ebook img

Data Uncertainty and important Measures PDF

231 Pages·2018·3.172 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data Uncertainty and important Measures

Systems Dependability Assessment Set coordinated by Jean-François Aubry Volume 3 Data Uncertainty and Important Measures Christophe Simon Philippe Weber Mohamed Sallak First published 2018 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2018 Library of Congress Control Number: 2017958413 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-993-9 Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Why and Where Uncertainties . . . . . . . . . . . . . 1 1.1.Sourcesandformsofuncertainty . . . . . . . . . . . . . . . . . 1 1.2.Typesofuncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.Sourcesofuncertainty . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2. Models and Language of Uncertainty . . . . . . . . . 9 2.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.Probabilitytheory . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1.Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2.Fundamentalnotions . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.Belieffunctionstheory . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1.Representationofbeliefs . . . . . . . . . . . . . . . . . . . . 16 2.3.2.Combinationrules . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.3.Extensionandmarginalization . . . . . . . . . . . . . . . . . 20 2.3.4.Pignistictransformation . . . . . . . . . . . . . . . . . . . . . 20 2.3.5.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.Fuzzysettheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1.Basicdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.2.Operationsonfuzzysets . . . . . . . . . . . . . . . . . . . . 22 2.4.3.Fuzzyrelations . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.Fuzzyarithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1.Fuzzynumbers . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.2.Fuzzyprobabilities . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.3.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.Possibilitytheory . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.1.Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.2.Possibilityandnecessitymeasures . . . . . . . . . . . . . . . 30 2.6.3.Operationsonpossibilityand necessitymeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.Randomsettheory . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.1.Basicdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.2.Expectationofrandomsets . . . . . . . . . . . . . . . . . . . 34 2.7.3.Randomintervals . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.4.Confidenceinterval . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.5.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.8.Confidencestructuresorc-boxes . . . . . . . . . . . . . . . . . . 36 2.8.1.Basicnotions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.8.2.Confidencedistributions . . . . . . . . . . . . . . . . . . . . 37 2.8.3.P-boxesandC-boxes . . . . . . . . . . . . . . . . . . . . . . 38 2.8.4.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.9.Impreciseprobabilitytheory . . . . . . . . . . . . . . . . . . . . 40 2.9.1.Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.9.2.Basicproperties . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.9.3.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.10.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Chapter 3. Risk Graphs and Risk Matrices: Application of Fuzzy Sets and Belief Reasoning . . . . . . . . . . . . . . . . . 47 3.1.SILallocationscheme . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1.Safetyinstrumentedsystems(SIS) . . . . . . . . . . . . . . . 48 3.1.2.ConformitytostandardsANSI/ISA S84.01-1996andIEC61508 . . . . . . . . . . . . . . . . . . . . . . 49 3.1.3.Taxonomyofrisk/SILassessmentmethods . . . . . . . . . . 50 3.1.4.Riskassessment . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.5.SILallocationprocess . . . . . . . . . . . . . . . . . . . . . . 52 3.1.6.Theuseofexperts’opinions . . . . . . . . . . . . . . . . . . 53 3.2.SILallocationbasedonpossibilitytheory. . . . . . . . . . . . . 54 3.2.1.Elicitingtheexperts’opinions . . . . . . . . . . . . . . . . . 54 3.2.2.Ratingscalesforparameters . . . . . . . . . . . . . . . . . . 55 3.2.3.Subjectiveelicitationoftheriskparameters . . . . . . . . . 56 3.2.4.Calibrationofexperts’opinions . . . . . . . . . . . . . . . . 59 3.2.5.Aggregationoftheopinions . . . . . . . . . . . . . . . . . . 61 3.3.Fuzzyriskgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3.1.Inputfuzzypartitionandfuzzification . . . . . . . . . . . . . 65 3.3.2.Risk/SILgraphlogicbyfuzzyinference system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3.Outputfuzzypartitionanddefuzzification . . . . . . . . . . 