape whose distribution roughly fits the target one, Cambridge,MA,1992.MITPress/BradfordBooks. thenweuseasimulatedannealingheuristictobringcloserthetwo [11] S.A.Kauffman.TheOriginsofOrder.OxfordUniversity distributions, and finally we affect fitness values to each neutral Press,NewYork,1993. network. The last step can be used to tune the landscape diffi- [12] L.Barnett.Ruggednessandneutrality-theNKpfamilyof culty according toother criteriathanneutrality. Sowecan study fitnesslandscapes.InC.Adami,R.K.Belew,H.Kitano,and interactionbetweenneutralityandanother sourceofhardness. In C.Taylor,editors,ALIFEVI,ProceedingsoftheSixth thispaperweusetrapfunctionstoaffectfitnessvalues,thisallows InternationalConferenceonArtificialLife,pages18–27. ustostudytheinterplaybetweendeceptiveness andneutrality; in ALIFE,TheMITPress,1998. particular, experimental results show that neutrality smoothes the [13] M.NewmanandR.Engelhardt.Effectofneutralselectionon correlationbetweenfitnessanddistance.Forsomeproblems,intro- theevolutionofmolecularspecies.InProc.R.Soc.London ducingneutralitycouldbebeneficasshownin[25]byincreasing B.,volume256,pages1333–1338,1998. theevolvability. Ontheotherhand,neutralitycoulddestroyuseful [14] J.Lobo,J.H.Miller,andW.Fontana.Neutralityin informationsuchascorrelationasitisshowninourexperiments. technologicallandscapes.SantaFeWorkingPaper,2004. Astheselandscapesneedanexhaustiveenumerationofthesearch [15] B.DerridaandL.Peliti.Evolutioninaflatfitnesslandscape. spaceweproposetoconcatenatesmallND-Landscapestoscaleup Bull.Math.Biol.,53:355–382,1991. over 16bits. Then, usingtheconvolutionproduct ofdistribution, [16] E.Bornberg-BauerandH.S.Chan.Modelingevolutionary weareabletodesignlargelandscapeswithknownneutraldistribu- landscapes: Mutationalstability,topologyandsuperfunnels tion. insequencespace.Proc.Natl.Acad.Sci.USA,track2, Futureworkalongtheselinesincludesstudyingtheinfluenceof 96(19):10689–10694,1999. variousdistributionsanddifferentwaystoaffectfitnessvalueonthe dynamicsofapopulationonaneutralnetwork.WithND-trapfunc- [17] ErikVanNimwegen,JamesP.Crutchfield,andMartijn tionswehavefocusedontheinterplaybetweendeceptivenessand Huynen.Neutralevolutionofmutationalrobustness.InProc. neutrality. By replacing trap functions by NK functions[11], we Nat.Acad.Sci.USA96,pages9716–9720,1999. might be able tohighlight correlation between epistasis and neu- [18] ErikVanNimwegenandJamesP.Crutchfield.Optimizing trality. epochalevolutionarysearch:Population-sizedependent theory.Mach.Learn.,45(1):77–114,2001. 5. REFERENCES [19] C.O.Wilke.Adaptativeevolutiononneutralnetworks.Bull. Math.Biol,63:715–730,2001. [1] S.Wright.Therolesofmutation,inbreeding,crossbreeding, [20] K.DebandD.E.Goldberg.Analyzingdeceptionintrap andselectioninevolution.InProceedingsoftheSixth functions.InD.WhitIey,editor,FoundationsofGenetic InternationalCongressofGenetics1,pages356–366,1932. Algorithms2,pages93–108.MorganKaufmann,1993. [2] M.Kimura.TheNeutralTheoryofMolecularEvolution. [21] T.Jones.EvolutionaryAlgorithms,FitnessLandscapesand CambridgeUniversityPress,Cambridge,UK,1983. Search.PhDthesis,UniversityofNewMexico, [3] N.EldredgeandS.J.Gould.Punctuatedequilibria:An Albuquerque,1995. alternativetophyleticgradualism.InT.J.M.Schopf,editor, [22] L.Altenberg.Fitnessdistancecorrelation:aninstructive ModelsinPaleobiology,pages82–115.FreemanCooper, counterexample.InT.Back,editor,SeventhInternational SanFrancisco,1972. ConferenceonGeneticAlgorithms,pages57–64.Morgan [4] InmanHarveyandAdrianThompson.Throughthelabyrinth Kaufmann,1997. evolutionfindsaway:Asiliconridge.InICES,pages [23] R.J.Quick,V.J.Rayward-Smith,andG.D.Smith.Fitness 406–422,1996. distancecorrelationandridgefunctions.InA.E.Eibenetal., [5] VesselinK.VassilevandJulianF.Miller.Theadvantagesof editor,FifthConferenceonParallelProblemsSolvingfrom landscapeneutralityindigitalcircuitevolution.InICES, Nature(PPSN’98),volume1498ofLectureNotesin pages252–263,2000. ComputerScience,pages77–86.Springer-Verlag, [6] TinaYuandJulianF.Miller.Findingneedlesinhaystacksis Heidelberg,1998. nothardwithneutrality.InEuroGP,pages13–25,2002. [24] ManuelClergueandPhilippeCollard.Ga-hardfunctions [7] T.M.C.Smith,A.Philippides,P.Husbands,andM.O’Shea. builtbycombinationoftrapfunctions.InDavidB.Fogel, Neutralityandruggednessinrobotlandscapes.InCongress MohamedA.El-Sharkawi,XinYao,GarryGreenwood, onEvolutionaryComputation: CEC2002,pages1348–1353. HitoshiIba,PaulMarrow,andMarkShackleton,editors, IEEEPress,2002. Proceedingsofthe2002CongressonEvolutionary [8] ChadW.SeysandRandallD.Beer.Evolvingwalking:The ComputationCEC2002,pages249–254.IEEEPress,2002. anatomyofanevolutionarysearch.InS.Schaal,A.Ijspeert, [25] MarcEbner,MarkShackleton,andRobShipman.How A.Billard,S.Vijayakumar,J.Hallam,andJ.-A.Meyer, neutralnetworksinfluenceevolvability.ComplexSystems, editors,AnimalstoAnimats,ProceedingsoftheEight 7(2):19–33,2001. internationalConferenceonSimulationofAdaptive Behavior,pages357–363.TheMITPress,2004.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.