ebook img

Darwin's bark spider: giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae)? PDF

2011·8.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Darwin's bark spider: giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae)?

2011.TheJournalofArachnology39:287-295 Darwin’s bark spider: giant prey in giant orb webs {Caerostris dairwini^ Araneae: Araneidae)? MatjazGregoric',IngiAgnarsson-,ToddA. Blackledge-'’andMatjazKuntner'; 'Institute ofBiology, ScientificResearch Centre, SlovenianAcademyofSciencesand Arts, Ljubljana, Slovenia. E-mail: [email protected]; ^DepartmentofBiology, UniversityofPuerto Rico, SanJuan, Puerto Rico, USA; -^DepartmentofBiologyand Integrated BioscienceProgram, UniversityofAkron, Akron, Ohio44325-3908, USA Abstract. Althoughthediversityofspiderorbwebarchitecturesisimpressive,fewlineageshaveevolvedorbwebslarger thanImindiameter.Untilrecently,suchwebgigantismwasreportedonlyinafewnephilidsandaraneids.However,new studies on bark spiders {Caerostris) ofMadagascar report a unique case ofweb gigantism: Darwin’s bark spider (C. darwini)castsitswebsoversubstantialwaterbodies,andthesewebsaremadefromsilkwhosetoughnessoutperformsall other known spider silks. Here we investigate C. darwiniweb architecture and provide data to begin to answer two intriguing questions to explain these extraordinary web characteristics: 1) Are C. darwiniwebs specialized to subdue unusuallylarge,perhapsevenvertebrate,prey?2)Dotheselarge,riverinewebsallowthespiderstocapitalizeoncatching numerous small semi-aquatic insects? During fieldwork in Madagascar, we studied C. darwini web architecture and ecology,aswellasinteractionswithprey.WecharacterizeC.darwiniwebsashavingrelativelysimplecaptureareaswith veryopenstickyspiralsandfewradiallines.WealsocomparewebfeaturesinseveralsympatricCaerostrisspecies,among whichC.darwinirepresentsthemostextremecaseofwebgigantism,withthelargestorbsupto2.76m"andlongestbridge linesreaching25.5m.Whilepreliminary,currentdatasuggestthat C. darwiniwebsareeffectivesnaresforsemi-aquatic insectssuchasmayfliesanddragonflies,whilevertebratepreywereneverobserved.Wesuggestthatmassemergenceof aquatic insectsmay function analogously to thecapture ofrare, large prey that recent studies suggest arecritical for reproductioninorbweavingspiders. Keywords: Webgigantism,webarchitecture,websize,bridgeline,kleptoparasite,silk,biomaterial,preycapture 200S8p)ider orb webs are highly efficient and specialized traps its phylogenetic placement remains controversial (Scharff& that have diversified greatly through time (Eberhard 1982; Coddington 1997; Kuntneretal.2008a;Sensenigetal. 2010). Coddington 1986a;Coddington&Levi 1991;Blackledgeetal. Only 12 Caerostris species are currently considered valid t22o0000t99h,)e2c0l1a1s;sicFaolel“iwxa2g0o1n-1;wHheereble”rsstheaipne&doTrsboi2t0se1l1f),.dIenriavdedditwieobn (PlTahtenimckos2t01r0e;ceKnutnsttnudeires&onAgCnaaerrossstornis2o0f10M)a.dagascarhintat forms include linyphiid sheetwebs and theridiid cobwebs further, as yet undescribed diversity (Kuntner & Agnarsson (Griswold et al. 1998; Agnarsson 2004; Eberhard et al. 2010).Uptosevensympatricspeciesinhabitasinglereserve,the , uloborid and araneid sector webs (Wiehle 1927; Andasibe-Mantadia National Park. Someofthesespeciesare Gregoric et al. 2010), nephilid and araneid ladder webs nocturnalandothersdiurnal,butalmostallofthemconstruct (Robinson & Robinson 1972; Eberhard 1975; Harmer & sizeablewebsatforestedgesorclearings(Agnarssonetal.2010; Framenau 2008; Kuntner et al. 2008a, b, 2010b; Harmer Kuntner«feAgnarsson2010).However,onespecies,therecently , the deinopid casting web (Coddington 1986b) and described Darwin’s bark spider, C. darwini (Fig. 1) exhibits others. Even for “standard” orb webs, the details of exceptional web biology and behavior in utilizing a unique architecture and overall web size also vary substantially habitat by building webs above streams, rivers and lakes amongtaxaandincludeseveralinstancesof“webgigantism”. (Fig. 2A-C;Kuntner&Agnarsson2010).Thesewebscanreach For example, webs within the family Nephilidae encompass extremesizes-suspendedbetweenvegetationontheriverbanks extremesrangingfromsmallarboricolousladdersin Ctitaetra bybridgelinesthatoftenspanmorethan 10m,withtheorbs Simon 1889 to the dramatically elongated ladder webs of frequentlyexceeding 1 m in diameter(Kuntner&Agnarsson Herennia Thorell 1877 and Nephilengys Koch 1872, which 2010).Asecond,apparentlyundescribed, Caerostrisspeciesin oftenexceedameterin height(Kuntner2007; Kuntneretal. Andasibe-Mantadia NP also builds its webs over water, but 2008a, b, 2010; Kuntner & Agnarsson 2009), and the giant only spanning relatively small streams inside closed canopy aerial orbsofNephilathatreach 1.5 mdiameter(Kuntneret forest. Although other spiders build webs on edges ofwater al. 2008a). The largest known orb webs are built by the bodies,orevenattachwebstowater(Eberhard1990),individual recently described Darwin’s bark spider Caerostris darwini spidersinnootherspeciesroutinelyutilizetheaircolumnabove (Kuntner and Agnarsson 2010) from