ebook img

Decay of the Fourier Transform: Analytic and Geometric Aspects PDF

226 Pages·2014·1.662 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decay of the Fourier Transform: Analytic and Geometric Aspects

Alex Iosevich (cid:40)(cid:79)(cid:76)(cid:77)(cid:68)(cid:75)(cid:3)(cid:47)(cid:76)(cid:190)(cid:3)(cid:92)(cid:68)(cid:81)(cid:71) Decay of the Fourier Transform (cid:36)(cid:81)(cid:68)(cid:79)(cid:92)(cid:87)(cid:76)(cid:70)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3) (cid:42)(cid:72)(cid:82)(cid:80)(cid:72)(cid:87)(cid:85)(cid:76)(cid:70)(cid:3)(cid:36)(cid:86)(cid:83)(cid:72)(cid:70)(cid:87)(cid:86) Alex Iosevich • Elijah Liflyand Decay of the Fourier Transform Analytic and Geometric Aspects Alex Iosevich Elijah Liflyand Department of Mathematics Department of Mathematics University of Rochester Bar-Ilan University Rochester, NY, USA Ramat-Gan, Israel ISBN 978-3-0348-0624-4 ISBN 978-3-0348-0625-1 (eBook) DOI 10.1007/978-3-0348-0625-1 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2014952035 Mathematics Subject Classification (2010): 42A, 42B © Springer Basel 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Basel is part of Springer Science+Business Media (www.birkhauser-science.com) TO OUR FAMILIES (cid:676)(cid:696)(cid:695)(cid:677)(cid:676)(cid:673)(cid:3)(cid:677)(cid:688)(cid:681)(cid:698)(cid:677)(cid:679)(cid:692)(cid:697)(cid:686)(cid:684) Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Part 0 Preliminaries Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Basic Properties of the Fourier Transform 1.1 L1-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 L2-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4 Summability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Poissonsummation formula . . . . . . . . . . . . . . . . . . . . . . . 16 Part 1 Analytic (and Geometric) Aspects 2 Oscillatory Integrals 2.1 The method of stationary phase . . . . . . . . . . . . . . . . . . . . . 19 2.2 Erd´elyi type results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 The Fourier transform on a convex set . . . . . . . . . . . . . . . . . 27 2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Hyperbolic means . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 Multiple Fourier integrals . . . . . . . . . . . . . . . . . . . . 38 2.4.3 Generalized Bochner–Riesz means of critical order . . . . . . 42 3 The Fourier Transform of Convex and Oscillating Functions 3.1 Convex functions with singularities . . . . . . . . . . . . . . . . . . . 47 3.2 Asymptotic behavior in a wider sense. . . . . . . . . . . . . . . . . . 51 3.3 Integrability of trigonometric series . . . . . . . . . . . . . . . . . . . 52 3.4 Analogous function spaces . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 Asymptotics of the Fourier transform . . . . . . . . . . . . . . . . . . 60 3.5.1 Hardy type spaces . . . . . . . . . . . . . . . . . . . . . . . . 60 vii viii Contents 3.5.2 The Fourier transform of a function with shifted singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.3 Amalgam type spaces. . . . . . . . . . . . . . . . . . . . . . . 77 3.6 Applications and further progress . . . . . . . . . . . . . . . . . . . . 81 3.7 Multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 The Fourier Transform of a Radial Function 4.1 Fractional derivatives and classes of functions . . . . . . . . . . . . . 94 4.2 Existence of the Fourier transform and Bessel type functions . . . . 99 4.3 Proof of the existence theorem . . . . . . . . . . . . . . . . . . . . . 104 4.4 Passageto a one-dimensional Fourier transform . . . . . . . . . . . . 118 4.5 Certain applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Part 2 Geometric (and Analytic) Aspects 5 L2-average Decay of the Fourier Transform of a Characteristic Function of a Convex Set 5.1 L2-average decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.2 Proof of Theorem 5.5 and Theorem 5.7 . . . . . . . . . . . . . . . . 131 5.2.1 Decomposition of the boundary . . . . . . . . . . . . . . . . . 132 5.2.2 Singular directions . . . . . . . . . . . . . . . . . . . . . . . . 132 5.2.3 Non-singular directions . . . . . . . . . . . . . . . . . . . . . . 133 6 L1-average Decay of the Fourier Transform of a Characteristic Function of a Convex Set 6.1 Preliminary discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 A variety of arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.2.1 Lp-averagedecay of the Fourier transform . . . . . . . . . . . 140 6.2.2 Inscribed polygons . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2.3 The image of the Gauss map. . . . . . . . . . . . . . . . . . . 142 6.2.4 Comparing the previous arguments . . . . . . . . . . . . . . . 143 6.2.5 A lower bound for all convex bodies. . . . . . . . . . . . . . . 144 6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3.1 Lattice points . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3.2 Irregularities of distribution . . . . . . . . . . . . . . . . . . . 146 6.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7 Geometry of the Gauss Map and Lattice Points in Convex Domains 7.1 Two main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.2 Examples and preliminary results . . . . . . . . . . . . . . . . . . . . 163 7.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2.2 Estimates for the Fourier transform . . . . . . . . . . . . . . . 164 Contents ix 7.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.3.1 Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . 165 7.3.2 Proof of Theorem 7.2 . . . . . . . . . . . . . . . . . . . . . . . 167 7.3.3 Proof of Theorem 7.8 . . . . . . . . . . . . . . . . . . . . . . . 168 7.3.4 Proof of Theorem 7.9 . . . . . . . . . . . . . . . . . . . . . . . 170 8 Average Decay Estimates for Fourier Transforms of Measures Supported on Curves 8.1 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8.2 Upper bounds, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 8.3 Upper bounds, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.4 Upper bounds, III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.5 Asymptotics for oscillatory integrals revisited . . . . . . . . . . . . . 189 8.6 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.