ebook img

Decays of double charmed meson molecules PDF

0.07 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decays of double charmed meson molecules

Decays of doubly charmed meson molecules 4 1 0 2 n a R. Molina J ∗ ResearchCenterforNuclearPhysics(RCNP),OsakaUniversity, 7 1 Ibaraki,Osaka567-0047,Japan E-mail: [email protected] ] h A. Hosaka p - ResearchCenterforNuclearPhysics(RCNP),OsakaUniversity, p Ibaraki,Osaka567-0047,Japan e h E-mail: [email protected] [ H. Nagahiro 1 v DepartmentofPhysics,NaraWomen’sUniversity 9 E-mail: [email protected] 2 2 4 The interaction between pseudoscalarand/or vector mesons can be studied using hidden gauge . 1 Lagrangians. Inthisframework,theinteractionbetweencharmedmesonshasbeenstudied. Fur- 0 4 thermore,doublycharmedstatesarealsopredicted.ThesenewstatesareneartheD∗D∗andD∗D∗s 1 thresholds,andhavespin-parityJP=1+. Weevaluatethedecaywidthsofthesestates,namedas : v R (3970)andS (4100)(withstrangeness),andobtain44MeVforthenon-strangeness,and24 cc cc i X MeV for the doublycharm-strangestate. Essentially, the decaymodesare DD p andDD g , (s) (s) r beingtheDp andDg emittedbyoneoftheD mesonwhichformsthemolecule. a ∗ XVInternationalConferenceonHadronSpectroscopy-Hadron2013 4-8November2013 Nara,Japan Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Decaysofdoublycharmedmesonmolecules R.Molina 1) 1.1) Rc+c D∗+ π0,η,η′ D+ D∗+ π+ D0 Rc+c D∗0 π0,η,η′ DD0+ D∗0 π− DD+0 DD∗∗00 DD∗+0 DD∗∗00 DD∗0+ 2) DD∗∗++ Dπ+∗+ γD0 3) DD∗∗++ D∗+ γD0 π+ π0,η,η′ π+ γ π− γ D∗+ D∗0 D∗+ D∗+ 3.1) D∗0 D+ 3.2) D∗0 D+ D∗+ D+ D∗+ D0 D∗+ D+ D∗0 D+ ρ0,ω,J/ψ ρ+ π0,η,η′ γ π+ γ DD∗∗00 DD∗+0 DD∗∗00 DD∗0+ 4) DD∗∗0+ D∗+ DD0+ 4.1) DD∗∗+0 D∗+ DD0+ ρ+ ρ0,ω,J/ψ ρ0,π0 γ ρ−,π− γ D∗+ D∗0 D∗+ D∗+ D∗0 D0 D∗+ D0 Figure 1: Left: Feynman diagrams evaluated in the decay R DD . Right: Diagrams for the R+ cc → ∗ cc → D0D+g decaythroughoneloop. 1. Introduction Recently, the LHCb has measured the quantum numbers of the X(3872) as 1++ [1]. This result rules out the X(3872) to be a charmonium state, favoring the molecular interpretation [2]. Inaddition, several authors havediscussed whether someoftheother observed XYZparticles can be described in terms of molecules [3, 4, 5]. Some of the reasons on why these states cannot be accomodated into cc¯ are the unusually high decay rates into (r ,w orf )J/y [2]. Also, charged statesZ anddecaysbetweenthemareobserved [6]. c Using hidden gauge Lagrangians combined with unitarity in coupled channels, some of the observed states which are near the open charm thresholds, are well described in terms of two- meson molecules [3, 4]. Moreover, two-meson bound states of D D or D D are dynamically ∗ ∗ ∗ ∗s generated [7]. Those doubly charmed mesons form a charged isospin singlet and doublet, they are called R+(3970) and S+(+)(4100), for the non-strangeness and strangeness one respectively. cc cc Doublycharmstateswiththesamequantumnumbershavealsobeenfoundin[8]fromsolvingthe scattering problem of two D-mesons with the interaction provided by the chiral constituent quark model. Theoretically, tetraquark structure hasbeenalsodiscussed [9,10,11]. Inthistalk,inorder toexplorefurthertheinternalstructureofthesestates,westudythedecaysofthesestatesindetail. 