ebook img

DART-Ray: a 3D ray-tracing radiative transfer code for calculating the propagation of light in dusty galaxies PDF

1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DART-Ray: a 3D ray-tracing radiative transfer code for calculating the propagation of light in dusty galaxies

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed8January2014 (MNLATEXstylefilev2.2) DART-RAY: a 3D ray-tracing radiative transfer code for calculating the propagation of light in dusty galaxies 4 G. Natale1, C. C. Popescu1,2, R. J. Tuffs2, D. Semionov1 1 0 2 1JeremiahHorrocksInstitute,UniversityofCentralLancashire,Preston,PR12HE,UK 2MaxPlanckInstitutefu¨rKernphysik,Saupfercheckweg1,D-69117Heidelberg,Germany n a J 7 8January2014 ] M I ABSTRACT h. We present DART-RAY, a new ray-tracing 3D dust radiative transfer (RT) code designed p specificallytocalculateradiationfieldenergydensity(RFED)distributionswithindustygalaxy - modelswitharbitrarygeometries.Inthispaperweintroducethebasicalgorithmimplemented o r inDART-RAYwhichisbasedonapre-calculationofalowerlimitfortheRFEDdistribution. t Thispre-calculationallowsustoestimatethe extentofregionsaroundtheradiationsources s a withinwhichthesesourcescontributesignificantlytotheRFED.Inthisway,ray-tracingcal- [ culationscanberestrictedtotakeplaceonlywithintheseregions,thussubstantiallyreducing 1 thecomputationaltimecomparedtoacompleteray-tracingRTcalculation.Anisotropicscat- v teringisincludedinthecodeandhandledinasimilarfashion.Furthermore,thecodeutilizes 7 a Cartesian adaptivespatial gridand an iterative methodhas beenimplementedto optimize 3 theangulardensitiesoftheraysoriginatedfromeachemittingcell.Inordertoverifytheac- 4 1 curacyoftheRTcalculationsperformedby DART-RAY, wepresentresultsofcomparisons . withsolutionsobtainedusingtheDUSTY1DRTcodeforadustshellilluminatedbyacen- 1 tral pointsource and existing 2D RT calculationsof disc galaxieswith diffusely distributed 0 4 stellar emission and dust opacity. Finally, we show the application of the code on a spiral 1 galaxymodelwithlogarithmicspiralarmsinordertomeasuretheeffectofthespiralpattern : ontheattenuationandRFED. v i X r a 1 INTRODUCTION Interstellardustisofprimaryimportanceindeterminingthespectralenergydistribution(SED)oftheradiationescapingfromgalaxiesat wavelengths rangingfromtheultraviolet(UV) tothesubmillimetre(submm) and radio. Dustattenuates andredistributesthelight,origi- natingmainlyfromstarsand, ifpresent, fromanactivegalacticnucleus (AGN),by eitherabsorbing or scatteringphotons. Theabsorbed luminosityisthenre-emittedintheinfraredregime.Thedustmaybesituatedincomplexgeometrieswithrespecttothesesources,affecting theobservedstructureofthegalaxyateachwavelengthaswellasitsintegratedSED.Modelingthepropagationoflightwithinrealgalaxies isthusachallenging task. Nevertheless, itisessential todo suchmodeling, ifphysical quantitiesof interest,such asthedistributionand propertiesofthestellarpopulationsandtheinterstellarmedium(ISM)astracedbydustandtheinterstellarradiationfields,aretobederived frommultiwavelengthimagesandSEDs. Takingadvantageoftheapproximatecylindricalsymmetryofgalaxies,2Ddustradiativetransfer(RT)models,suchastheonepresented byPopescuetal.(2011),alreadycontainthemainingredientsneededtopredictintegratedgalaxySEDs,averageprofiles,dustemissionand attenuationforthecaseofnormalstar-formingdiscgalaxies.However,thereareanumberofreasonswhy3DdustRTcodesaredesirable. First,spiralgalaxies,althoughwellmodeledwith2Dcodes,showthepresenceofmultipleandirregularfeaturessuchasspiralstructures, bars,warpsandlocalclumpinessoftheISM.Also,galaxiesmayhostacentralAGNwhosepolaraxismaynotbealignedwiththatofthe galaxy.Formergersorpost-mergergalaxiesthereisclearlynofundamentalsymmetryofthedistributionofstarsanddust.Finally,solutions forthedistributionofstarsandISMprovidedbynumericalsimulationsofformingandevolvinggalaxiesgenerallyrequireprocessingwith a3DRTcodeinordertopredicttheappearanceindifferentbands. 