ebook img

Data Modeling for Metrology and Testing in Measurement Science PDF

498 Pages·2009·11.851 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data Modeling for Metrology and Testing in Measurement Science

ModelingandSimulationinScience,EngineeringandTechnology SeriesEditor NicolaBellomo PolitecnicodiTorino Italy AdvisoryEditorialBoard M.Avellaneda(ModelinginEconomics) H.G.Othmer(MathematicalBiology) CourantInstituteofMathematicalSciences DepartmentofMathematics NewYorkUniversity UniversityofMinnesota 251MercerStreet 270AVincentHall NewYork,NY10012,USA Minneapolis,MN55455,USA [email protected] [email protected] K.J.Bathe(SolidMechanics) L.Preziosi(IndustrialMathematics) DepartmentofMechanicalEngineering DipartimentodiMatematica MassachusettsInstituteofTechnology PolitecnicodiTorino Cambridge,MA02139,USA CorsoDucadegliAbruzzi24 [email protected] 10129Torino,Italy [email protected] P.Degond(SemiconductorandTransportModeling) Mathmatiquespourl’IndustrieetlaPhysique V.Protopopescu(CompetitiveSystems, UniversitP.SabatierToulouse3 Epidemiology) 118RoutedeNarbonne CSMD 31062ToulouseCedex,France OakRidgeNationalLaboratory [email protected] OakRidge,TN37831-6363,USA [email protected] A.Deutsch(ComplexSystems intheLifeSciences) K.R.Rajagopal(MultiphaseFlows) CenterforInformationServices DepartmentofMechanicalEngineering andHighPerformanceComputing TexasA&MUniversity TechnischeUniversittDresden CollegeStation,TX77843,USA 01062Dresden,Germany [email protected] [email protected] Y.Sone(FluidDynamicsinEngineeringSciences) M.A.HerreroGarcia(MathematicalMethods) ProfessorEmeritus DepartamentodeMatematicaAplicada KyotoUniversity UniversidadComplutensedeMadrid 230-133Iwakura-Nagatani-cho AvenidaComplutenses/n Sakyo-kuKyoto606-0026,Japan 28040Madrid,Spain [email protected] [email protected] W.Kliemann(StochasticModeling) DepartmentofMathematics IowaStateUniversity 400CarverHall Ames,IA50011,USA [email protected] Data Modeling for Metrology and Testing in Measurement Science Franco Pavese Alistair B. Forbes Editors Birkhäuser Boston • Basel • Berlin FrancoPavese AlistairB.Forbes IstitutoNazionalediRicerca NationalPhysics Metrologica,Torino,Italy Laboratory,Middlesex,UK [email protected] [email protected] [email protected] ISBN978-0-8176-4592-2 e-ISBN978-0-8176-4804-6 DOI10.1007/978-0-8176-4804-6 LibraryofCongressControlNumber:2008938171 MathematicsSubjectClassification(2000):60–80,60K10,60K40,60K99,62-XX,65C50. ©BirkhäuserBoston,apartofSpringerScience+BusinessMedia,LLC2009 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(BirkhäuserBoston,c/oSpringerScience+BusinessMedia,LLC,233 SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper. www.birkhauser.com Preface The aim of this book is to provide, firstly, an introduction to probability and statistics especially directed to the metrology and testing fields and secondly, a comprehensive, newer set of modelling methods for data and uncertainty analysis that are generally not considered yet within mainstream methods. The book brings, for the first time, a coherent account of these newer meth- ods and their computational implementation. They are potentially important because they address problems in application fields where the usual hypothe- sesthatareatthebasisofmostofthetraditionalstatisticalandprobabilistic methods, for example, relating to normality of the probability distributions, arefrequentlynotfulfilledtosuchanextentthatanaccuratetreatmentofthe calibration or test data using standard approaches is not possible. Addition- ally, the methods can represent alternative ways of data analysis, allowing a deeper understanding of complex situations in measurement. The book lends itself as a possible textbook for undergraduate or postgraduate study in an area where existing texts focus mainly on the most common and well-known methodsthatdonotencompassmodernapproachestocalibrationandtesting problems. The book is structured in such a way to guide readers with only a gen- eralinterestinmeasurementissuesthroughaseriesofreviewpapers,froman initial introduction to modelling principles in metrology and testing, to the basic principles of probability in metrology and statistical approaches to un- certainty assessment. Later chapters provide a survey of the newer methods, from an introduction to the alternative approach of interval mathematics to the latest developments in data analysis using least squares, FFT, wavelets, andfuzzymethods;fromdatafusion(includingdecisiontakingandriskanal- ysis), to tools for combining data of complex statistical structure; and from uncertaintyissuesrelatedtomodelimperfection,tothoserelatedtocombining testingdata.Thebookalsoincludeschaptersonmoderncomputationalissues relatedtomeasurement:acomputer-assistedsimplifiedrigourousapproachto data evaluation, an analysis of the strategies to adopt for measurement soft- ware validation, an introduction to the virtual instrument approach, and an V VI Preface overview of the main IT applications in metrology. The book does not con- centrateonanyparticularfieldofapplication,becausetheapplicationsinthe frames of metrology and testing cover so broad a range that it would be diffi- culttomakearankingoftheirimportanceoreventoattemptagroupinginto categories with homogeneous needs. On the other hand, most of the various