Madagascar. These large streams, rivers and lakes as a habitat (Kuntner & spiders produce webs close to 2 m in diameter that are Agnarsson 2010). How the spiders cross these large water suspended upon the longest bridge lines ever recorded, bodiesisonlynowbeingresearched(Gregoricetal. inprep.), allowingthewebs to span riversand small lakes (Agnarsson butC.darwiniwebsareconstructedofsilkthatoutperformsall etal. 2010; Kuntner&Agnarsson2010). otherspidersilksincombininghighstrengthandelasticityinto Bark spiders (genus CaerostrisThorell 1868) are adiverse the toughest known biological material, outperforming even group, widespread in the old world tropics, that are poorly mostsyntheticfibers(Agnarssonetal.2010). studiedtaxonomically,ecologicallyandbehaviorally(Kuntner Thus, itiscertainlydesirabletoexpand ourunderstanding &Agnarsson 2010). Grasshoff(1984) revised this genus, but of Caerostris biology, in particular of key species such as 287 THEJOURNALOFARACHNOLOGY — Figure 1. CaerostrisdarwiniinAndasibe-MantadiaNP:A.malewithfemaleinvegetation;B-D,femaleswithtypicalcolor(C)andtwoless commoncolorforms(B,D). C. darwini. Inthispaper,webroadenknowledgeofC. darwini the webs’ location across rivers that could act as flyways, natural history by characterizing their webs, including a suggests that these webs could be specialized in part for comparison with three congeners. We also begin to test captureofsmallflyingvertebrates-birdsorbats(Agnarsson whether or not their giant riverine v/ebs are specialized for etal. 2010; Kuntner&Agnarsson2010). Bothbirdsandbats capturingexceptionalprey.Thecombinationofwebgigantism areoccasionallycapturedinthewebsofseveralspeciesoforb and thehigh material toughnessofC. darwinisilk, aswellas spiders (Levi 1970; Graham 1997; Peloso & de Sousa 2007; ) GREGORICETkh.—CAEROSTRISDARWIN!WEBSANDPREY 289 Figure 2.—Caerostrisdarwinihabitatandprey:webssuspendedabovewaterinRanomafanaNP(C)andAndasibe-MantadiaNPwithwhole orbs(A)andonlybridgethreads(B)visible; C. darwinifemalewitharobust(D)andarudimentary(E)stabilimentuminweb. Sakai2007;Timm&Losilla2007).Sensenigetal.(2010)used daysand documentedweb buildingtime. Wealsoquantified web architecture and silk biomechanics to estimate that C. web parameters for an additional 26 mature females’ webs darwini webs could resist up to 62 p.J/cm“ of prey energy illustratedinFig. 3a-caswellaslengthofbridgeline(Fig. 2B, withoutbreakingduringimpact, which approachesthe flight C), number ofradii, numberofsticky spirals (SS) along the energyofsomebirdsandbats, thesmallest ofwhichare less verticalaxis,numberofkleptoparasiticspidersassociatedwith than 2 g body mass and fly at speeds less than 5 m/s. theweb,stabilimentum(definedasabsent(0),rudimentary(1 Alternatively, oradditionally, C. darwiniwebs could present orrobust(2)(Fig. 2D,E)),habitat(definedasabovewater(0) largesurfaceareasforthesimultaneouscaptureofnumerous ornotabovewater(1)),canopy(definedasopen(0)orclosed aquaticinsects,especiallyduringmassemergences. (1)ifestimatedthatmorethan50%ofthecanopywascovered METHODS bytreecrowns).Mostoftheaboveparametershavebeenused Fieldsite.—Westudied C. darwiniandthreeothersyntopic pHreervbieorusstleyini&n Ttshoe2l0i0t0e;raBtluraeckl(ee.dgg.e&RisGcilhles1p9i7e7;200O2p;elKlun1t9n9e9r; Caerostrisspecies(labeledas“sp. 1”, “sp. 2”and “sp. 3”)in etal. 2010; Kuntner&Agnarsson2009; Gregoricetal. 2010; Andasibe-Mantadia National Park (between 18.94760°S, Nakata&Zschokke2010). 48.41972°E and 18.79841°S, 48.4263rE at ~ 960 m elev.), To quantify web shapes, we then calculated indices Toamasina Province, eastern Madagascar, on 24 February following Peters (1937), Blackledge & Gillespie (2002), and 2010-4 April 2010. Voucher specimens are deposited in the Kuntneretal.(2008b):Webcapturearea(CA)wasdefinedby collections of the National Museum of Natural History, theformula: SmiBethhasvoinoiraanlInrsetciotrudtiinogn.,—WaWsehinvgitdoeno, DrCec.orded and photo- CA=(a/2)*(b/2)*7i graphed prey capture behavior and web architecture using where a and b were the horizontal and vertical diameters, camcorders (Sony DCR-SR87 HDD) and SLR cameras respectively, ofthecapture area. Mesh width wasdefined as (CanonEOS 5DMark—11andEOS7D). thenumberofrowsofSSpercentimeterofwebheight. Webcharacteristics. TomeasurehowlongC.darwiniwebs Wecalculatedaladderindex(LI)orverticaleccentricityof persisted, wemonitored 20webs ofmature females forthree captureareaas: — 290 THEJOURNALOFARACHNOLOGY (10 cm), two small frogs (2 cm), two moths (10 cm), two beetles (7 cm), 13 small dragonflies ofdifferent species (4- 7cm),andeightlarge(10cm)dragonfliesofonespecies.Prey weretossedintothecaptureareasofwebsfromadistanceof ~ 0.5m, more or less with the same speed and more orless perpendiculartothewebplane.Althoughtheinitialimpactof preywiththewebusingthistechniquedidnotperfectlymimic naturalinterceptionsandwecouldnotcontrolforhowmany threadseachpreycontacted,ourmethodshouldstillprovidea reasonableindexoftheabilityofC. darwiniwebstostopand retSatiantissetvicearlaladniaflfyesriesn.t—tWypeescohfepcokteedntiaalllpdraetya. for normality usingKolmogorov-Smirnovtests. Becausethedistributionof datawasnotnormalforbridgelengthandwebarea,wereport mwheidlieanwse(r^e1p/2o)rt±meinatnerqvuaalruteisle(Ar)an±gesstfaonrdatrhdesdeevpiaartaimoentserfso,r otherdata.Wetestedinterspecificdifferencesinwebmeasures usingtheKruskal-WallistestandMann-WhitneyU-tests.We set the significance level to 0.008 or lower (Bonferroni correction). We performed all analyses in PASW 18 for Windows(Field2005). — Figure 3. Web offemaie Caerostris darwiniillustrating investi- RESULTS gtoatheudbpadriasmteatnecres(:c)w.ebwidth(a),webheight(b)andtopstickyspiral Webcharacteristics. Caerostrisdarwiniorbsrangedinsize from0.21 to2.76 (pia=0.61 ±0.52m^).Capturearea didnotsignificantlydifferfrom,thoseofCaerostrissp. 