2 Nataleetal. Themainchallengeinrealizing3DsolutionsofthedustRTproblemisthecomputationalexpense.Thestationary3DdustRTequationis anon-localnon-linearequation:non-localinspace(photonspropagatewithintheentiredomain),direction(duetoscattering,absorption/re- emission)andwavelength(absorption/re-emission).Evenusingarelativelycoarseresolutionineachofthesixfundamentalvariables,namely thethreespatialcoordinates,thetwoanglesspecifyingtheradiationdirectionandthewavelength,solvingthe3DdustRTproblemrequire animpressiveamountofbothmemoryandcomputationalspeed,atthelimitsofthecapabilitiesofcurrentcomputers. PossiblythequickestwaytocalculateanimageofagalaxyindirectandscatteredlightinaparticulardirectionisbyusingMonteCarlo (MC)methods(includingmodernaccelerationtechniques,seeSteinackeretal.2013).ThereisarichhistoryofapplicationsofMCcodes todustRTproblems,startingwiththepioneeringworksofe.g.Mattila(1970),Roark,Roark&Collins(1974),Witt&Stephens(1974)and Witt(1977).InthefollowingdecadestheMCRTtechniquewasfurtherdevelopedbymanyauthorssuchase.g.Witt,Thronson&Capuano (1992),Fischer,Henning&Yorke(1994),Bianchi,Ferrara&Giovanardi(1996),Witt&Gordon(1996)andDullemond&Turolla(2000). Nowadays, thismethodcanbeconsideredasthemainstreamapproach to3D dustRTcalculations(seee.g.Gordon etal.2001, Ercolano etal.2005,Jonsson2006,Bianchi2008,Chakrabarti&Whitney2009,Baesetal.2011,Robitaille2011,butalsoseetable1ofSteinacker etal. 2013 forarecent listof published 3D dust RTcodes). TheMCapproach todust RTconsistsof asimulationof thepropagation of photonswithinadiscretizedspatialdomain,basedonaprobabilisticdeterminationofthelocationofemissionofthephotons,theirinitial propagation direction, theposition where an interactionevent (absorption or scattering) occurs and the new propagation direction after a scatteringevent.Thus,theMCtechniquemimicscloselytheactualprocessesoccurringinnaturewhichshapetheappearanceofgalaxiesin UV/opticallight.However,sinceitisbasedonaprobabilisticapproachtodeterminethephotonpropagationdirections,anRTMCcalculation doesnotnecessarilydeterminetheradiationfieldenergydensity(RFED)accuratelyintheentirevolumeofthecalculation.Thereasonis thatregionswhichhavealowprobabilityofbeingilluminatedarereachedbyonlyfewphotonsunlessthetotalnumberofphotonsinthe RTrunissubstantiallyincreased.Nonetheless,inthecaseofdiscgalaxies,accuratecalculationofradiationfieldintensitiesthroughoutthe entirevolumeisneeded,inparticularforthecalculationofdustemission.Indeed,far-infrared/submmobservationsofspiralgalaxiesshow thatmostofthedustemissionluminosityisemittedlongwardsof100µm(seee.g.Sodroskietal.1997,Odenwaldetal.1998,Popescuet al.2002,Popescu&Tuffs2002,Daleetal.2007,2012,Bendoetal.2012)throughgrainssituatedinthediffuseISMwhicharegenerally locatedatveryconsiderabledistancesfromthestarsheatingthedust. AnothermethodtosolvetheRTproblemingalaxies,alternativetothemainstreamMCapproach,isbyusingaray-tracingalgorithm. Thismethodconsistsinthecalculationofthevariationoftheradiationspecificintensityalongafinitesetofdirections,usuallyreferredto as”rays”.Ray-tracingalgorithmscanbespecificallydesignedtocalculateradiationfieldintensitiesthroughouttheentirevolumeconsidered intheRTcalculation.Also,itshouldbepointedoutthatMCcodesalreadymakelargeuseofray-tracingoperations(seeSteinackeretal. 2013).Itisthusinterestingtopursueinthedevelopingofpureray-tracing3DRTcodes,whichcanbesufficientlyefficientforthemodelling ofgalaxieswith3Darbitrarygeometries,ifappropriateaccelerationtechniquesareimplemented.SimilartoMCcodes,ray-tracingdustRT codes have had arichhistory inastrophysics (seee.g. Hummer &Rybicki 1971, Rowan-Robinson 1980, Efstathiou& Rowan-Robinson 1990,Siebenmorgenetal.1992,Semionov&Vansevic˘ius2005,2006).Applicationtoanalysisofgalaxiesstartedwiththe2DcodeofKy- lafis&Bahcall(1987).Althoughoriginallyimplementedonlyforthecalculationofopticalimages(seealsoXilourisetal.1997,1998,1999), thisalgorithmwaslateradaptedbyPopescuetal.(2000)forthecalculationofradiationfieldsandwascoupledwithadustemissionmodel (includingstochasticheatingofgrains)topredictthefullmid-infrared(MIR)/FIR/submmSEDofspiralgalaxies(seealsoMisiriotisetal. 2001,Popescuetal.2011).Thusfar,extensionsoftheray-tracingtechniqueto3Dhavebeenimplementedbutarespecificallydesignedfor solvingtheRTproblemforstarformingclouds(e.g.Steinackeretal.2003,Kuiperetal.2010),heatedbyfewdominantdiscretesources, ratherthanforveryextendeddistributionsofemissionanddustasencounteredingalaxies. Inthispaper,wepresentDART-RAY1,anewray-tracingalgorithmwhichisoptimizedforthesolutionofthe3DdustRTproblemfor galaxieswitharbitrarygeometriesandmoderateopticaldepthatoptical/UVwavelengths2.Themainchallengefacedbythismodelisthe constructionofanefficientalgorithmfortheplacingofraysthroughoutthevolumeofthegalaxy.Infact,acompleteray-tracingcalculation