67 3.3.4.Illustrationcase . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.Risk/SILgraph: belieffunctionsreasoning . . . . . . . . . . . . 72 3.4.1.Elicitationofexpertopinionsinthebelief functionstheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4.2.Aggregationofexpertopinions . . . . . . . . . . . . . . . . 73 3.5.Evidentialriskgraph . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6.Numericalillustration . . . . . . . . . . . . . . . . . . . . . . . . 77 3.6.1.Clusteringofexperts’opinions . . . . . . . . . . . . . . . . . 77 3.6.2.Aggregationofpreferences . . . . . . . . . . . . . . . . . . . 78 3.6.3.Evidentialrisk/SILgraph . . . . . . . . . . . . . . . . . . . . 79 3.7.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 4. Dependability Assessment Considering Interval-valued Probabilities . . . . . . . . . . . . . . . . . . . . . . 83 4.1.Intervalarithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.1.Interval-valuedparameters . . . . . . . . . . . . . . . . . . . 84 4.1.2.Interval-valuedreliability . . . . . . . . . . . . . . . . . . . . 85 4.1.3.Assessingtheimpreciseaverageprobability offailureondemand . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.Constraintarithmetic . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.Fuzzyarithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.1.Applicationexample . . . . . . . . . . . . . . . . . . . . . . 95 4.3.2.MonteCarlosamplingapproach . . . . . . . . . . . . . . . . 97 4.4.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.1.Markovchains . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4.2.MultiphaseMarkovchains . . . . . . . . . . . . . . . . . . . 101 4.4.3.Markovchainswithfuzzynumbers . . . . . . . . . . . . . . 102 4.4.4.FuzzymodelingofSIScharacteristic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.5.Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5.1.Epistemicapproach . . . . . . . . . . . . . . . . . . . . . . . 106 4.5.2.EnhancedMarkovanalysis . . . . . . . . . . . . . . . . . . . 113 4.6.Decision-makingunderuncertainty . . . . . . . . . . . . . . . . 115 4.7.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Chapter 5. Evidential Networks . . . . . . . . . . . . . . . . . . . . 119 5.1.Mainconcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1.Temporaldimension . . . . . . . . . . . . . . . . . . . . . . . 121 5.1.2.Computingbelieveandplausibilitymeasures asbounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.3.Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.1.4.Modelingimprecisionandignoranceinnodes . . . . . . . . 126 5.1.5.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.2.EvidentialNetworktomodelandcompute Fuzzyprobabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.2.1.Fuzzyprobabilityandbasicprobability assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.2.2.Nestedinterval-valuedprobabilities tofuzzyprobability . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2.3.Computationmechanism . . . . . . . . . . . . . . . . . . . . 130 5.3.EvidentialNetworkstocomputep-box . . . . . . . . . . . . . . 131 5.3.1.Connectionbetweenp-boxesandBPA . . . . . . . . . . . . 132 5.3.2.P-boxesandinterval-valuedprobabilities . . . . . . . . . . . 133 5.3.3.P-boxesandpreciseprobabilities . . . . . . . . . . . . . . . 133 5.3.4.Time-dependentp-boxes . . . . . . . . . . . . . . . . . . . . 134 5.3.5.Computationmechanism . . . . . . . . . . . . . . . . . . . . 134 5.4.Modelingsomereliabilityproblems . . . . . . . . . . . . . . . . 136 5.4.1.BPAforreliabilityproblems . . . . . . . . . . . . . . . . . . 136 5.4.2.BuildingBooleanCMT(AND,OR) . . . . . . . . . . . . . . 137 5.4.3.Conditionalmasstableformorethantwoinputs (k-out-of-n:Ggate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4.4.NodesforPlsandBelinthebinarycase . . . . . . . . . . . 140 5.4.5.Modelingreliabilitywithp-boxes . . . . . . . . . . . . . . . 140 5.5.IllustrationbyapplicationofEvidentialNetworks . . . . . . . . 145 5.5.1.Reliabilityassessmentofsystem . . . . . . . . . . . . . . . . 145 5.5.2.Inferenceforfailureisolation . . . . . . . . . . . . . . . . . . 153 5.5.3.Assessingthefuzzyreliabilityofsystems . . . . . . . . . . . 155 5.5.4.Assessingthep-boxreliabilitybyEN . . . . . . . . . . . . . 162 5.6.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Chapter 6. Reliability Uncertainty and Importance Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2.Hypothesisandnotation. . . . . . . . . . . . . . . . . . . . . . . 173 6.3.Probabilisticimportancemeasuresofcomponents . . . . . . . . 174 6.3.1.Birnbaumimportancemeasure . . . . . . . . . . . . . . . . . 175 6.3.2.Componentcriticalitymeasure . . . . . . . . . . . . . . . . . 176 6.3.3.Diagnosticimportancemeasure . . . . . . . . . . . . . . . . 176 6.3.4.Reliabilityachievementworth(RAW). . . . . . . . . . . . . 