ebook img

Data Analysis and Related Applications, Volume 1: Computational, Algorithmic and Applied Economic Data Analysis PDF

478 Pages·2022·15.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data Analysis and Related Applications, Volume 1: Computational, Algorithmic and Applied Economic Data Analysis

Data Analysis and Related Applications 1 Big Data, Artificial Intelligence and Data Analysis Set coordinated by Jacques Janssen Volume 9 Data Analysis and Related Applications 1 Computational, Algorithmic and Applied Economic Data Analysis Edited by Konstantinos N. Zafeiris Christos H. Skiadas Yiannis Dimotikalis Alex Karagrigoriou Christiana Karagrigoriou-Vonta First published 2022 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2022 The rights of Konstantinos N. Zafeiris, Christos H. Skiadas, Yiannis Dimotikalis, Alex Karagrigoriou and Christiana Karagrigoriou-Vonta to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group. Library of Congress Control Number: 2022935196 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-771-2 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Konstantinos N. ZAFEIRIS, Yiannis DIMOTIKALIS, Christos H. SKIADAS, Alex KARAGRIGORIOU and Christiana KARAGRIGORIOU-VONTA Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 1. Performance of Evaluation of Diagnosis of Various Thyroid Diseases Using Machine Learning Techniques . . . . . . . . . . . . . . . . . . 3 Burcu Bektas GÜNEŞ, Evren BURSUK and Rüya ŞAMLI 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Data understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4. Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 2. Exploring Chronic Diseases’ Spatial Patterns: Thyroid Cancer in Sicilian Volcanic Areas . . . . . . . . . . . . . . . . . . . . . 13 Francesca BITONTI and Angelo MAZZA 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2. Epidemiological data and territory . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1. Spatial inhomogeneity and spatial dependence . . . . . . . . . . . . . . . . 18 2.3.2. Standardized incidence ratio (SIR) . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3. Local Moran’s I statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4. Spatial distribution of TC in eastern Sicily . . . . . . . . . . . . . . . . . . . . 22 2.4.1. SIR geographical variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 vi Data Analysis and Related Applications 1 2.4.2. Estimate of the spatial attraction . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3. Analysis of Blockchain-based Databases in Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Orhun Ceng BOZO and Rüya ŞAMLI 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1. Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2. Blockchain types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.3. Blockchain-based web applications . . . . . . . . . . . . . . . . . . . . . . 33 3.2.4. Blockchain consensus algorithms . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.5. Other consensus algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3. Analysis stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1. Art Shop web application . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2. SQL-based application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.3. NoSQL-based application . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.4. Blockchain-based application . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1. Adding records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.2. Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.3. Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.4. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter 4. Optimization and Asymptotic Analysis of Insurance Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Ekaterina BULINSKAYA 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2. Discrete-time model with reinsurance and bank loans . . . . . . . . . . . . . . 44 4.2.1. Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2. Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3. Model stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3. Continuous-time insurance model with dividends . . . . . . . . . . . . . . . . 48 4.3.1. Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.2. Optimal barrier strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3. Special form of claim distribution . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.4. Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Contents vii 4.4. Conclusion and further research directions . . . . . . . . . . . . . . . . . . . . 55 4.5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Chapter 5. Statistical Analysis of Traffic Volume in the 25 de Abril Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Frederico CAEIRO, Ayana MATEUS and Conceicao VEIGA de ALMEIDA 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.1. Main limit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.2. Block maxima method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.3. Largest order statistics method. . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.4. Estimation of other tail parameters . . . . . . . . . . . . . . . . . . . . . . 63 5.4. Results and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 6. Predicting the Risk of Gestational Diabetes Mellitus through Nearest Neighbor Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Louisa TESTA, Mark A. CARUANA, Maria KONTORINAKI and Charles SAVONA-VENTURA 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2. Nearest neighbor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2.1. Background of the NN methods . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2.2. The k-nearest neighbors method . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2.3. The fixed-radius NN method . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2.4. The kernel-NN method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2.5. Algorithms of the three considered NN methods . . . . . . . . . . . . . . . 72 6.2.6. Parameter and distance metric selection . . . . . . . . . . . . . . . . . . . 74 6.3. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.1. Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.2. Variable selection and data splitting . . . . . . . . . . . . . . . . . . . . . . 75 6.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.4. A discussion and comparison of results . . . . . . . . . . . . . . . . . . . . 78 6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 viii Data Analysis and Related Applications 1 Chapter 7. Political Trust in National Institutions: The Significance of Items’ Level of Measurement in the Validation of Constructs . . . . . . . 81 Anastasia CHARALAMPI, Eva TSOUPAROPOULOU, Joanna TSIGANOU and Catherine MICHALOPOULOU 7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.1. Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.2. Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.2.3. Statistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.3.1. EFA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.3.2. CFA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7.3.3. Scale construction and assessment . . . . . . . . . . . . . . . . . . . . . . 91 7.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5. Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Chapter 8. The State of the Art in Flexible Regression Models for Univariate Bounded Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Agnese Maria DI BRISCO, Roberto ASCARI, Sonia MIGLIORATI and Andrea ONGARO 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.2. Regression model for bounded responses . . . . . . . . . . . . . . . . . . . . . 101 8.2.1. Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.2.2. Main distributions on the bounded support . . . . . . . . . . . . . . . . . . 103 8.2.3. Inference and fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.3. Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.3.1. Stress data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.3.2. Reading data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.4. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Chapter 9. Simulation Studies for a Special Mixture Regression Model with Multivariate Responses on the Simplex . . . . . . . . . . . . . . . . . . . 115 Agnese Maria DI BRISCO, Roberto ASCARI, Sonia MIGLIORATI and Andrea ONGARO 9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.2. Dirichlet and EFD distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.3. Dirichlet and EFD regression models . . . . . . . . . . . . . . . . . . . . . . . 118 9.3.1. Inference and fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4. Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.1. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.