betweenallthecells,usedtodiscretiseamodel,isnotaviableoption,sinceitisbyfartoocomputationallyexpensiveevenforrelatively coarsespatialresolution.Ouralgorithmcircumventstheproblembyperforminganappropriatepre-calculation,whosegoalistoprovidea lowerlimittotheRFEDdistributionthroughoutthemodel.Inthisway,therayangulardensityneededintheactualRTcalculationcanbe dynamicallyadjustedsuchthattheraycontributionstothelocalRFEDarecalculatedonlywithinthefractionofthevolumewherethese contributionsarenotgoingtobenegligible. Furthermore, the code we developed can be coupled with any dust emission model. Applications of the 3D code for calculation of infraredemissionfromstochasticallyheateddustgrainsofvarioussizesandcomposition,includingheatingofPolycyclicAromaticHydro- carbonsmolecules,utilizesthedustemissionmodelfromPopescuetal.(2011),andwillbegiveninafuturepaper. Thepaper isstructured asfollows.In§2weprovide some background informationand motivation behind our particular ray-tracing 1 Thenameofthecodecanbeseenastheacronymfor“DustAdaptiveRadiativeTransferRay-tracing” 2 Theactualversionofthecodedoesnotconsiderthedustabsorption/scatteringoflightemittedbydustatotherpositions(socalled“dustself-heating”).This effectcanbeneglectedincasethegalaxiesareopticallythinatinfraredwavelengths DART-RAY 3 solutionstrategy.In§3wegiveatechnicaldescriptionofourcode.In§4weprovidesomenotesonimplementationandperformanceofthe code.In§5wecomparesolutionsprovidedbyourcodewiththosecalculatedbythe1DcodeDUSTYandthe2DRTcalculationsperformed byPopescuetal.(2011).In§6weshowtheapplicationofthecodeonagalaxymodelincludinglogarithmicspiralarms.Asummarycloses thepaper.AlistofdefinitionsforthetermsandexpressionsusedthroughoutthepapercanbefoundinTable1. 2 BACKGROUNDANDMOTIVATIONS Inthissectionwedescribethebasiccharacteristicsofthetime-independent3DdustRTequation,brieflyintroducetheray-tracingapproach usedinourcodeandprovidethemainmotivationsbehindoursolutionstrategy.Finally,wedescribethemainstepsofthenewalgorithmwe presentinthiswork.Amuchmoretechnicaldescriptionofourcodecanbefoundin§3. 2.1 Dustcontinuum3DRadiativeTransfer:Ray-tracingandSolutionStrategy Givenaninputdistributionofstellarluminosityanddustmass,solvingtheRTproblemrequiresinprincipletheresolutionofthefollowing equationforthespecificintensityI(λ,x,n),whichrepresentstheluminosityperunitarea,solidangleandwavelengthintervalpropagating atpointxintothedirectionn: n∇xIλ(x,n)=−kλ(x)ρ(x) Iλ(x,n)−ωλ Φλ(n,n′)Iλ(x,n′)dΩ′ +jλ(x) (1) (cid:20) ZΩ (cid:21) wherek (x)isthetotalextinctioncoefficientperunitmassofdust(includingbothabsorptionandscattering),ρ(x)isthedustmassdensity, λ ω isthealbedo,definedsuchthatω ×k (x)givesthefractionofextinctionduetoscattering,Φ (n,n′)isthescatteringphasefunction, λ λ λ λ whichgivestheprobabilityforradiationcomingfromdirectionn′ tobescatteredintodirectionn,andj (x)isthedistributionofstellar λ volumeemissivity3.Thefirsttermontheright-handsideofEq.1actstoreducetheradiationspecificintensityI(λ,x,n)byaquantitythat isproportionaltotheradiationintensityitself.Thesecondterminsteadactsasasourcetermandgivesapositivecontributiontotheradiation intensitybyaddingthelightcomingfromalldirectionstopointxandthenscatteredintothedirectionn.Thethirdtermgivesapositive contributiontothepropagatingradiationspecificintensity,whichisduetostellaremissionanditisassumedtobeisotropicateachposition x.Sincein3DRTtherearesixindependentvariables,namelywavelength,threespatialcoordinatesandtwoangulardirections,thesolution vector for I (x,n) can be extremely large, making the problem very challenging also from the point of view of memory requirements, λ apartfromthedifficultyofsolvingtheintegro-differentialequationitselfinthreedimensions.Notealsothatwedidnotincludeatermthat representsthere-emissionbydust,importantatinfraredwavelengths.Theresolutionalgorithmpresentedinthisworkisdesignedonlyto handlethepropagationofdirectandscatteredlightfromstellarpopulationsanddoesnotconsidertheself-heatingofdust. Instead of seeking to obtain a solution for I (x,n), the main aimof this work is toconstruct an algorithm optimized toderive the λ radiationfieldenergydensityU (hereafteralsorefereedtoasRFED)ateachpositionx,inordertobeabletocalculatesuccessivelythedust λ emissionspectraassuminglocalenergybalancebetweendustradiativeheatingandemission4 IntermsofI (x,n),onecanexpressU as: λ λ I (x,n)dΩ U (x)= λ (2) λ c R InordertocalculateU (x)ataspecificpointx,onecansimplysumupthecontributionsδU providedbytheradiationcomingfrom λ λ alltheemittingsourcestothevalueofU (x)atthatposition.AnumericalmethodtocalculateU (x)atanypositioncanbeimplementedby λ λ considering“rays”originatingfromeachemittingsourceandpropagatingthroughoutthewholevolumeconsideredinthecalculation.Along eachraypathonefollowsthevariationoftheradiationintensityandonecanthuscalculatetheδU contributionsatafinitesetofpositions λ (thissolutiontechniqueisamongthoseknownas“ray-tracing”methods).Morespecifically,asolutionalgorithmonecouldusetoderivethe distributionofU (x)forasinglewavelengthλ,givenaninput3Ddistributionofstellarluminosityanddustmass,isthefollowing. λ First,theentiremodelissubdividedinanadaptivegridofcubiccellsandtoeachcelloneassignstheaveragevaluesforboththedust densityandstellarvolumeemissivitywithinthecellvolume.Acellforwhichtheaveragevalueofstellarvolumeemissivityishigherthan 3 Throughoutthetextby“volumeemissivity”wewillalwaysmeantheluminosityperunitvolumeperunitsolidangleandperunitwavelengthintervalof thestellarradiationateachposition.Tonotbeconfusedwiththeemissivitycoefficientusedtocharacterisetheemissionpropertiesofe.g.gasordust. 4 Forexample,thelatterconditionforasinglegrainstochasticallyheatedcanbeexpressedas: Z Qλ,absZ Bλ(T)P(T)dTdλ=(c/4π)Z Qλ,absUλdλ whereQλ,absisthegrainabsorptionefficiencyatwavelengthλ,Bλ(T)isthePlanckfunctioncalculatedfordusttemperatureT andP(T)istheprobability forthedustgraintohaveatemperatureequaltoT.Numericalmethods,suchastheonepresentedinGuhathakurta&Draine(1989),allowustoderiveP(T) andthereforethedustemissionspectra,oncetheabsorptionefficiencyQλ,absandtheRFEDUλareknown.. 4 Nataleetal. Table1.Tablesoftermsanddefinition.Thesubscriptλdenotesadependencefromthewavelengthoftheradiation. Term Definition AEM Projectedareaofanemittingcell AINT Projectedareaofanintersectedcell fL Inputparameterneededtosetthethresholdvaluefor∆Lλbelowwhichscatteringitera- tionsarestopped fU InputparameterneededtosetthethresholdvalueforδUλbelowwhichraysarestopped gλ Henyey-Greensteinscatteringphasefunctionparameter Iλ Radiationspecificintensity <Iλ> AverageofIλoverthepathcrossedbyaraywithinanintersectedcell Iλ,i Radiationspecificintensityofaraybeforecrossingacelli Iλ,esc Radiationspecificintensityofarayonceithasreachedthemodelborder Iλ,ext Amountofradiationspecificintensityofarayextinctedwithinanintersectedcell δIλ,sca(θ,φ) Raycontributiontothespecificintensityoftheradiationscatteredintodirection(θ,φ), seeFig.6 jλ Volumeemissivity,thatis,theluminosityemittedatacertainpositionperunitvolume, unit solid angle and unit wavelength interval (also jλ,c when refereed to the average volumeemissivitywithinacell) κλ Dustextinctioncoefficientperunitdustmass(alsoκλ,absorκλ,scawhenreferredtothe extinctioncoefficientsduetodustabsorptionorscattering) Lλ Totalstellarluminositydensityofthemodel ∆Lλ Amountofluminositystilltobeprocessedduringscatteringiterations Lλ,ray Luminosityassociatedwitharaybeam Nrays Inputparameterspecifyingtheminimumnumberofrayscrossingacellwithinthefully sampledregion Φλ Scatteringphasefunction ρ Dustmassdensity(alsoρcwhenreferredtotheaveragedustmassdensitywithinacell) ∆r Raypathwithinanintersectedcell SCATTEN(θ,φ) Arraystoringtheluminosityoftheradiationscatteredbydustycellsintoafinitesetof solidangles τλ Opticaldepth Uλ Radiationfieldenergydensity(alsoreferredtoasRFED) δUλ ContributiontothelocalRFEDcarriedbyaray(alsoUλ,INTwhenreferredtothecon- tributiontoanintersectedcellRFED) Uλ,LL LowerlimittotheRFED UTEMP TemporaryarrayusedtostoreRFEDcontributionsfromanemittingcellthroughoutthe model Uλ,FINAL ArraystoringtheRFEDdistributionwhichisoutputbythecode VINT Intersectedcellvolume ωλ Albedo ΩHP,EM SolidangleassociatedwiththeHEALPixsphericalpixelsusedtodefinethedirectionsof raysfromanemittingcell ΩHP,INT SolidangleassociatedwiththeHEALPixsphericalpixelsusedtodefinethedirectionsof theradiationscatteredbyanintersectedcell ΩHP,MS SolidangleassociatedwithanHEALPixmainsector(seeFig.4) ΩINT SolidanglesubtendedbyprojectedareaoftheintersectedcellAINT(seeFig.6 “Dustycell” Acellwheretheaveragevalueofdustdensityishigherthanzero “Dustself-heating” Thedustabsorptionofradiationemittedbydustatotherpositions(notincludedinthis versionofthecode) “Emittingcell” Acellwheretheaveragevalueofthestellarlightorscatteredlightvolumeemissivityis higherthanzero “Escapingradiation” Thedirect orscattered stellar radiation propagating outside the borders ofthe volume consideredintheRTcalculation “Fullsampling”(ofaregion) Theprocessoflaunchingenoughraysfromasource,suchthatallthecellswithinaregion areintersectedbymultiplerays “Intersectedcell” Acellintersectedbyaray “Leafcell” Acellofthe3Dadaptivegridwhichisnotfurthersubdivided “Lostluminosity” Amount of stellar luminosity not considered in the RT calculation (to be kept low to guaranteeapproximateenergybalance,see§4) MC MonteCarlo RFED RadiationFieldEnergyDensity RT RadiativeTransfer “Sourceinfluencevolume” ThefractionofmodelvolumewithinwhichasourcecontributessignificantlytotheRFED “Volumeemissivity” seejλ DART-RAY 5 zerocanbetreatedapproximately asadiscreteradiationsource. Inthefollowing, wewillrefertothiskindof cellasan“emittingcell”. Similarly,cellswithaveragedustdensityhigherthanzerowillbereferredtoas“dustycells”. Then, one performs ray-tracing for a large set of directions originating from the centres of the emitting cells. That is, one follows thevariationof thespecificintensityI (x,n)fromthecellcentresalongrayscorresponding toeach directionn.Whilefollowingaray, λ one considers the increase of radiation intensity I (x,n) due to the stellar volume emissivity in the cell originating the ray but not in λ theintersectedcells,whereonly thedecrease of intensityduetodust absorption and scatteringisconsidered. Thisallowsustocalculate separatelythecontributionsδU providedonlybytheemittingcelloriginatingtheraytothefinalvalueofU (x)inallthecellsintersected λ λ bythesameray5.Whenarayintersectsacellidifferentfromtheoriginalcell,thenewvalueofthespecificintensitywillthenbe: I =I e−kρc,i∆r (3) λ,i+1 λ,i whereρ isthecelldustdensityand∆risthecrossingpath.Foreachray-cellintersectiononecalculatesanappropriateaverageofthevalue c ofI withintheraycrossingpathand,thus,thecontributionδU tothelocalvalueofU (x)byusingadiscreteversionofEq.2.Whenall λ λ λ theraysfromoneemittingcellhavebeenprocessed,theray-tracingisperformedfromanotheremittingcellandsoonuntilalltheemitting cellshavebeenconsidered.Scatteredradiation,whoseintensityinafinitenumberofdirectionshasalsobeenstoredlocallyforeachray-cell intersection,isthenprocessedinasimilarfashion. Ifonecreatesagridsufficientlyfineinresolutionandlaunchesasufficientlylargenumberofrays,thecalculatedcellRFEDvaluesare veryclosetotheexactvaluesofU (x)atthecellcentresandcanbeusedtocalculatethedustheating.Furthermore,thedescribedprocedure λ is extremely flexible and capable to handle completely arbitrary 3D distributions of stellar luminosity and dust mass. Unfortunately, the implementationoftheprocedureinthesimpleformdescribedaboveistoocomputationallyexpensive(scalingapproximatelyasN5/3,with N beingthetotalnumberofcells,inthecaseofuniformspatialsampling),consideringalsothatthecalculationhastobeperformedinan iterativewayforthescatteredlightandfordifferentwavelengths.Nonetheless,forwellmixedemitters–absorbersgeometries,suchasinthe caseofgalaxydust–stellardistributions,thefullray-tracingcalculationforrayspropagatingthroughouttheentiremodelfromeachemitting celldoesnothavetobenecessarilyperformedtoobtainareasonablyaccuratesolutionforU (x). λ Infact,eachradiationsourceinageneralRTproblemnotnecessarilycontributessignificantlytoU ateachpositionwithinthevolume λ considered for the RT calculation but often only within a fraction of it, which we call the “source influence volume”. In the ray-tracing methoddescribedabove,ifoneknewinadvancetheextentoftheinfluencevolumeforeachemittingcell,itwouldbepossibletoreducethe numberofcalculationsbysimplyperformingray-tracingonlywithinthisvolume.Unfortunately,itisnotpossibletoknowthisinformation apriori,sincethefinalvaluesofU ateachpositionareavailableonlyafterperformingtheRTcalculation.However,onecanestimatein λ aconservativewaytheextentoftheinfluencevolumeforagivenemittingcell.Thebasicideaistoidentifyapointatsomedistancefrom theemittingcellwhereitcanbeprovedthatthecontributionδU carriedbyarayisnegligiblecomparedtothelocalfinalvalueofU .If λ λ thisisthecase,thiscanimplythattheemittingcellwillnotcontributesignificantlytoU beyondthatposition,whichisalreadyoutsidethe λ influencevolumeoftheemittingcell[seeFig.1forsimpleexampleswherethiscriteriawillwork(left-handpanel)orcanfail(middleand right-handpanels)ifnotproperlyapplied]. In practice, one can implement thismethod in the