ebook img

Data Assimilation: Mathematical Concepts and Instructive Examples PDF

140 Pages·2016·1.696 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data Assimilation: Mathematical Concepts and Instructive Examples

SPRINGER BRIEFS IN EARTH SCIENCES Rodolfo Guzzi Data Assimilation: Mathematical Concepts and Instructive Examples 123 SpringerBriefs in Earth Sciences More information about this series at http://www.springer.com/series/8897 Rodolfo Guzzi Data Assimilation: Mathematical Concepts and Instructive Examples 123 RodolfoGuzzi System Biology Group University La Sapienza Rome Italy ISSN 2191-5369 ISSN 2191-5377 (electronic) SpringerBriefs inEarth Sciences ISBN978-3-319-22409-1 ISBN978-3-319-22410-7 (eBook) DOI 10.1007/978-3-319-22410-7 LibraryofCongressControlNumber:2015948730 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor(s)2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface Data Assimilation is a set of mathematical techniques allowing us to use all the information available within a time frame. This includes observational data, any a priori informationwe may haveanda deterministic orstochastic model describing our system, and encapsulating our theoretical understanding. The mathematical basis is the estimationtheory or theory ofthe inverse problem that isan organized set of mathematical techniques for obtaining useful information about the physical world on the basis of observation. In a conventional problem one would use a set of known prior parameters to predictthestate ofthephysical system.Thisapproach isusually calleda “forward problem.”Inthe“inverseproblem”oneattemptstouseavailableobservationofthe state of the system to estimate poorly known parameters of the state itself. In both these cases Data Assimilation can be treated as a Bayesian system. The Bayesian theoremorthelawofinverseprobabilityallowsustocombineaprioriinformation about theparameterswith theinformation contained intoobservations toguide the statistical inference process. The reason why the Data Assimilation is so effective is that it seeks to produce an analysis that fits a set of observations taken over a time frame (not just the observations made at one instant in time). This is subject to the strong constraint that the evolution of the analyzed quantities is governed by a deterministic model describing the given observation. Due to its flexibility Data Assimilation has been applied to several fields, from thenumericalweatherprediction,whereitwasfirstdeveloped,toplanetaryclimate analysis up to the evolution of biological cells. One begins with a forecast model, often called background. In order to make usefulpredictionsthebackgroundmustbeupdatedfrequentlywithnoisyandsparse measurements. This procedure updates the background in light of the new obser- vation to produce an analysis, which, under suitable assumptions is the maximum estimate of the model state vector. Later, the model is restarted from analysis and produces a new background forecast. v vi Preface Data Assimilation and model forecasts can be combined into an observing system simulation experiment in order to quantify the effect of changes in the observation accuracy, type, location, and frequency on the accuracy of the numerical forecast. The method is prone to severe limitations, because eventually the forecasted parameters diverge from the true values. The optimal procedures would combine the most exhaustive theoretical and observational knowledge taking into account the errors of observation and those due to the model. Theaimofthisbookistogiveanin-depthandcompleteoverviewintheframe oftheSpringerBriefshortbookconcept,toconstructDataAssimilationindifferent and emerging fields from environment to biology, as outlined in the Applications chapter. The book serves both teachers and college students and other interested parties providingthealgorithmsandformulastomanagetheDataAssimilationwherevera dynamic system is present. In writing this book I have followed the history of the data assimilation evo- lution.Thefirstchaptergivesawideoverviewofthedataassimilationstepsstarting from Gauss’ first methods to the most recent as those developed under the Monte Carlomethods.Thesecondchaptertreatstherepresentationofthephysicalsystem as an ontological basis of the problem. The third chapter deals with the classical Kalman filter, while the fourth chapter deals with the advanced methods based on recursive Bayesian Estimation. A special chapter, the fifth, deals with the possible applications,fromthefirstLorenzmodel,passingthroughthebiologyandmedicine uptoplanetaryassimilation,mainlyonMars.Theearthquakeapplication,wherethe modelishighlynonlinearandtheerrorisnon-Gaussian,isalsoreportedinorderto offer another point of view to the reader. The book endeavors to give a concise contribution to understanding the data assimilation and related methodologies. The mathematical concepts and related algorithms are fully presented, especially for those facing this theme for the first time. Finally, I want to express my special thanks to Judith De Paul and George C. KieffertowhomIamindebtedfortheirlinguistictipsandtheeffectivecorrections, and Luca Montabone for his suggestions on the chapter of applications, mainly on Mars data assimilation. Contents 1 Introduction Through Historical Perspective . . . . . . . . . . . . . . . . . 1 1.1 From Gauss to Kolmogorov. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Approaching the Meteorological System . . . . . . . . . . . . . . . . . . 6 1.3 Numerical Weather Prediction Models. . . . . . . . . . . . . . . . . . . . 10 1.4 What, Where, When. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Representation of the Physical System. . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Observational System and Errors . . . . . . . . . . . . . . . . . . . . 19 2.1.1 The Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.2 The Linear Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.3 Optimal Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.4 Minimization Methods of Cost Functions . . . . . . . . . . . . 28 2.1.5 Some Properties of Estimation. . . . . . . . . . . . . . . . . . . . 30 2.1.6 Estimation of the quality of analysis. . . . . . . . . . . . . . . . 31 2.2 Variational Approach: 3-D VAR and 4-D VAR . . . . . . . . . . . . . 32 2.3 Assimilation as an Inverse Problem . . . . . . . . . . . . . . . . . . . . . 34 2.3.1 An Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Sequential Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 An Effective Introduction of a Kalman Filter. . . . . . . . . . . . . . . 39 3.1.1 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.2 Building up the Kalman Filter . . . . . . . . . . . . . . . . . . . . 42 3.2 More Kalman Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 Sigma Point Kalman Filter (SPKF). . . . . . . . . . . . . . . . . 49 3.2.3 Unscented Kalman Filter (UKF). . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vii viii Contents 4 Advanced Data Assimilation Methods . . . . . . . . . . . . . . . . . . . . . . 61 4.1 Recursive Bayesian Estimation. . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.1 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1.2 The Forecast Step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 The Analysis Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.4 Prediction by Stochastic Filtering. . . . . . . . . . . . . . . . . . 70 4.2 Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 The Stochastic Ensemble Kalman Filter Menu. . . . . . . . . 74 4.2.2 The Deterministic Ensemble Kalman Filter . . . . . . . . . . . 76 4.2.3 The Analysis Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.4 The Deterministic Ensemble Kalman Filter Menu. . . . . . . 79 4.3 Issues Due to Small Ensembles . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Inbreeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.2 Filter Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.3 Spurious Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Methods to Reduce Problems of Undersampling. . . . . . . . . . . . . 83 4.4.1 Spatial Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.2 Covariance Inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3 Covariance Localization . . . . . . . . . . . . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Lorenz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Solution of Lorenz 63 Model. . . . . . . . . . . . . . . . . . . . . 92 5.1.2 Lorenz Model and Data Assimilation . . . . . . . . . . . . . . . 93 5.2 Biology and Medicine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.1 Tumor Growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.2 Growth Tumor Data Assimilation with LETKF . . . . . . . . 99 5.2.3 LETFK Receipt Computation. . . . . . . . . . . . . . . . . . . . . 104 5.3 Mars Data Assimilation: The General Circulation Model. . . . . . . 105 5.3.1 Mars Data Assimilation: Methods and Solutions. . . . . . . . 112 5.4 Earthquake Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4.1 Renewal Process as Forecast Model . . . . . . . . . . . . . . . . 115 5.4.2 Sequential Importance Sampling and Beyond. . . . . . . . . . 116 5.4.3 The Receipt of SIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Chapter 1 Introduction Through Historical Perspective Abstract The first approach to the data assimilation methods started with the applicationsoftheNewtonianequationstothemotionoftheplanetsmadebyLaplace andGauss.However,onlywiththeintroductionofaprobabilisticview,thedynamical equationswereabletomakearealforecast.Thefirstnumericalweatherprediction (NWP)models,basedondeterminism,soonbecameprobabilistic,mainlywiththe contributeofthegroupleadedbyVonNeumannatPrinceton’sInstituteforAdvanced Study.Thischaptercontainsthehistoryoftheevolutionofthedataassimilationmeth- ods,fromtheearlydeterminismalgorithmstothemostrecentprobabilisticmethods astheensembleforecasting.ThefundamentalworkbyEdwardLorenzandbythe groupofLosAlamos,whichdevelopedtheMonteCarlomethod,arealsoreported. 1.1 FromGausstoKolmogorov Forecastsfrommodelsprovideusefulinformationtohelppredictthefuturestateofa system.However,inevitablypredictionswilldivergefromrealityastimeprogresses, that is an inescapable property of dynamical systems. Data assimilation (DA) is a formalapproachusedtohelpcorrectforecastsbyintroducinginformationobserved fromtheenvironment. ThefirstDynamicDataAssimilation,whichweintendtodescribeinthisbook, whichisthatrequirestheexistenceofdataandequationsordynamicmodels,was made to calculate the comet’s orbit, the moving bodies per excellence. This is a classicalproblemoftwobodieswhereoneseekstodeterminethepositionandthe componentsofthebodyataparticulartime,(PrincipiabookIIIpropXLI). Thefirstmethodoffindingtheorbitofacometmovinginaparabolawastriedby Newton[1],usingthreeobservations.He,however,wrote,“Thisbeingaproblemof verygreatdifficulty,Itriedmanymethodsofresolvingit”. WhentheobservationsaretakenfromthesurfaceofEarth,theapparentposition, in space, of the comet is non-given and therefore the velocity components are not determined. This fact implies that the observer has to make more observations, at different times. During the interval of time, Earth and comet have moved, so the ©TheAuthor(s)2016 1 R.Guzzi,DataAssimilation:MathematicalConceptsandInstructiveExamples, SpringerBriefsinEarthSciences,DOI10.1007/978-3-319-22410-7_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.