1 and LI=b/a 0C.a3e9rosmtr^i,s rspe.spe2ct(i/v1e1/l2y),= 0w.h4e8re±as0.C2a1erostrainsdsppx.i23=h0a.d5 ±a dis¥p/leacaelmsoendteitnedremxin(eHdD)veratsi:cal web asymmetry through hub sF=iiggn.3i.f45)i.ca±Bntrli2yd.g6esmmla)iln,leesrsoigfcnaiCp.ftiucdaranertwliaynrielaoonrg(b/esiri/w2etrh=ean00..t91h56o-s2e5±.5o0fm.1o(t/mhii^e/,r2 where c was the distanHceDf=ro(mb-tche)/cbenter ofthe hub to the sCpa.er2osatnrdis1.s4pe±cie0s.6(7/iim/2i=ns1p..73;±Fi1g..1 4m).iTnhsep.we1;bs1.o8f±C.1d.2armwiniin bottomofthecapturearea. contained 15-30radii (A = 23.5 ± 4), no splitradii, 40-155 widFtohr,ahneiagdhdti,titoonpalsctiocmkpyarsipisroanlotfowheubbsidzies,twanecem,eaasnudrebdriwdegbe v(eArt=ica1l.0S4S±(A0.=33)9.7A±ll2w5)ebasndlamceksedhsweicdotnhdsaorfy0r.a5d1ii-1(.K7uSnSt/ecemr lengthinCaerostris“sp. 1”(w= 16),“sp.2”(«=22)and“sp. etal. 2008a),andonlytwo(8%)webshadstabilimenta(both tf3oo”rPw{rweneeby=bscos5aif)pz.teasuWtreoelfe,a—tsohttTeh0neo.r1cdooormbcpua(wmrTeaeeabndvltieonugp1r)r.sedpyaidtcearaspw,tiutlrhiem,piutiwbnlegisorhueercdsoerdldavetedas dwl“iaredsubdpdseliramdceiendimtnneadonrettyx”c)ooo.fnft0aT.i0h4n.e77k-8lw0-e.e1p6.bt94so9p(awAre(aArs=eit=ia0cl.m5s1o9p.is1dt±9erss0±.y.m0Fm5o0)e..ut1rr8Mi)(oc2sa1wtn%i)dt(hw6he3tub%hbs)e every wrapped or fed upon prey item in C. darwini webs. contained one or two kleptoparasites (all Argyrodinae), Additionally, we video recorded four spiders during the whereasonlythree(16%)webscontainedmore. daytimeforfourdayseach, foratotalof113 h. Becausethe All webs were suspended above or at the edges ofwater video resolution precluded exactdetermination ofpreytaxa, bodiesandalwaysunderopencanopy(Fig. 2A-C).Thewebs we grouped prey items into three size categories: small never had retreats, and the spiders sat at the hub duringall (< 1 cm),medium(1-2.5cm)andlarge(> 3cm). weather conditions (not removing SS during rain), day and Based upon an analysis of web architecture and silk night.Ourmonitoringof20websover3daysrevealedthatthe biomechanics,Sensenigetal. (2010)estimatedthatC. darwini webswerenotlonglasting. Intwoofthese20webs, thehost webscouldstophigherenergyflyingpreythanaphylogenet- spider was absent for thewhole time, and two more spiders ically diverse sampling of 16 other genera of orb spiders, disappearedduringobservation.Theother15spidersrenewed including other large orb-weavers such as Nephila and theirwebstwo to fourtimesin 3 days. Web renewal usually Argiope. However, their estimate is a theoretical measure of (74%) took place between 1600 and 1800 h. However, maximumperformance,whichmaynotbeattainedbyactual throughoutourfieldworkweobserved numerouswebsbeing webs,andtheyalsodidnotmeasurehoweffectivelythewebs constructed at the same location, suspended on bridge lines couldretainprey.Tobetterdeterminethemaximumpreysize thatwereclearlyretainedforseveraldays.Wethusestimated thatC. darwiniwebscanstopandretain,andtodocumentthe thatbridgelinescanbemaintainedforatleast5wk.Wenever spiders’attackbehavior,weintroduced34mediumand large observedwebdestructionbyflyingvertebratesorlargeinsects, prey items, each into a different web. Prey included five butregularlyobserveddragonfliesavoidingthewebsandeven grasshoppers(2cm),onelargegrasshopper(5cm),onemantis perchingonbridgelines. GREGORICETKU—CAEROSTRISDARWIN!WE'&SANDPREY 291 Table 1.—Comparisonofwebsize(if>0.1 m“)amongorbwebspiders,measuredforadultandpenultimatefemalewebs. Species Webarea(m") Max.webarea(m") Author Metellinamerianae(Scopoli 1763) 0.28 Wiehle 1927 ArgiopekatherinciLevi 1983(n =24) 0.13 0.22 Raopers.comm. HTealrtehtymbiiaaedterpursceislslaaTKhuonrtenller18290805(n(/?==1)2) 00..2113 00..2114 oKuwnntndeatraetal.2010b Eriovixialaglaizei(Simon 1877)(« = 1) 0.32 0.32 owndata NCeaeprhoislternigsyssudmoadtoraKnuantSntrearnd&1A9g1n5ar(nss=on1)2011 (n = 2) 00..6424 00..6526 oowwnnddaattaa Herenniamultipuncta(Doleschall 1859)(n = 6) 0.11 ±0.2 0.29 Kuntneretal.2010b Nephilainaiirata(Walckenaer 1841)(n = 23) 0.12 ±0.28 1.15 owndata ArgioperadonLevi 1983(n = 103) 0.122 ±0.055 0.49 Raoetal.2009,pers.comm. Argiopeargentata(Fabricius 1775)(n = 762) 0.13 ±0.045 Nentwig 1985 AraneiisangulatusClerck 1757 0.13-0.31 0.31 Wiehle 1929 Araneuscirce(Audouin 1826) 0.13-0.28 0.28 Wiehle 1928, 1931 Nephilaclavipes(Linnaeus 1767)(n = 32) 0.15 ±0.07 0.35 owndata Caerostrissp.3(n = 5) 0.16 ±0.1 0.35 thisstudy Nephilengysborbonica(Vinson 1863)(n =4) 0.19 ±0.09 0.23 owndata NephilaardentipesButler1876(n = 24) 0.19 ±0.18 0.65 owndata Nephilengysmalabarensis(Walckenaer 1841)(n = 7) 0.23 ±0.16 0.41 Kuntneretal.2010b Eriophorasp.