following way. First,one calculates alower limit U for U withinthe entire λ,LL λ volumebyperformingray-tracingfromeachemittingcellonlyuntilacertainarbitrarydistance(seeFig.2).OncethelowerlimitforU is λ calculated,onecanstarttheRTcalculationagainfromthebeginningbutthistimeisabletocheckifacontributionδU ,carriedbyarayto λ aparticularcell,isgoingtobesignificantornot.Infact,ifforacertainintersectedcellδU isnegligiblecomparedtothelocalvalueofthe λ lowerlimitU ,thenitwillbenegligiblealsocomparedtothefinalvalueofU atthatposition.Theactualimplementationofthismethod λ,LL λ consistsincheckingateachcellintersectionifδU <f ×U withf equaltoaverysmallnumbertobechosenappropriately(see§4 λ U λ,LL U fordiscussiononthispoint).Whenthisconditionisrealizedandifthechosenvalueoff issufficientlysmall,thenthecontributionsδU U λ willalsobenegligibleforallthecellsbeyondthatpositioninthesameraydirection. Thisimpliesthat,onceδU < f ×U atacertaindistancefromanemittingcellalongaray-path,onecanstoptheray-tracing λ U λ,LL calculationforthatparticularrayatthatposition.Infact,inthatcase,theintersectedcellisalreadyoutsidetheinfluencevolumeoftheemit- tingcelloriginatingtheray(seeFig.3).Inthisway,thetotalamountofcalculationstobeperformedcanbesubstantiallyreduced,makingit feasibletouseamodifiedversionoftheaboveray-tracingalgorithmtoinfertheU distributionwithincomplexdust/starsstructuresasthose λ observedingalaxies.Inthefollowingsubsection,weprovideasimplifieddescriptionoftheRTalgorithmwehavedevelopedbasedonthis approach. 2.2 BasicDescriptionoftheDART-RayAlgorithm Inthefollowingweprovideasimpledescriptionofthethreestepsperformedbythealgorithmwhichimplementsthesolutionstrategyout- linedabovetocalculatetheRFEDdistributionU atasinglewavelengthλ.Thisdescriptionassumesthatagridofcellssubdividing the λ 5 Thisapproach canberedundant because the rays originating from different cells canoften gothrough almostthesamepaths. Ontheother side, itis convenientbecauseiteasilyallowstheimplementationoftheaccelerationtechniquespresentedinthiswork. 6 Nataleetal. Figure1.Examplesofstarsanddustgeometrieswherethecriteriatoidentifythelimitofasourceinfluencevolumeworks(leftpanel)orcanfail(middle andrightpanel).Left:TheraycomingfromthedistantsourcedoesnotcontributesignificantlytotheRFEDincell1,whichisilluminatedmainlybyother sources.Asaconsequence,thesameraydoesnotcontributesignificantlyalsotothecellsbeyondcell1;Middle:Asintheleftpanel,therayfromthedistant sourcedoesnotcontributesignificantlytotheRFEDincell1.However,inthisparticulargeometry,itscontributiontotheRFEDinthecellsbeyondcell1can benotnegligiblebecausetheemissionfromtheothersourcesishighlyattenuatedbydust(dashedcells);Right:thedistancesourceispartofalargeemitter distribution,whoseindividualRFEDcontributionstocell1areverysmallbutthecumulativecontributioncanbenotnegligible. Figure2.FirstestimateoftheRFED.Theradialray-tracingisperformedonlyuntilalimitopticaldepthordistance.Dashedsquaresdenotecellcontaining dust. entiremodelhasalreadybeencreated.AcompletetechnicaldescriptionofthecodewillbegiveninSection§3. FirstStep:CalculationofaLowerLimitforU λ Thefirststepconsistsofray-tracingfromeachemittingcelladoptingarayangulardensitysuchthatallthecellswithinacertainradiusor acertainoptical depth fromeachemittingcellareintersectedbymultiplerays, asshown inFig.2(hereafter, wewillrefertotheprocess ofintersectingallcellsinacertainregionwithmultipleraysas“fullysampling”thatregion).Thespecificvaluesforthelimitradiusand opticaldepthcanbespecifiedintheinput.Theyshouldbelargeenoughtolettherayscoverarelativelylargefractionoftheentiremodelbut smallenoughtoavoidatoolongcomputationaltimeinthisstep.TheinferredcontributionsδU tothevalueofU ineachcellcrossedby λ λ raysareaccumulatedintoanarrayU (LLstaysas“lowerlimit”).Assaidbefore,theinferredRFEDdistributionU representsonly λ,LL λ,LL alowerlimitforthefinalvalueU sincetherecouldbeotheremittingcells,atdistanceslargerthanthoseadoptedlimits,whosecontribu- λ tiontoU ateachparticularpointhasnotbeenconsideredyet.Inaddition,scatteredlightcontributionshavealsobeenneglectedatthispoint. λ SecondStep:ProcessingofSourceDirectLight Inthesecondsteptheray-tracingprocedureisrepeatedagainfromthebeginningbutthistimetheraysfullysampletheregionsaroundeach emittingcell,untiltheraycontributionδU foranintersectedcellbecomesmallerthanaverysmallfractionofthelowerlimitU ,that λ λ,LL isuntil δU < f ×U