2. Decay modes ofdoubly charm states The two D mesons can form a molecular state of spin and parity JP = 1+ when they are ∗ dominatedbyans-wavestate. Duetothesequantumnumbers,itcannotdecayintoDD¯. Strongand radiative decays of the doubly charm states occur through DD (or D D ) which subsequently ∗(s) (s) ∗ go to three body states via D p D or Dg . Direct decays into three-body states, DDg , are also ∗ → evaluated,buttheyaresmallascomparedtotheaboveprocessesgoingthroughtwobodies. Theset ofFeynmandiagramsconsideredaredepictedinFig. 2. TheR DD transitioncanbereached cc→ ∗(s) throughanomalouscouplingsVVPwithpseudoscalarorvectormesonexchange. TheLagrangians needed toevaluatethedecaywidthtoDD are[12], ∗(s) LPPV = ig Vm [P,¶ m P] , L3V =ig (Vm ¶ n Vm ¶ n Vm Vm )Vn ) − h i h − i 2 Decaysofdoublycharmedmesonmolecules R.Molina LVVP= √G2′ e mnab h¶ m Vn ¶ a Va Pi , (2.1) with e the unit electronic charge, G′ =3g′2/(4p 2f), g′ = GVMr /(√2f2), GV = f/√2 and g= − M /2f. Theconstant f isthepiondecayconstant f =93MeV,Q=diag(2, 1, 1,1)/3 andM V V − − is the mass ofthe vector meson. TheP andV matrix contain the 15-plet of the pseudoscalars and vectorsrespectivelyinthephysicalbasis. In[7]theuncertaintiesrelatedwiththeSU(4)breakingof thecouplinggarestudied,consideringbothheavyandlightcouplings. Thesedecayscomethrough oneloopwhichinvolves anintegralwhichislogarithmically divergent, howeverthisdivergence is related to the vertex that couples the resonance to the two-meson molecular states, and is also presentinthetwo-mesonloopfunction, G,whenthosestatesaredynamicallygenerated[7]. Thus, thesamevalueofthecutoffneeded toobtainthesestatesattheirmasses[7]isusedtoevaluatethe integral involved in the decays in the one-loop diagrams of Fig. 2. Once set the cutoff, one has a fixed mass and coupling of the bound state to the two-meson component, g . Since these three R magnitudes are related, there is only one free parameter in the calculation, the cutoff q , and max performing variations of this parameter one has an idea of the uncertainties in the decay widths. This is reflected in the errors of the widths, where 15% variations around its central value, 750 MeV,havebeenconsidered. The diagrams included in the evaluation of the radiative decay of doubly charmed meson molecules,R DDg aredepictedinFig. 2(rightpanel),whereonlynon-vanishing diagramsare cc → shown. 3. Results The results are shown in Table 4. We observe that the total widths of the doubly charmed states are (44 12), (24 8), and (24 8) MeV for the R+, S+ and S++ respectively, giving cc cc cc ± ± ± both channels (ex. D0D + and D+D 0 for the R+) the same contribution to the width. The direct ∗ ∗ cc diagramswiththree/fourpropagatorsofFig. 