(« = 20) 0.24±0.18 0.69 owndata Nephilapilipes(Fabricius 1793)(n = 30) 0.28 ±0.15 0.63 Kuntneretal.2010a,owndata CaerostrisdarwiniKuntner&Agnarsson2010{n = 16) 0.28 ±0.47 1.07 Kuntner&Agnarsson2010 ArgiopekeyserlingiKarsch 1878(n=273) 0.3 ±0.14 Blamiresetal.2007 Nephilengyslivida(Vinson 1863)(n =29) 0.33 ±0.23 0.77 owndata Eriophorafuliginea(C.L.Koch 1838)(n = 349) 0.36 ±0.11 Nentwig 1985 Nephilaclavipes(Linnaeus 1767)(n = 1072) 0.36 ±0.11 Nentwig 1985 CCaaeerroossttrriisssspp..21 ((nn == 2126)) 0.04.85 ±±00..2319 01..186 tthhiissssttuuddyy CaerostrisdarwiniKuntner&Agnarsson2010(n = 26) 0.61 ±0.52 2.76 thisstudy Preycapture.—Wehaphazardlyencountered 25 preyitems to other parts of web (Caerostris supplementary video 2 duringwebsurveys: two(8%)honeybees,threesmallbeetles (http://www.nephilidae.com/videos/videos.htm)). (12%),onewasp(4%),onegrasshopper(4%),twodamselflies DISCUSSION (8%), one fly (4%), one (4%) queen ant, one (4%) butterfly, one (4%) large unidentified prey item, and four (16%) The present study shows that Caerostris darwinibuild the dragonflies. The 113 hours of video material revealed the longest bridge lines and largest orb webs known, with captureof50(79.4%)small, 12(19%)medium,andone(1.6%) exceptionalwebsbridgingwaterbodiesmorethan25macross largepreyitem(apapilionidbutterfly).Altogether,largeprey and capture areas reaching 2.76 m^ (Tables 1, 2; Fig. 4). C. itemsconstituted6.8%ofallcaughtprey:20%inhaphazardly darwiniwebscontainrelativelysparselyspacedcapturespirals encountered prey and 1.6% in video material, but this and are almost symmetrical (Senseniget al. 2010). Webs are disparityisexpected becauseactivefeedingonsmall, quickly always suspended above or next to water and their capture consumedinsectsislesslikelytobeinghaphazardlyobserved. areas are renewed daily. In contrast, bridge lines are Videomaterialalsorevealedonecaseofkleptoparasiticfliesin maintained and reinforced regularly, for up to five weeks. C. darwini {Caerostris supplementary video 3 (http://www. Wefoundnoevidencethatthesegiantwebsareanadaptation nephiIidae.com/videos/videos.htm)). forcapturingflyingvertebrates,suchasbirdsorbats.First,no During our prey presentations (Caerostris supplementary such large prey items were caught in the web, although the video 1, 2 (http://www.nephilidae.com/videos/videos.htm)), samplesizeinthisstudyissmallenoughthatsuchrareevents frogs and large insects (i.e., large beetles and moths) were couldhavebeenmissed(Blackledge2011). Second,numerous notretainedinwebs.Thewebsretainedallfive2-cm,butnot visually acute flying insects, such as dragonflies, were seen the 5 cm grasshopper. Out ofthe 21 dragonflies introduced, avoidingthewebs throughout the field study. Whiledragon- thewebs retained all 13 “regularsized” specimens, but only flies are exceptionally maneuverable fliers (Alexander 1984, fouroftheeight“large” ones. 1986;Azumaetal. 1988;Thomasetal.2004),thisobservation Allspidersperformedbite-wrapattackbehavior(Caerostris suggeststhatflyingvertebratesmightalsoperceiveandavoid supplementary video 1 (http://www.nephilidae.com/videos/ the webs. On the other hand, orb spiders can still capture videos.htm); Eberhard 1982). The spiders carried all prey, substantial numbers of insects in taxa that see and avoid except the largest dragonflies, back to the hub in their spiderwebs(Craig1994;Raoetal.2008).Third,therelatively chelicerae (Caerostris supplementary video 1 (http://www. sparse packing ofsilk in the webs, which have significantly nephilidae.com/videos/videos.htm)), while the large dragon- largermeshwidthsthansimilarlysizedorbweavers(Sensenig flieswereliftedtothehubonasilkthreadwhilestillattached et al. 2010), necessarily limit their stopping and retention — 292 THEJOURNALOFARACHNOLOGY A individualwebsoverseveraldays.Infact,onlythebridgelines arelonglasting,whilethecaptureareasarereneweddailyasin most otherorbweavers(Foelix 1996; Carico 1986). Theweb buildingbehaviorsofC. darwinidepartfromtypicalaraneids (Eberhard 1982; Kuntner2008a). C. darwiniexhibitminimal websiteexplorationandbuildwebsthatlacksecondaryframe threads.Therelativelysimplecaptureareascontainveryopen stickyspirals,supportedbyfewradiithatarebothsingleand doubled in the same web. Detailed comparison of web spinning behaviors will be fully summarized elsewhere (Gregoricetal. inprep.). Attackbehavior. Caerostrisdarwiniattacksallpreybyfirst bitingandthenwrappingthem.Typicalaraneid,tetragnathid anduloboridattackbehavioriswrap-biting(Eberhard 1982), whichprobablyevolvedsixtoseventimeswithinorbicularian spiders (Kuntner et al. 2008a). In contrast, bite-wrapping is probably plesiomorphic for a larger clade of orb spiders (Kuntner et al. 2008a), and is utilized by nephilids, some araneidssuchasDeliochus,Phonognatha, Caerostris(Kuntner etal.2008a)andZygiellas.l.