177 6.3.5.Reliabilityreductionworth(RRW) . . . . . . . . . . . . . . 177 6.3.6.Observationsandlimitations . . . . . . . . . . . . . . . . . . 178 6.3.7.Importancemeasurescomputation . . . . . . . . . . . . . . . 179 6.4.Probabilisticimportancemeasuresofpairsandgroups ofcomponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.4.1.Measuresonminimumcutsets/pathsets/groups . . . . . . . . 181 6.4.2.ExtensionofRAWandRRWtopairs . . . . . . . . . . . . . 182 6.4.3.Jointreliabilityimportancefactor(JR) . . . . . . . . . . . . 182 6.5.Uncertaintyimportancemeasures . . . . . . . . . . . . . . . . . 184 6.5.1.Uncertaintyprobabilisticimportancemeasures . . . . . . . . 184 6.5.2.Importancefactorswithimprecision . . . . . . . . . . . . . . 186 6.6.Importancemeasureswithfuzzyprobabilities . . . . . . . . . . 188 6.6.1.Fuzzyimportancemeasures . . . . . . . . . . . . . . . . . . 189 6.6.2.Fuzzyuncertaintymeasures . . . . . . . . . . . . . . . . . . 190 6.7.Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.7.1.Importancefactorsonasimplesystem . . . . . . . . . . . . 192 6.7.2.Importancefactorsinacomplexcase . . . . . . . . . . . . . 195 6.7.3.Illustrationofgroupimportancemeasures . . . . . . . . . . 197 6.7.4.Uncertaintyimportancefactors . . . . . . . . . . . . . . . . . 200 6.7.5.Fuzzyimportancemeasures . . . . . . . . . . . . . . . . . . 203 6.8.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Foreword The probabilistic quantitative assessment of a system is a problem born at the same time as the first computers with the aim of a reduction of their failure probability. The proposed models and methods were inspired by the developmentofdigitalelectronics.Thelimitationsofthesemodelsweremore or less consciously admitted and today other approaches are available as the firstthreebooksoftheseriesSystemsReliabilityAssessmenthaveshown.The presentbookisthefourthoneofthisseries. For almost two decades, the pioneers of reliability concentrated their effortsontheprobabilisticcalculusofsystemdependabilitywithoutworrying about the calculus sensitivity to its different influence factors. In the sixties, the importance measures appear in the reliability literature and remain associatedwiththenamesofBirnbaum,LambertandVesely. ThequestioningofthesemodelsbasedonBooleanstructurefunctionsand their translation in the probability space took place at the end of the 20th Century when the probabilistic models of some failure event became incredible. Could in fact the uncertain knowledge of some events be legitimately modeled by a probability distribution? We then saw the development of attempts to represent human reasoning by fuzzy sets and approximatereasoning. Interested in the problem of how to design and assess dependable control systems during the eighties, I was then confronted with the question of how qualify an instrumented system dedicated to safety application. Until then, based on qualitative requirements, regulations in the subject evolved in the sense of requesting a more quantitative assessment of the risk level. Some studies quickly showed that the assessment of the ability of such a system to reduce the risk level of the process under supervision was very sensitive to a variation in the estimation of one or more input parameters. The representation of this variation by interval-valued representation in the risk matrix method was much too abrupt and not very relevant to express the expertadvicewhichisoftenassortedofshades. Therefore, the idea of confronting the probability assessment of the fuzzy modelingcamenaturallytome asameansto abettercontrolof theinfluence parameters. In 2004, I proposed to Christophe Simon, who had a good expertiseinfuzzysettheory,tobetheco-supervisorofaPhDonthissubject. ThisresultedthreeyearslaterinthethesisdefenseofMohamedSallak.Since then,bothhavecontinuedtoworkinthisfieldandpresentedmanysignificant publications. Similar to the approaches of reliability assessment by graph theory, stochastic automata, Petri nets or Bayesian models, this contribution to the uncertaintymodelingisoneoftherepresentativeaspectsoftheDependability Nancy School of thought! Who better than Christophe Simon and Mohamed Sallak, reinforced by Philippe Weber for probabilistic graphical models for theaspectsrelativetothebelieffunctionstheory,towritesuchabook? More than a collection of research work results, this book is also a preciouseducationaldocumentwherethefoundationsofthevariousconcepts are clearly presented. It contains as well a set of practical implementations of the proposed approaches, especially in the relevant field of safety integrated systems. No doubt that students, safety and dependability engineers and even teachersinthefieldwouldfindalotofinterestingandstrongresourcesinthis book. Jean-FrançoisAUBRY ProfessorEmeritus UniversityofLorraine,France

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.