ebook img

de Gruyter Textbook Robinson · An Introduction to Abstract Algebra PDF

292 Pages·2008·1.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview de Gruyter Textbook Robinson · An Introduction to Abstract Algebra

de Gruyter Textbook Robinson · An Introduction to Abstract Algebra Derek J. S. Robinson An Introduction to Abstract Algebra ≥ Walter de Gruyter Berlin · New York 2003 Author DerekJ.S.Robinson DepartmentofMathematics UniversityofIllinoisatUrbana-Champaign 1409W.GreenStreet Urbana,Illinois61801-2975 USA MathematicsSubjectClassification2000:12-01,13-01,16-01,20-01 Keywords:group,ring,field,vectorspace,Polyatheory,Steinersystem,errorcorrectingcode (cid:1)(cid:1) Printedonacid-freepaperwhichfallswithintheguidelinesoftheANSI toensurepermanenceanddurability. LibraryofCongressCataloging-in-PublicationData Robinson,DerekJohnScott. Anintroductiontoabstractalgebra/DerekJ.S.Robinson. p. cm.(cid:1)(DeGruytertextbook) Includesbibliographicalreferencesandindex. ISBN3-11-017544-4(alk.paper) 1.Algebra,Abstract. I.Title. II.Series. QA162.R63 2003 5121.02(cid:1)dc21 2002041471 ISBN3110175444 BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetat(cid:2)http://dnb.ddb.de(cid:3). (cid:1) Copyright2003byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. All rights reserved, including those of translationinto foreign languages. No part of this book maybereproducedinanyformorbyanymeans,electronicormechanical,includingphotocopy, recording or any informationstorage and retrieval system, without permissionin writing from thepublisher. PrintedinGermany. Coverdesign:HansberndLindemann,Berlin. Typesetusingtheauthor’sTEXfiles:I.Zimmermann,Freiburg. Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. In Memory of My Parents Preface TheoriginsofalgebraareusuallytracedbacktoMuhammadbenMusaal-Khwarizmi, whoworkedatthecourtoftheCaliphal-Ma’muninBaghdadintheearly9thCentury. The word derives from theArabic al-jabr, which refers to the process of adding the samequantitytobothsidesofanequation. TheworkofArabicscholarswasknownin Italybythe13thCentury,andalivelyschoolofalgebraistsarosethere. Muchoftheir work was concerned with the solution of polynomial equations. This preoccupation ofmathematicianslasteduntilthebeginningofthe19thCentury,whenthepossibility of solving the general equation of the fifth degree in terms of radicals was finally disprovedbyRuffiniandAbel. Thisearlyworkledtotheintroductionofsomeofthemainstructuresofmodern abstract algebra, groups, rings and fields. These structures have been intensively studiedoverthepasttwohundredyears. Foraninterestinghistoricalaccountofthe originsofalgebrathereadermayconsultthebookbyvanderWaerden[15]. Untilquiterecentlyalgebrawasverymuchthedomainofthepuremathematician; applicationswerefewandfarbetween. Butallthishaschangedasaresultoftherise of information technology, where the precision and power inherent in the language andconceptsofalgebrahaveprovedtobeinvaluable. Todayspecialistsincomputer science and engineering, as well as physics and chemistry, routinely take courses in abstractalgebra. Thepresentworkrepresentsanattempttomeettheneedsofbothmathematicians and scientists who are interested in acquiring a basic knowledge of algebra and its applications. On the other hand, this is not a book on applied algebra, or discrete mathematicsasitisoftencallednowadays. As to what is expected of the reader, a basic knowledge of matrices is assumed and also at least the level of maturity consistent with completion of three semesters of calculus. The object is to introduce the reader to the principal structures of mod- ern algebra and to give an account of some of its more convincing applications. In particular there are sections on solution of equations by radicals, ruler and compass constructions, Polya counting theory, Steiner systems, orthogonal latin squares and errorcorrectingcodes. Thebookshouldbesuitableforstudentsinthethirdorfourth year of study at a NorthAmerican university and in their second or third year at a universityintheUnitedKingdom. There is more than enough material here for a two semester course in abstract algebra. Ifjustonesemesterisavailable,Chapters1through7andChapter10could be covered. The first two chapters contain some things that will be known to many readers and can be covered more quickly. In addition a good deal of the material in Chapter8willbefamiliartoanyonewhohastakenacourseinlinearalgebra. Awordaboutproofsisinorder. Oftenstudentsfromoutsidemathematicsquestion the need for rigorous proofs, although this is perhaps becoming less common. One viii Preface answeristhattheonlywaytobecertainthatastatementiscorrectorthatacomputer