(Gregoricetal.2010). Caerostris darwini uses bite-wrapping regardless of prey size, whereas many wrap-biting spiders occasionally bite-wrap in response todifferenttaxaofprey(Robinson&Robinson 1974;Foelix 1996). Caerostris darwini also uses a relatively unusual behavior for transporting subdued prey back to the hub. Insteadoffreeinglargepreyfromthewebandhangingthem onashortthread(Foelix 1996), C. darwinicarriesevenlarge Figure 4.—Web size in Caeroslris darwini and three congeneric preybacktohubintheirchelicerae(Caerostrissupplementary species. A. Web capture area (m"). B. Bridge thread length (m). video 1 (http://www.nephilidae.coni/videos/videos.htm)).Only Asteriskmarksthespeciesthatsignificantlydifferfromtheothers. the largest dragonflies were not carried using this behavior, but instead were lifted toward the hub using a longer silk power. Instead,alongwithourpreviousstudy,wefoundthat thread,whilethepreywasstillattachedtootherpartsofweb. these webs subdue small to large flying insects, such as On the other hand, this observation and the fact that many mayflies (Kuntner & Agnarsson 2010) and dragonflies (this orb spiderspeciesdirectlycarry small prey, suggestthatitis stuWdye)b. characteristics.—Althoughthemaximalvaluesofweb tthheeclaarrgreyipnrgeybeshiazevitohrretshhaotlidsautnuwshuiaclh,Cratdhaerrwtihnainswtihtecbheeshafvrioomr sizearestatistical outliers(Fig. 4) in ourstudy, we believeit itself. — likely that webs are often even larger in nature. Many C. Prey capture. Our prey tossing experiments found that darwiniwebsaresuspendedfarfromtheshoresofriversand dragonflieswerethelargestpreyretainedbyC darwiniwebs, lakesorhighintheaircolumnsuchthatwesimplycouldnot with larger insects and frogs always breaking through the measure them. These open, aerial microhabitats are less webs. Byfarthemostcommonly observedpreyentangledin spatiallylimited,comparedtothemoreeasilyaccessiblespace websweresmallinsects,withlarger(>3cm)preyfoundonly directly above the water surface that we studied. Thus, C. at relatively low frequencies (~ 7%). However, the disparity darwini may be capable of building larger webs than we between large prey encountered haphazardly (20%) and by measured. video material (1.6%) is expected because active feeding on With the exception of their extreme size and unusual small,quicklyconsumedinsectsislesslikelytobehaphazardly microhabitat,C. darwiniwebsresembletypicalaraneidorbsin observed. Although we never observed exceptionally large manyrespects(Zschokke2002;Kuntneretal.2008a;Kuntner prey in C. darwini webs, such rare large prey may be & Agnarsson 2010). They are more or less vertical, almost fundamentally important for female fecundity in most orb symmetric, haveclosed hubs, non-sticky spirals are removed spiders, even though the rarity oftheir capture makes them from finished webs, have gradual hub-loop to sticky spiral difficulttoobserveinfieldstudies(Venner&Casas2005;see transitions, have few radii and SS compared to other orb Blackledge 2011, this volume for review). Therefore, more weavers(Sensenigetal.2010),havenosplitradii,lackretreats, sampling effort is clearly needed to thoroughly exclude the and rarelycontain stabilimenta (Eberhard 1982). Kuntner & hypothesisthattheunusual sizeandplacementofC. darwini Agnarsson (2010) reported the hub as open or closed; websfacilitatethecaptureofexceptionallylargeprey. however, this is incorrect. We only observed the typically The rare, large prey hypothesis is particularly tempting, araneidclosedhubandthecompletelackofthehubbite-out giventheexceptionaltoughnessofthesilkin C. darwiniwebs behavior (Gregoric et al. in prep.). Kuntner & Agnarsson (Agnarssonetal. 2010). However,orbspidersfacefunctional (2010) speculated that the webs last longer than typical tradeoffs between making relatively sparse webs with large araneid orbs, but did not have long-term observations of captureareastomaximizeinterceptionofprey,versusbuilding GREGORICETAL.—CAEROSTRISDARWINIWEBSANDPREY 293 Table 2.—WebdataforCaerostrisdarwinifemalesinMadagascar.SS = stickyspirals. Webarea Bridgelength Kleptoparasite Meshwidth Ladder Hub (m-) (cm) Radiino. SSno. no. (SS/cm) index displacement 0.21 130 18 40 0 0.70 1.21 0.65 0.23 265 21 77 0 1.24 1.32 0.55 0.25 275 20 88 0 1.47 1.15 0.63 0.26 210 24 104 0 1.70 1.11 0.57 0.28 330 29 89 0 1.35 1.22 0.53 0.31 95 0 1.19 0.68 0.41 320 23 121 0 1.57 1.13 0.60 0.41 180 53 4 0.71 1.07 0.69 0.41 400 0 1.07 0.57 0.46 380 28 110 0 1.33 1.17 0.58 0.49 164 30 82 7 1.17 0.78 0.64 0.53 215 0 1.13 0.57 0.61 350 83 0 0.91 1.06 0.47 0.62 275 20 110 0 1.12 1.21 0.59 0.64 300 29 126 6 1.22 1.30 0.58 0.70 500 25 112 1 1.15 1.05 0.61 0.76 450 24 103 2 1.03 1.03 0.59 0.82 670 108 0 0.90 1.38 0.50 0.86 350 27 91 0 0.73 1.41 0.60 0.90 430 25 94 0 0.76 1.35 0.60 1.15 540 23 92 1 0.70 1.19 0.66 1.19 750 117 1 0.78 1.49 0.60 1.21 640 83 0.51 1.71 0.58 1.36 400 0 1.02 0.50 2.76 550 25 155 0.79 1.08 0.58 2550 0.61 ±0.52 350± 260 23.5 ±4 97 ± 25 1.04± 0.33 1.19 ±0.18 0.59 ±0.05 Sp.l mean 0.48 ±0.21 170± 109 Sp.2mean 0.5 ±0.39 177 ± 122 Sp.3mean 0.16 ±0.1 142 ± 66.5 smaller and denser webs capable of stopping and retaining both silk properties and web architecture within the genus bigger prey (Chacon & Eberhard 1980; Eberhard 1986; Caerostris. Blackledge&Zevenbergen2006; Blackledge& Eliason 2007; Conclusions.