2,type1),2)and3),leadtoaverysmallwidthofthe order offewKeVinthe case oftheR+(3970) and S+(4100) and 0.13 KeVforthe doubly charge cc cc state, S++(4100). cc 4. Conclusions We have considered the possible decay modes of the doubly charmed molecules, R (3970) cc and S (4100), and evaluated partial decay widths to DD p and DD g . We find that the main cc (s) (s) source ofthesedecayscomefromthedecayofaD mesonintoD p orD g . Thesedecaysare ∗(s) (s) (s) mediated by the exchange of one meson, vector or pseudoscalar, between the D D pair of the ∗ ∗(s) molecule. Thelargestwidthcomesfromr ,p andw exchange(decreasingorder)fortheR (3970). cc Since they are not qq¯, having a pair of cc and doubly charged, these mesons are under challenge forexperiments. Hopefully, theycouldbeobserved bytheLHCborBelle. References [1] R.Aaijetal.(LHCbCollaboration),Phys.Rev.Lett.110,222001(2013). 3 Decaysofdoublycharmedmesonmolecules R.Molina State Channelk G k [MeV] Channelj G k [MeV] G [MeV] j tot R+(3970) Hadronicdecays cc D0D + 22 6 D0(D+p 0) 7 2 44 12 ∗ ± ± ± D0(D0p +) 15 4 ± D+D 0 22 6 D+(D0p 0) 14 4 ∗ ± ± Radiativedecays D+D 0 D+(D0g ) 8 2 ∗ ± D0D + D0(D+g ) 0.4 0.2 ∗ ± D0D+g (2 1) 10 3 − ± × D 0D+g (0.03 0.01) 10 3 ∗ − ± × D +D0g (0.5 0.2) 10 3 ∗ − ± × S+(4100) Hadronicdecays cc D+D 0 12 4 D+(D0p 0) 7 2 24 8 s ∗ s ± ± ± D0D + 12 4 - - ∗s ± Radiativedecays D0D + D0(D+g ) 11 4 ∗s s ± D+D 0 D+(D0g ) 5 2 s ∗ s ± D0D+g (2 1) 10 3 s − ± × D 0D+g (0.3 0.1) 10 3 ∗ s − ± × D +D0g (4 1) 10 3 ∗s − ± × S++(4100) Hadronicdecays cc D+D + 12 4 D+(D+p 0) 4 1 24 8 s ∗ s ± ± ± D+(D0p +) 8 3 s ± D+D + 12 4 - - ∗s ± Radiativedecays D+D + D+(D+g ) 11 4 ∗s s ± D+D + D+(D+g ) 0.2 0.1 s ∗ s ± D+D+g (1.3 0.1) 10 4 s − ± × D +D+g (0.3 0.1) 10 3 ∗ s − ± × D +D+g (0.3 0.1) 10 3 ∗s − ± × Table1: Totalandpartialdecaywidthsofthedifferentdecaymodesofthedoublycharmedstates. [2] S.GodfreyandS.L.Olsen,Ann.Rev.Nucl.Part.Sci.58,51(2008) [3] D.GamermannandE.Oset,Phys.Rev.D80,014003(2009). [4] R.MolinaandE.Oset,Phys.Rev.D80,114013(2009). [5] T.Branz,T.GutscheandV.E.Lyubovitskij,Phys.Rev.D80,054019(2009).J.Nievesand M.P.Valderrama,Phys.Rev.D86,056004(2012).F.-K.Guo,J.Haidenbauer,C.Hanhartand U.-G.Meißner,Phys.Rev.D82,094008(2010).X.Liu,Z.G.Luo,Y.R.LiuandS.L.Zhu,Eur. Phys.J.C61,411(2009).G.-J.Ding,W.Huang,J.-F.LiuandM.-L.Yan,Phys.Rev.D79,034026 (2009).G.-J.Ding,Phys.Rev.D79,014001(2009).A.MartinezTorres,K.P.Khemchandani, D.GamermannandE.Oset,Phys.Rev.D80,094012(2009).P.G.Ortega,J.Segovia,D.R.Entem 4 Decaysofdoublycharmedmesonmolecules R.Molina andF.Fernandez,Phys.Rev.D81,054023(2010).Q.Wang,C.HanhartandQ.Zhao,Phys.Rev. Lett.111,132003(2013). [6] Z.Q.Liuetal.[BelleCollaboration],Phys.Rev.Lett.110,252002(2013) [7] R.Molina,T.BranzandE.Oset,Phys.Rev.D82,014010(2010) [8] T.F.Carames,A.ValcarceandJ.Vijande,Phys.Lett.B699,291(2011).J.Vijande,A.Valcarceand J.-M.Richard,Phys.Rev.D76,114013(2007) [9] Y.Cui,X.-L.Chen,W.-Z.DengandS.-L.Zhu,HighEnergyPhys.Nucl.Phys.31,7(2007) [10] F.S.Navarra,M.NielsenandS.H.Lee,Phys.Lett.B649,166(2007) [11] T.Hyodo,Y.-R.Liu,M.Oka,K.SudohandS.Yasui,Phys.Lett.B721,56(2013) [12] M.Bando,T.Kugo,S.Uehara,K.YamawakiandT.Yanagida,Phys.Rev.Lett.54,1215(1985). M.Bando,T.KugoandK.Yamawaki,Phys.Rept.164,217(1988).M.HaradaandK.Yamawaki, Phys.Rept.381,1(2003).U.G.Meissner,Phys.Rept.161,213(1988).H.Nagahiro,L.Roca, A.HosakaandE.Oset,Phys.Rev.D79(2009)014015. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.