ebook img

Data Governance for Managers: The Driver of Value Stream Optimization and a Pacemaker for Digital Transformation PDF

167 Pages·2022·3.468 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data Governance for Managers: The Driver of Value Stream Optimization and a Pacemaker for Digital Transformation

Management for Professionals Lars Michael Bollweg Data Governance for Managers The Driver of Value Stream Optimization and a Pacemaker for Digital Transformation Management for Professionals The Springer series Management for Professionals comprises high-level business and management books for executives. The authors are experienced business professionals and renowned professors who combine scientific background, best practice,andentrepreneurialvisiontoprovidepowerfulinsightsintohowtoachieve businessexcellence. Lars Michael Bollweg Data Governance for Managers The Driver of Value Stream Optimization and a Pacemaker for Digital Transformation LarsMichaelBollweg Dortmund,Germany ISSN2192-8096 ISSN2192-810X (electronic) ManagementforProfessionals ISBN978-3-662-65170-4 ISBN978-3-662-65171-1 (eBook) https://doi.org/10.1007/978-3-662-65171-1 Translation from the German language edition: “Data Governance für Manager” by Lars Michael Bollweg, # Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH,DE,einTeilvonSpringerNature2021.PublishedbySpringerBerlinHeidelberg.AllRights Reserved. #Springer-VerlagGmbHGermany,partofSpringerNature2022 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringer-VerlagGmbH,DEpartofSpringer Nature. Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany In Cooperation with Davide Iannella and Angelika Schneider Foreword Data and its proper use and application are finally receiving the attention they deserve in German business. The legal requirements that have arisen as a result of the introduction of the European General Data Protection Regulation (GDPR) are making a significant contribution to this change. For the first time, there was a notable risk for companies in the incorrect use of data. However, that protection against risks should not be the only reason to have the own data under control is shown to us by the economic giants from Silicon Valley. They are dominating the stockmarketsforseveralyearswithdata-drivenbusinessmodels.Accordingly,the mottoofthehouris:Ifyouwanttodevelopyourbusiness,youhavetounderstand yourdataanduseitprofitably.Processimprovementandautomation,newbusiness areasandintelligent,fact-baseddecisions,everythingstandsandfallswithdata,the knowledge of data, and the skills required to use this data correctly. Data Gover- nanceformsthebasisfororganizationstofacethischallengingtask. The establishment of a data organization capable of acting on data issues is therefore at the heart of a Data Governance implementation program. However, if aDataGovernanceprogramistohaveachanceofsuccess,itmustfocusonsoftas well as on hard factors.Forexample, it is essential that a cultural change toward a data-centriccompanyisaccompaniedandpromotedbyDataGovernance.Datamust therefore not only be referred to as an asset, but also be treated as such. This is importantandoldparadigmsmustbequestionedforthispurpose,particularlywhen dealingwithaneconomicassetthatcanbereplicatedalmostfreeofchargeandbeing sold without losing it. This complexity coupled with the need to change the way companiesworkandtheneedtolearnnewskillsacrosstheenterprise,highlightsthe challengingscopeofimplementingDataGovernance. AsheadoftheprogramtoimplementDataGovernanceatWestnetzGmbH,itis Dr.LarsBollweg'sjobtobundlethismultitudeofperspectivesintoajointinitiative. Inadditiontostringentsupportfromtopmanagement,itisthankstohisenergyand ingenuitythatDataManagementatWestnetzisnowmorethanataskforafew,but anessentialpartoftheentirecompany.Onceagain,DataGovernanceisnotatopic fortheivorytower.DataGovernancelivesinthedecentralizedunitsthatworkwith the data every day and that are responsible for its quality and proper provision. Above all, Data Governance only really comes to life when no member of a Data Managementunitisrequiredtouseorunderstanddataprofessionally. vviiii viii Foreword The steps and principles described in this book for implementing