—Caerostrisdarwiniexhibitsseveral aspectsof Sensenig et al. 2010). Caerostris darwini web architecture is unusualwebbiologythatallowthespiderstospingiantorbs unusuallyopen, with fewerradii andlargermeshwidth than suspended in the air column above bodies ofwater, thereby other large orb webs (Sensenig et al. 2010). Thus, the webs exploitingauniqueecologicalniche.Preycapturedatasuggest may instead function to maximize capture surface for large thatC.darwinidoesnotpreyonflyingvertebrates,butinstead numbersofsmallaquaticinsects,suchasthemasscaptureof mostlyconsumesmediumtolargeflyinginsects.Wespeculate mayfliesobservedinC.darwiniwebsbyKuntner&Agnarsson that the mass emergence of aquatic insects may function (2010).Suchmasscapturescouldevenfunctionanalogouslyto analogously for spider fitness to the capture of single rare, rare, large prey in the rarity of their occurrence and their large prey in other orb spiders. However, with the currently importanceforforagingsuccess.However,nomasscaptureof available data wecannot rule out alternative hypotheses for insectswasobservedinthisstudyandmightbeasdifficultto theoriginoftheexceptionalpropertiesofC. darwinisilk,such observeduringfieldstudiesasthecaptureofindividuallarge as adaptation to carry the spiders’ weight on long, sagging prey(Blackledge2011).Alternatively,thelarge,sparsecapture bridgelines(Rodriguez-Gironesetal.2010)orresistingabiotic areasofC.darwiniwebs,combinedwiththeirunusuallytough factorssuchaswindandrain(Eberhard 1990). silk, may represent a compromise toward subduing large ACKNOWLEDGMENTS numbers ofsmall aquatic insects while still maintaining the ability to capture rare largerprey. Such a “multifunctional” ThisisContribution 1 resultingfromthe2010Madagascar webwouldcontrastwiththebehaviorofatleastoneotherorb expedition,fundedbytheNationalGeographicSociety(grant weaver,Parawixia,thatinsteaddramaticallyenlargescapture 8655-09 to I. Agnarsson, M. Kuntner, and T. Blackledge). areas ofwebs only during mass emergences oflarge, easily AdditionalfundingcamefromtheSlovenianResearchAgency captured reproductive termite prey (Sandoval 1994). The (grantsPl-0236,Jl-2063)andNSF(IOS-0745379).Wethank evolution of the extreme silk toughness in C. darwini may the MICET crew in Antananarivo, and Sahondra Lalao facilitatethispotentiallydualfunctionofthelargesparseweb, Rahanitriniaina and Honore Rabarison for their help in the makingitcriticaltobetterdeterminepatternsofevolutionfor field. We also thank Dinesh Rao, William Eberhard, Sean 294 THEJOURNALOFARACHNOLOGY BlamiresandWolfgangNentwigfortheirhelpingettingweb Behavior, and Evolution. (W.A. Shear,ed.). StanfordUniversity sizedataforotherspiderspecies. Press,Stanford,California. Eberhard,W.G. 1989.Effectsoforbweborientationandspidersize LITERATURECITED on prey retention. Bulletin ofthe British Arachnological Society Agitihaerisrsorne,la1t.i2ve0s04.(AMroarnpehaoel,ogAircaanleopihdyelao,genTyheorfidcioidbawee).bsZpoiodlerosgiacnadl Ebe8r:h4a5r-d48,.W.G. 1990. Function and phylogeny of spider webs. AgnJaorusrsnoanl,ofL,thMe.LKiunnntenaenrSo&ciTe.tAy.1B4l1a:c4k4l7e-d6g2e6..2010. Bioprospecting EbeArnhnaurad,lWR.eGv.i,ewI.ofAgEncaorlsosgoyna&ndHS.yWst.emLaetviic.s22010:83.41W-e37b2.formsand finds the toughest biological material: extraordinary silk from a phylogenyoftheridiidspiders(Araneae:Theridiidae):chaosfrom giantriverineorbspider.PLoSONE5(9):e11234. order?SystematicsandBiodiversity6:415-475. Alefxoarnedweirn,gsD.aEn.d19h8i4n.dwUinnugssuailn pfhlaysiengredlraatgioonnfslhiiepss. bJeotuwreneanl thoef FiePldu,blAi.cat2i0o0n5s.,DLiosncdovoenr,inUgKS.tatisticsUsingSPSS,2ndedition.Sage ExperimentalBiology 109:379-383. Foelix,R.F. 1996.BiologyofSpiders,2ndedition.OxfordUniversity Alexander, D.E. 1986. Wind tunnel studies of turns by flying Press,Oxford,UK. AzudJromauagr,onnafAli.ioe&fs.TE.xJpoWeuarrtniaamlnenaotbfael.ExB1pi9eo8rl8i.omgeFynlti1ga3hl7t:B2pi2eo1rl-fo2og5ry2m.a1n2c2e:8o1f-9a8.dragonfly. GFiolelPlerisexps,ise,R,.OFRx..fGo2r.0d1,&1.UTBK.i.oClaorgaycoo.fS1p9i8d7e.rsR,is3kr-dseendsiittiiovne.fOoxrfaogridngUnsitrvaetresgiiteys Blaucskilnegdgteh,eTb.eAs.tm2e0t1r1i.c?PrJeoyurcnaapltuorfeAirnacohrnbowleoagvyin3g9:s2p0i5d-e2r1s0:.Arewe Graohfatmw,osDp.iLd.erp1o9p9u7l.atiSopnisd.erEcwoelbosgya6n8:d88w7-i8n9d9o.ws as potentially Blackledge,T.A., M. Kuntner&1. Agnarsson. 2011.Theformand iOrmnpiotrhtoalnotgyso6u8r:c9e8s-1o0f1.hummingbird mortality. Journal of Field fAudnvcatniconesoifnsIpnisdeecrtoPrhbysiwoelbosg:y.evIonluptreisosn.from silk to ecosystems. Gransisdhao:ffA,raMn.eae1)98.4.ReDviueeRaZdonoeltogzisqpuiennAefnr-iGcaatinteun9g8:C7a2e5r-o7s6tr5i.s(Arach- BBllaasNHccpaakkitylldieeaeoddsrggnheeaid,,li&vTATe..crA1As.a.i.,dAfiegJ&cn.maaytCrCioso.odnsfMdo.inSinnc.igEetl2tni0ohca0enes9,so.mnNo.UR.leSe2cScA0ocu0nhl7sa1.atr0rfr6fFu:,uce5rnt2Taci2..tn9ig-SoP5znwru2aoet3lcs4bl,e.yeeJdv.iionnWlgdeusentpizoeeonnlfd,aetnnChd.te GGrreiJaPgssohowuyroriltlncoada,g,xleoMnCno..yof,Em.oAiR,frc.atJchK.cehAoh.nsaootrrClaabocno-dtjgwedsyeriesbnk3g8b&ti:un3oi1nlM9Z,d.