techniquesillustratedinthechaptersofthebookcanfindapplicationtomany different issues related to these application fields. A DVD is attached to the book, containing software for free use (under thespecifiedconditions),rangingfromtutorialstosamplecodesoftheimple- mentationofmethodsdescribedinthebook,tosoftwarepackageswithdemos of methods and tools, allowing the reader to try to see especially the newer tools at work with the minimum effort, without the need of implementing his or her own code. Theauthorsaremainlyselectedfromaninternationalcollaborativeframe- work (http://www.imeko-tc21.org, http://www.imeko.org), established in the early 1990s as ‘AMCTM’ (http://www.amctm.org), that has allowed a community of metrologists, mathematicians, statisticians, and software/IT engineerstoworktogether,socreatingacommonunderstandingoftheissues discussed in this book. F. Pavese, Istituto Nazionale di Ricerca Metrologica A B Forbes, National Physical Laboratory Torino June 2008 Contents Preface ........................................................ V List of Contributors ...........................................XV An Introduction to Data Modelling Principles in Metrology and Testing Franco Pavese ................................................... 1 1 Introduction ................................................. 1 2 Uncertaintycomponentsofthemeasurementprocess:Repeatability, reproducibility, accuracy ...................................... 2 2.1 Basic nomenclature ...................................... 3 3 The GUM approach to the measurement process: Type A and Type B components of uncertainty ............................. 8 3.1 Basic nomenclature ...................................... 9 4 Other approaches to errors in the measurement process ........... 11 4.1 The total error and its shared and specific components ....... 12 4.2 A distinction between measurement and measurand .......... 12 5 Data modelling in metrology and in testing for intralaboratory measurements................................................ 13 5.1 Repeated measurements .................................. 13 5.2 Nonrepeated measurements on the same standard within each laboratory ................................... 14 6 Data modelling in metrology and in testing for interlaboratory measurements (intercomparisons); comparison specific problems.... 15 6.1 Data modelling.......................................... 16 6.2 Specific problems and outcomes of the intercomparisons, namely the MRA key comparisons ......................... 19 References ...................................................... 24 VII VIII Contents Probability in Metrology Giovanni B. Rossi ............................................... 31 1 Probability, statistics, and measurement – An historical perspective .................................................. 31 1.1 The origins: Gauss, Laplace, and the theory of errors......... 31 1.2 Orthodox statistics....................................... 36 1.3 The Guide to the Expression of Uncertainty in Measurement ......................................... 42 1.4 Issues in the contemporary debate on measurement uncertainty ............................................. 44 2 Towards a probabilistic theory of measurement................... 55 2.1 Origin and early development of the formal theory of measurement.......................................... 55 2.2 The representational theory of measurement ................ 59 2.3 A probabilistic theory of measurement...................... 63 3 Final remarks................................................ 67 References ...................................................... 69 Three Statistical Paradigms for the Assessment and Interpretation of Measurement Uncertainty William F. Guthrie, Hung-kung Liu, Andrew L. Rukhin, Blaza Toman, Jack C. M. Wang, Nien-fan Zhang ................................. 71 1 Introduction ................................................. 71 1.1 Notation................................................ 74 1.2 Statistical paradigms..................................... 74 1.3 Examples............................................... 76 2 Frequentist approach to uncertainty assessment .................. 77 2.1 Basic method ........................................... 77 2.2 Example 1 .............................................. 84 3 Bayesian paradigm for uncertainty assessment.................... 87 3.1 Basic method ........................................... 87 3.2 Example 1 .............................................. 89 4 Fiducial inference for uncertainty assessment..................... 93 4.1 Basic method ........................................... 93 4.2 Example 1 .............................................. 