Data Gover- nanceinanorganizationarenotpuretheory,butcomefromthelivedpracticeofa successfulprogram.Boththerolesdescribedandthegivenapproachthereforeexist outsidealaboratorysituationinalivingandbreathingcompany.AtWestnetz,too, the road to the first successes of Data Governance was long, and it is still way to go. However, take the advices given in this book to heart and persevere. Only stamina and full conviction in the matter will lead to success. The good thing is— theworkisworthit! DataManagement,WestnetzGmbH HenningKrings Dortmund,Germany Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 PartI Basics 2 WhatIsDataGovernance?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 BasicsandDefinitionofDataGovernance. . . . . . . . . . . . . . . . . . 9 2.2 LevelsofComplexity.. . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . 13 2.3 DataLifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 DataResponsibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 RolesofDataGovernance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 StructuresofDataGovernance. . . . . . . . . . . . . . . . . . . . . . . . . . 32 References. . . . .. . . .. . . .. . . . .. . . .. . . . .. . . .. . . . .. . . .. . . . . 45 PartII Design 3 SuccessFactorsfortheImplementation. . . . . . . . . . . . . . . . . . . . . . 49 3.1 ProvideResources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 IdentifyImplementationDrivers. . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 DevelopDataManagementCapabilities. . . . . . . . . . . . . . . . . . . 53 3.4 SelecttheOrganizationalStructure. . . . . . . . . . . . . . . . . . . . . . . 69 3.5 CreateAddedValue:RightAway. . . . . . . . . . . . . . . . . . . . . . . . 73 3.6 CommunicateIntensivelyandInvolveStakeholders. . . . . . . . . . . 74 3.7 Data-CentricCorporateCulture. .. . . .. . . .. . . .. . . .. . . .. . . . 75 References. . . . .. . . .. . . .. . . . .. . . .. . . . .. . . .. . . . .. . . .. . . . . 78 PartIII Implement 4 DevelopmentofaResponsiveOperatingModel. . . . . . . . . . . . . . . . 81 4.1 FundamentalsoftheOperatingModel. . . . . . . . . . . . . . . . . . . . . 81 4.2 LineOrganization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 MatrixOrganization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 LineorMatrixOrganization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.5 ProcedureModel:IntroductionofDataGovernance. . . . . . . . . . . 86 iixx x Contents 4.6 ProcedureModel:PreparationforRegularOperationofData Governance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References. . . . .. . . .. . . .. . . . .. . . .. . . . .. . . .. . . . .. . . .. . . . . 100 PartIV Run 5 FundamentalsoftheDigitalTransformation. . . . . . . . . . . . . . . . . . 103 5.1 StagesofDigitalValueCreation. . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2 FundamentalsofBusinessArchitecture. . . . . . . . . . . . . . . . . . . . 108 References. . . . .. . . .. . . .. . . . .. . . .. . . . .. . . .. . . . .. . . .. . . . . 112 6 DataGovernanceasDriverofValueStreamOptimization andasPacemakerfortheDigitalTransformation. . . . . . . . . . . . . . 113 6.1 FundamentalsofProcessDocumentation. . . . . . . . . . . . . . . . . . . 114 6.2 ClassicValueStreamMapping. . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3 Data-DrivenValueStreamOptimization. . . . . . . . . . . . . . . . . . . 119 6.4 ApplicationofData-DrivenValueStreamOptimization. . . . . . . . 126 6.5 TheDigitalProductionLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 References. . . . .. . . .. . . .. . . . .. . . .. . . . .. . . .. . . . .. . . .. . . . . 142 PartV Control 7 MeasuringtheSuccessofDataGovernance. . . . . . . . . . . . . . . . . . . 145 7.1 DataGovernanceMaturityModel. . . . . . . . . . . . . . . . . . . . . . . . 145 7.2 Self-AssessmentoftheCurrentDevelopmentStatus oftheDataGovernanceImplementation. . . . . . . . . . . . . . . . . . . 148 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8 ListofPrinciples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9 Bonus:DataDefinitionTemplate. . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10 ClosingWords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.