-iy3ngGK2gi.u7esn.UHptaionderersmr..sli.g(2aA0(r1A0&ar.naenNOae.era,ebS,OcwhreabAribrfcafunf.leeaair1tdi9uaa9ree8e):.s components of prey capture are architecturally constrained in Deinopoidea, Araneoidea). Zoological Journal of the Linnean Blascpkildeedrgeo,rbT.wAe.bs&.RB.iGol.ogGiyllLeestptieer.s230:0425.6-E4s5t8i.mationofcaptureareas HarSmoecire,tyA.1M2.3:T1.-9290.09.Elongatedorb-websofAustralianladder-web of spider orb webs in relation to asymmetry. Journal of spiders(Araneidae: Telaprocera)andthe significanceoforb-web BlaAcrkalecdhgneo,loTg.yA.30&:7J0.-M77..Zevenbergen. 2006. Meshwidthinfiuences Haremloenrg,atAio.nM..TJ.our&nalV.oWf.EtFhroalmoegyna2u7.:425030^86.0.Telaprocera (Araneae: Blapmrieryesr,etSe.nJt.i,onM.inB.spiTdheromoprbsownebs&.EDt.hEo.logHyoch1u1l2i:.119240-0172.01H.abitat eArlaonnegiadtaeed)w,eabsn.ewZogoetnauxsaof19A5u6s:t5r9a-l8i0a.norb-webspiderswithhighly selectionandwebplasticitybytheorbspiderArgiopekeyserlingi Herberstein, M.E. & I.M. Tso. 2000. Evaluation of formulae to (Argiopidae): do theycompromise foraging success forpredator estimate the capture area and mesh height of orb webs avoidance?AustralEcology32:551-563. (Araneoidea,Araneae).JournalofArachnology28:180-184. Carico, J.E. 1986. Web removal patterns in orb-weaving spiders. Herberstein,M.E.&I.M.Tso.2011.Spiderwebs:evolution,diversity Pp. 306-318. In Spiders: Webs, Behavior, and Evolution. (W.A. and plasticity. Pp. 57-98. In Spider Behaviour: Flexibility and ChaSchoenar,,Pe.d.&).WS.taGn.foErbderUhnairvedr.si1t9y80P.reFsasc,tSotrasnfaofrfedc,tiCnaglinfourmnbiea.rsand VCearmsbatriilditgye.,(UMK.E.. Herberstein, ed.). CambridgeUniversity Press, kindsofpreycaughtinartificialspiderwebs,withconsiderations Jager, P. 2007. Spiders from Laos with descriptions ofnewspecies ofhoworbwebstrapprey.BulletinoftheBritishArachnologica! (Arachnida:Araneae).ActaArachnologica56:29-58. Society5:29-38. Knoflach, B. & A. Van Harten. 2000. Palpal loss, single palp Coddington, J.A. 1986a. The monophyletic origin ofthe orb web. copulationandobligatorymateconsumptioninTidarrencuneola- Pp. 319-363. In Spiders: Webs, Behavior, and Evolution. (W.A. tum (Tullgren, 1910) (Araneae, Theridiidae). Journal ofNatural Shear,ed.).StanfordUniversityPress,Stanford,California. History34:1639-1659. Coddington, J.A. 1986b. Orb webs in ‘non-orb weaving’ ogrefaced Kuntner, M. 2005. A revision of Herennia (Araneae: Nephilidae: spiders(Araneae:Deinopidae):aquestionofgenealogy.Cladistics Nephilinae),theAustralasian ‘coinspiders’. InvertebrateSystem- 2:53-67. atics 19:391-436. Coddington,J.A. &H.W. Levi. 1991. Systematicsandevolutionof Kuntner, M. 2007. A monograph ofNephilengys, the pantropical spiders (Araneae). Annual Review of Ecology and Systematics ‘hermit spiders’ (Araneae, Nephilidae, Nephilinae). Systematic 22:565-592. Entomology32:95-135. Craig, C.L. 1994. Predator foraging behavior in response to Kuntner, M. & 1. Agnarsson. 2009. Phylogeny accurately predicts perception and learning by its prey: interactions between orb- behaviourinIndianOceanClitaetraspiders(Araneae:Nephilidae). spinning spiders and stingless bees. Behavioral Ecology and InvertebrateSystematics23:193-204. Sociobiology35:45-52. Kuntner, M. & 1. Agnarsson. 2010. Darwin’s bark spider: Eberhard,W.G. 1975.InvertedladderorbwebofScolodenissp.and web gigantism in a new species of bark spider from Mada- intermediateorbofEustalasp. Araneae-Araneidae.Journalof gascar (Araneidae: Caerostris). Journal of Arachnology 38: NaturalHistory9:93-106. 346-356. Eberhard, W.G. 1982. Behavioralcharacters forthehigherclassifi- Kuntner,M.,J.A.Coddington&G. Hormiga.2008a.Phylogenyof cationoforb-weavingspiders.Evolution36:1067-1095. the extant nephilid orb-weaving spiders (Araneae, Nephilidae) - Eberhard, W.G. 1986. Effects of orb-web geometry on prey testing morphological and ethologica! homologies. Cladistics interception and retention. Pp. 70-100. In Spiders: Webs, 24:147-217. GREGORICETAL.^CAEROSTRISDARWINIWEBSANDPREY 295 Kuntner,M.,C.R.Haddad,G.Aljancic&A.Blejec.2008b.Ecology Sakai, W.H. 2007. Long-billed hermit (Phaethornis superciliosiis) and web allometry of Clitaetra irenae, an arboricolous African caught in golden orb-spider (Nephilia clavipes) web. Ornitologia orbweavingspider(Araneae,Araneoidea,Nephilidae).Journalof Neotropical 18:117-119. Arachnology36:583-594. Sandoval,C.P. 1994.PlasticityinwebdesigninthespiderParawixia Kuntner, M., I. Agnarsson & M. Gregoric. 2009a. Nephilid spider bistriata: a response to variable prey type. Functional Ecology eunuchphenomenoninducedbyfemaleorrivalmaleaggressive- 8:701-707. Kunntensse.r,JoMu.r,naJl.Ao.fCAordadcihnngotloongy&3J7.:2M6.6-S2c7h1ne.ider.2009b.Intersexual Senbsieonmiagt,eAr.i,al1.cAogevnoalrustsioonn&inTs.pAi.deBrloacrkblewdegbes..2J0o1u0r.naBlehoafviEovuorlaultiaonnd- arms race? Genital coevolution in nephilid spiders (Araneae, aryBiology23:1839-1856. Nephilidae).Evolution63:1451-1463. Scharff,N.&J.A.Coddington. 