program will always deliver the correct answer is to prove it. As a rule complete proofsaregivenandtheyshouldberead,althoughonafirstreadingsomeofthemore complex arguments could be omitted. The first two chapters, which contain much elementary material, are a good place for the reader to develop and polish theorem proving skills. Each section of the book is followed by a selection of problems, of varyingdegreesofdifficulty. ThisbookisbasedoncoursesgivenovermanyyearsattheUniversityofIllinois at Urbana-Champaign, the National University of Singapore and the University of London. Iamgratefultomanycolleaguesformuchgoodadviceandlotsofstimulating conversations: these have led to numerous improvements in the text. In particular I am most grateful to Otto Kegel for reading the entire text. However full credit for all errors and mis-statements belongs to me. Finally, I thank Manfred Karbe, Irene ZimmermannandthestaffatWalterdeGruyterfortheirencouragementandunfailing courtesyandassistance. Urbana,Illinois,November2002 DerekRobinson Contents 1 Sets,relationsandfunctions 1 1.1 Setsandsubsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Relations,equivalencerelationsandpartialorders . . . . . . . . . . . 4 1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Theintegers 17 2.1 Well-orderingandmathematicalinduction . . . . . . . . . . . . . . . 17 2.2 Divisionintheintegers . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Introductiontogroups 31 3.1 Permutationsofaset . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Binaryoperations: semigroups,monoidsandgroups . . . . . . . . . 39 3.3 Groupsandsubgroups . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Cosets,quotientgroupsandhomomorphisms 52 4.1 CosetsandLagrange’sTheorem . . . . . . . . . . . . . . . . . . . . 52 4.2 Normalsubgroupsandquotientgroups . . . . . . . . . . . . . . . . . 60 4.3 Homomorphismsofgroups . . . . . . . . . . . . . . . . . . . . . . . 67 5 Groupsactingonsets 78 5.1 Groupactionsandpermutationrepresentations . . . . . . . . . . . . 78 5.2 Orbitsandstabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Applicationstothestructureofgroups . . . . . . . . . . . . . . . . . 85 5.4 Applicationstocombinatorics–countinglabellingsandgraphs . . . . 92 6 Introductiontorings 99 6.1 Definitionandelementarypropertiesofrings . . . . . . . . . . . . . 99 6.2 Subringsandideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3 Integraldomains,divisionringsandfields . . . . . . . . . . . . . . . 107 7 Divisioninrings 115 7.1 Euclideandomains . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Principalidealdomains . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3 Uniquefactorizationinintegraldomains . . . . . . . . . . . . . . . . 121 7.4 Rootsofpolynomialsandsplittingfields . . . . . . . . . . . . . . . . 127 x Contents 8 Vectorspaces 134 8.1 Vectorspacesandsubspaces . . . . . . . . . . . . . . . . . . . . . . 134 8.2 Linearindependence,basisanddimension . . . . . . . . . . . . . . . 138 8.3 Linearmappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.4 Orthogonalityinvectorspaces . . . . . . . . . . . . . . . . . . . . . 155 9 Thestructureofgroups 163 9.1 TheJordan–HölderTheorem . . . . . . . . . . . . . . . . . . . . . . 163 9.2 Solvableandnilpotentgroups. . . . . . . . . . . . . . . . . . . . . . 171 9.3 Theoremsonfinitesolvablegroups . . . . . . . . . . . . . . . . . . . 178 10 Introductiontothetheoryoffields 185 10.1 Fieldextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.2 Constructionswithrulerandcompass . . . . . . . . . . . . . . . . . 190 10.3 Finitefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 10.4 ApplicationstolatinsquaresandSteinertriplesystems . . . . . . . . 199 11 Galoistheory 208 11.1 Normalandseparableextensions . . . . . . . . . . . . . . . . . . . 208 11.2 Automorphismsoffieldextensions . . . . . . . . . . . . . . . . . . . 213 11.3 TheFundamentalTheoremofGaloisTheory. . . . . . . . . . . . . . 221 11.4 Solvabilityofequationsbyradicals . . . . . . . . . . . . . . . . . . . 228 12 Furthertopics 235 12.1 Zorn’sLemmaanditsapplications . . . . . . . . . . . . . . . . . . . 235 12.2 Moreonrootsofpolynomials. . . . . . . . . . . . . . . . . . . . . . 240 12.3 Generatorsandrelationsforgroups. . . . . . . . . . . . . . . . . . . 243 12.4 Anintroductiontoerrorcorrectingcodes . . . . . . . . . . . . . . . . 254 Bibliography 267 Indexofnotation 269 Index 273

Description:
This early work led to the introduction of some of the main structures of modern origins of algebra the reader may consult the book by van der Waerden [15].
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.