with f being avery small number (see §4 for more detailsabout how tochoose an appropriate value for λ U λ,LL U f ).Whenthisconditionisrealized,itmeansthatthepositionreachedbytherayisoutsidetheemittingcellinfluencevolume(seeFig.3) U DART-RAY 7 Figure3.Ray-tracing calculation fromonesourceuntilδUλ < fU ×Uλ,LL.Thepositionwhenthiscondition isrealized shouldbeoutsidethesource influencevolume.Thus,onecanstoptheray-tracingcalculationatthatposition. and the final value of U inthe crossed cell iscontributed mainlyby emitting cellsdifferent fromthe emittingcell originating theray6. λ Therefore,tothepurposeofcalculatingtheRFEDdistributionU ,thereisnoreasontoproceedwithafullsamplingofthecellsbeyondthe λ limitdeterminedinthisway.ApartfromstoringthevaluesoftheRFEDcontributionsδU ,aftereachraycrossesacell,thescatteredenergy λ informationarealsostoredforthatcell.Thatis,theluminosityscatteredwithinadiscretesetofsolidanglesisstoredforeachcellcontaining dust.Thesevalueswillbeusedinthenextstep.Beforegoingtothethirdstep,thevalueofU isupdatedwiththecurrentestimationforU . λ,LL λ ThirdStep:ScatteringIterations Afterthedirectlighthasbeenprocessedinthesecondstep,athirdstepisstartedwherethereisaseriesofiterationstoprocessthescat- teredradiation.Eachcellwhichoriginatesscatteredlightistreatedasanemittingcellexactlyinthesamewayasinstep2.Ray-tracingis performedfromeachdustycellbyfullysamplingallthevolumesurroundingthecelluntilthecontributionδU isnegligiblecomparedtoa λ smallfractionofU ,thelowerlimitforU updatedwiththenewvalueofU foundinstep2.Again,scatteringinformationarestoredas λ,LL λ λ wellaftereachraycrossingandthishigherorderscatteredradiationintensityisprocessedinsuccessiveiterations.Thesescatteringiterations continueuntilthevastmajorityoftheluminosityofthesystemhasbeeneitherabsorbedbydustorhasescapedoutsidethemodel.Thatis, until∆L <f L ,whereL isthetotalstellarluminosityemittedwithinthemodel,∆L istheamountofluminositystilltobeprocessed λ L λ λ λ (thatis,notabsorbedorescapedyet)andf isaparametertobesetintheinput. L Thedisadvantage ofthisprocedureisthatmanyofthecalculationsperformedinthefirststeparerepeatedonceagaininthesecond step.Theadvantage isthatthenumber of calculationsavoidedcanbeveryhigh, thusreducingsignificantlythetotalcalculationtimefor thosegeometrieswheretheinfluencevolumesoftheemittingcellsareonlyasmallfractionofthetotalvolume.Furthercharacteristicsofthe code,notmentionedinthesimplifiedalgorithmabove,includetheadaptiveanddirectional-dependentangulardensityoftherays(see§3.2) andthemethodsimplementedtocalculatethespecificintensityoftheradiationescapingoutsidethemodelinafinitesetofdirections(see Section§3.4). 3 THERAY-TRACING3DCODE:TECHNICALDESCRIPTION Inthissectionweprovideanextensivedescriptionofthecodewehavedeveloped.Thecodeconsistsoftwomainprogramsperformingthe adaptive gridcreationand theRTcalculationrespectively. Inthefollowing subsections wedescribethe adaptivegrid creation(§3.1), the 6 Notethat,asshownintheright-handpanelofFig.1,therecouldbeemittingcellswhicharepartofalargeemittingcelldistribution,whoseindividualRFED contributionsδUλmightbelowerthantheassumedenergydensitythresholdfUUλ,LL,butthecumulativecontributionisnotnegligible.Overlookingthe presenceofthiskindofcellscanbeavoidedbychoosinganappropriatevaluefortheconstantfU.However,incasessuchasthatofanextendeddistribution ofuniformvolumeemissivitywithinanopticallythinsystem,thevalueoffU tobechosen,inordertoreachanaccuratesolution,couldbeextremelylow. Inthosecases,theremightbenosubstantialadvantageintermsofspeedbyusingthepresentedalgorithm,sincethemajorityofemittingcellscontribute significantlytotheRFEDateachpositionintheentirevolume. 8 Nataleetal. basicray-tracingroutine(§3.2)andeachofthethreestepsoftheRTalgorithmindetail(§3.3).Finally,wedescribethemethodsimplemented toderivetheescapingradiationspecificintensity(§3.4). 