1997.Aphylogeneticanalysisofthe Kuntner, M., S. Kralj-Fiser, J.M. Schneider& D. Li. 2009c. Mate orb-weaving spider family Araneidae (Arachnida, Araneae). Kunphtylnpueogrtgh,iensgMi.sv.,iaJMgoeu.nrintGaarllemogufotrZiilocaotl&ioognyDi.n27n7Lei:p.2h5i72li-0d1206sa6p..ideMras:ssanperveodliucttsionwaerby SheZersomtoialmonag,tiocPra.lMoJ.four1a9n9a4ls.poiTfdehtreh’esoLrdibynnnwaeeambni—cSoacfnioerteayngeir1ng2ge0t:ia3c5n5da^n3dr4e.bperhoadvuicotriavle Kunatsnyemrm,etMr.,yiSn.NKerpahlji-lFaissepirde&rs.M.NaGtruergwoirsisce.ns2c0h1a0fbt.enLa9d7d:e1r097w-e1b1s05i.n Thostmraaste,gieAs..L.ARn.i,maKl.GB.ehTaavyiloourr,4R8:.1B9.-3S4r.ygley, R.L. Nudds & R.J. orb-webspiders:ontogeneticandevolutionarypatternsinNephi- Bomphrey. 2004. Dragonfly flight: free-flight and tethered flow lidae.BiologicalJournaloftheLinneanSociety99:849-866. visualizations reveal a diverse array of unsteady lift-generating Levi,H.W. 1970.ThercivillagroupoftheorbweavergenusEriophora mechanisms,controlled primarily via angle ofattack. Journal of Nak2sidanp7ote7Nwae:o,nd3r0Kto1.h9ri-bn&A30mw2SeeC.5byr.sciZ:lcsocaswhae(o.bAkrkaeaPn.sreyoa2mce0me:1ee0tdA.rirynaUng,pessisidpdaioeedf)e-r.dotoPwhrseniyecsnhptReiaodty7eia7ros:ln2b8au0niS-dlo3dc0ir2ueu.ptnsyniidneBg- TimsEteamxrvp,iisegrnRiynm.iaeMs(n.oAtraal&n(eEBimidMboaa.lelo)lg,oLynopsu2rir0leil7ddaa:.at4ei2)2o9.0n90^7oC3.na2r3tOi.hrbebbp-erwaoenbaovsiJcnoiugsrnbsaapltidRehor,yfncAShrcoginieyoncpc-ee Nenwtewaivgi,ngW.spi1d9e8r5s.(PArreayneaanea:lysAirsanoefidfaoeu)rasnpdeciaescoofmptarroipiscoanl woirtbh- Uhl4,3:G2.82&-28F4..Vollrath. 1998. Littleevidenceforsize-selectivesexual araneidsofthetemperatezone.Oecologia66:580-594. cannibalism in two species ofNephila (Araneae). Zoology 101: Opealln,dBt.hDe.e1v9o9l9u.tiRoendeosfigmniondgesmpidoerrb-wweebbss:.StEivcoklinuetsiso,nacrayptuErceolaorgeya Ven1n0e1r-,10S6..&J.Casas. 2005. Spiderwebsdesignedforrarebutlife- Research 1:503-516. savingcatches.ProceedingsoftheRoyalSocietyB272:1587-1592. Peloso, P.L. & V.P. de Sousa. 2007. Predation on Todirostrum Wiehle, H. 1927. Beitrage zur Kenntnis des Radnetzbaues der cinereum(Tyrannidae)bytheorb-webspiderNephilengyscruentata Epeiriden, Tetragnathiden und Uloboriden. Zeitschrift fiir Mor- (Araneae, Nephilidae). Revista Brasiieira de Ornitologia 15: phologicundOkologiederTiere8:468-537. 461-463. Wiehle,H. 1928.BeitragezurBiologiederAraneen,insbesonderezur Peters,H. 1937.Studienamnetzderkreuzspinne{Araneadiadema.)- Kenntnis des Radnetzbaues. Zeitschrift fiir Morphologie und 1. DieGrundstrukturdesNetzes und Beziehungenzum Bauplan OkologiederTiere8:468-537. des Spinnenkorpers. Morphologie und Okologie der Tiere Wiehle, H. 1929. Weitere Beitrage zur Biologie der Araneen, 33:128-150. insbesondere zur Kenntnis des Radnetzbaues. Zeitschrift fiir Platnick, N.I. 2010. The World SpiderCatalog, Version 11.0. The MorphologieundOkologiederTiere 15:262-308. American Museum of Natural History, New York. Online at Wiehle, H. 1931. NeueBeitragezurKenntnisdesFanggewebesder http://research.amnh.org/entomology/spiders/catalog/ Spinnen aus den Familien Argiopidae, Uloboridae und Theridi- Rao,D.,K.Cheng&M.E.Herberstein.2008.Stinglessbeeresponse idae. Zeitschrift fiir Morphologie und Okologie der Tiere to spider webs is dependent on the context of encounter. 22:349^00. BehavioralEcologyandSociobiology63:209-216. Zschokke,S.2002.Formandfunctionoftheorb-web.Pp.99-106.In Rao,D.,M.Webster,A.M.Heiling,M.J.Bruce&M.E.Herberstein. EuropeanArachnology2000.(S.Toft&N.Scharff,eds.).Aarhus 2009. The aggregating behaviour ofArgiope radon, with special UniversityPress,Aarhus,Denmark. referencetowebdecorations.JournalofEthology27:35-42. ELECTRONICSUPPLEMENTARYMATERIAL Risch, P. 1977. Quantitative analysis oforb web patterns in four Robsipnecsioens,ofMs.pHi.ders&.BBe.havRioobrinGseonne.tic1s9772:.19T9-h2e38.structure, possible vidCeaoesr/ovsitdreioss.hstump)p:leDmreangtoanrfylyviidnetorod1uce(dhttinpt:o//wswuwb.andeuplhtilfiedmaael.ecomC./ functionandoriginoftheremarkableladder-webbuiltbyaNew- darwiniweb.Notebite-wrapattackbehaviorandspidercarryingthe Guineaorbweb spider(Araneae: Araneidae). Journal ofNatural preytohubinitschelicerae. RobHiinsstoonr,y6M:.6H8.7-6&94B..Robinson. 1974.ThebiologyofsomeArgiope vidCeaoesr/ovsitdreioss.hstump)p:leDmreangtoanrfylyviidnetorod2uc(ehdttipn:t/o/wfwewm.anlepehiCl.idadea.rcwoimn/i speciesfromNewGuinea:predatorybehaviorandstabilimentum web. Notespiderliftingthepreytowardshubwhilethepreyisstill construction (Araneae: Araneidae). Zoological Journal of the attachedtootherwebparts. RobLiinnsnoena,nMS.ocHi.et&y5B4.:1R4o5b-1i5n9s.on. 1980. Comparativestudiesofthe vidCeaoesr/ovsitdreioss.hstump)p:lemKelnepttaorpyaravsiidteioc 3flie(shttapp:p/r/owawcwh.innegphifleimdaalee.coCm./ courtshipandmatingbehavioroftropicalaraneidspiders.Pacific darwiniandherprey. Insects36:35-218. Rodriguez-Girones, M.A., C. Guadalupe&J. Moya-Larano. 2010. Silkelasticityasapotentialconstraintonspiderbodysize.Journal ofTheoreticalBiology266:430-435. Manuscriptreceived3 October2010, revised9May2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.