96 5 Example 2...................................................100 5.1 Frequentist approach.....................................101 5.2 Bayesian approach .......................................104 5.3 Fiducial approach........................................107 6 Discussion...................................................109 7 Chapter summary ............................................112 References ......................................................114 Contents IX Interval Computations and Interval-Related Statistical Techniques: Tools for Estimating Uncertainty of the Results of Data Processing and Indirect Measurements Vladik Kreinovich................................................117 1 Importance of data processing and indirect measurements .........117 2 Estimating uncertainty for the results of data processing and indirect measurements: An important metrological problem........119 3 Uncertainty of direct measurements: Brief description, limitations, need for overall error bounds (i.e., interval uncertainty) ...........119 4 Data processing and indirect measurements under interval uncertainty: The main problem of interval computations...........120 5 Uniform distributions: Traditional engineering approach to interval uncertainty ........................................121 6 Techniques for estimating the uncertainty of the results of indirect measurements in situations when the measurement errors of direct measurements are relatively small ..............................123 7 Techniques for error estimation in the general case of interval uncertainty ........................................127 8 Situations when, in addition to the upper bounds on the measurement error, we also have partial information about the probabilities of different error values ............................136 9 Final Remarks ...............................................143 References ......................................................144 Parameter Estimation Based on Least Squares Methods Alistair B. Forbes ................................................147 1 Introduction .................................................147 2 Model fitting in metrology.....................................148 3 Linear least squares problems (LS) .............................148 3.1 Orthogonal factorisation method to determine parameter estimates ...............................................149 3.2 Minimum variance property of the least squares estimate .....150 3.3 Linear Gauss–Markov problem (GM).......................151 3.4 Generalised QR factorisation approach to the Gauss– Markov problem .........................................152 3.5 Linear least squares, maximum likelihood estimation, and the posterior distribution p(a|y) ......................152 4 Nonlinear least squares (NLS)..................................154 4.1 The Gauss–Newton algorithm for nonlinear least squares .....154 4.2 Approximate uncertainty matrix associated with a ........155 NLS 4.3 Nonlinear Gauss–Markov problem (NGM) ..................156 4.4 Approximate uncertainty matrix associated with a .......156 NGM 4.5 Nonlinear least squares, maximum likelihood estimation, and the posterior distribution p(a|y) ......................156 X Contents 5 Exploiting structure in the uncertainty matrix ...................158 5.1 Structure due to common random effects, linear case .........158 5.2 Structure due to common random effects, nonlinear case......160 6 Generalised distance regression (GDR) ..........................161 6.1 Algorithms for generalised distance regression ...............162 6.2 Sequential quadratic programming for the footpoint parameters..............................................164 6.3 Example application: Response and evaluation calibration curves..................................................166 6.4 Example: GDR line ......................................167 7 Generalised Gauss–Markov regression (GGM)....................167 7.1 Structured generalised Gauss–Markov problems..............168 8 Robust least squares (RLS)....................................169 8.1 Empirical implementation of RLS..........................171 8.2 One-sided RLS ..........................................171 8.3 RLS and the Huber M-estimator...........................172 8.4 Algorithms for robust least squares ........................173 9 Summary and concluding remarks ..............................174 References ......................................................174 Frequency and Time–Frequency Domain Analysis Tools in Measurement Pedro M. Ramos, Raul C. Martins, Sergio Rapuano, Pasquale Daponte ................................................177 1 Introduction .................................................177 2 Fourier Analysis..............................................179 3 How to use the FFT ..........................................181 3.1 Aliasing ................................................182 3.2 Spectral leakage .........................................182 3.3 Windowing .............................................183 4 Example of spectral analysis application using FFT...............184 5 Wavelet transform............................................187 6 The wavelet transform: Theoretical background and implementation ..........................................188 6.1 Continuous wavelet transform .............................189 6.2 Discrete time wavelet transform ...........................193 7 Chirplet transform ...........................................199 8 Wavelet networks.............................................201 References ......................................................202 Data Fusion, Decision-Making, and Risk Analysis: Mathematical Tools and Techniques Pedro S. Gira˜o, Octavian Postolache, Jos´e M. D. Pereira .............205 1 Data fusion..................................................205

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.