3.1 AdaptiveGridCreation Given an input spatial distribution of dust mass and stellar luminosity (either defined by analytical formulae or in a tabulated form), an adaptivegridiscreatedinawaysuchthatthespatialresolutionishigherinregionswheretheradiationfieldintensityisexpectedtovaryin amorerapidway,suchasthosewherethedensityofdustishigher.Aparentcellofcubicshape,enclosingtheentiremodel,issubdividedin 3x3x3=27childcubiccellsofequalsize7.Then,theaveragedustdensityandstellarvolumeemissivityarecalculatedwithinthevolumeof eachnewlycreatedcell,togetherwithanestimationoftheirvariationwithineachcell.Furthercellsubdivisionproceedsforthosechildcells whichdonotsatisfyuser-definedcriteriaandthosecellsbecomeparentsofevensmallerchildcells.Afterthat,theestimationofthecelldust density/stellarvolumeemissivityandthecellsubdivisionprocedureareperformedforthenewcellsandsoon.Inthisway,atreeofcellsis constructediterativelyuntilthechosencriteriaaresatisfiedforallthesmallestcellswithineachoriginalparentcell.Also,inordertoobtain asmoothvariationofthegridresolution,furthercellsubdivisionisperformedtoavoiddifferencesincellsubdivisionlevelhigherthanone betweenneighbourcells.Thecellswhichhavenotbeenfurthersubdivided,aftertheentiregridcreationhasbeencompleted,arecalledthe leafcells. ThecriteriaforcellsubdivisionshouldbechoseninordertoobtainbothnumericalaccuracyandanadequatecoverageoftheRFED distributionwithinthemodel.Inordertoachieveagoodnumericalaccuracy,itisimportanttohaveleafcellswithsmalltotalopticaldepths andwithsmallgradientsofdustdensityandstellarvolumeemissivitywithinthecells.Forexample,typicalconditionsforacelltobealeaf cellcouldbe: τ <<1 (4) λ ∆ρ <0.5 (5) ρ c whereτ =k ρ l isthetotalcellopticaldepth,∆ρisanestimateofthedustdensityvariationwithinacellandρ istheaveragecelldust λ λ c c c density.Anequivalentcondition,astheoneexpressedbyEq.5,hastobefulfilledbythecellstellarvolumeemissivityj .Theseconditions λ,c allow us to usethe simple expression given by Eq. 3 tocalculate the variation of thespecific intensity withinacell toa good degree of accuracy.However,notethatanadditionalconstraintisthemaximumallowednumberofsubdivisionlevelsNLVL MAX,whichhastobe chosenintheinputaswell.Thevalueofthisparametershouldbesuchtoguaranteethattheinputcellparameterrequirements,suchasthose above,arevalidforalloratleastthevastmajorityofcellsinthemodeland,atthesametime,avoidtocreatemodelswithtoomanycells.It isdesirabletokeepthenumberofcellsaslowaspossible,sinceitisoneofthemainparametersaffectingthetotalcomputationaltime.After creatingthegrid,theprogramcreatesatablewheretheusercanreadthemaximumandaveragecellparametersand,thus,quicklyverifyto whichdegreetheinputcellrequirementshavebeenfulfilled. AlltheinformationwhichdefinethegridisprintedonafilethatcanbereadfromtheRTprogram.Thisincludes: –cellidnumber –positionofcellcentreinCartesiancoordinates –cellchildnumber:whichisequalto“-1”ifthecellisaleafcellortotheidnumberofthefirstchildcellcreatedduringthecellsubdivision –cellindexnumber:binarycodeexpressingthepositionofthecellwithinthecelltree –cellsizel c –celldustdensityρ c –cellstellarvolumeemissivityj λ,c 3.2 ThebasicRay-TracingRoutine In this subsection we describe the basic ray-tracing calculation for rays departing from an emitting cell and propagating throughout the model. This is the core routine used by the RT algorithm described in the next subsection. Given an emitting cell, rays are casted into multipledirectionsdefined by using theHEALPixsphere pixelation scheme (Gorski et al.2005, see alsoe.g. Abel &Wandelt 2002 and Bisbaset al.2012 for other applications inRTcodes). Inthisscheme asphere isdivided in12 mainsectorsof equal size, whichcan be furthersubdividedinsmallersphericalpixels(seeFig.4).ByassumingthatanHEALPixsphereiscentredontheemittingcellcentre,the linesconnectingthecellcentretothecentreoftheHEALPixsphericalpixelsdefinedirectionsalongwhichonecanfollowthevariationof thespecificintensitywithinthemodel.TheuseoftheHEALPixroutinesPIX2ANG NEST(translatingpixelindexnumbersintospherical coordinates)anditsinverseANG2PIX NESTisaconvenientwaytohandlesetsofrayswithanadaptiveangulardensity(seebelow). 7 Weuseagridrefinementfactorequalto3,sinceithastheadvantageofpreservingthepositionofcellcentresaftereachcellsubdivisions.Fortechnical reasons,thisfacilitatestheinclusioninthegridofcentralemittingpointsourcessuchthoseinthesolutionsdescribedinthenextsection. DART-RAY 9 Figure4.Healpixsphereatdifferentangularresolution.Thesphericalpixelsintheupperleftspherearethosementionedas“HEALPixmainsectors”inthe text.FigurefromGorskietal.(2005)(reproducedbypermissionoftheAAS). Foreachray,thefollowingapproximationsareimplemented: 1) the calculation is performed as if all the cell luminosity propagates through solid angles defined by thepixels of an HEALPixsphere centredonthecellcentre; 2)sinceonecanonlyfollowtheexactvariationofI alongthefinitesetofHEALPixdirections,itisassumedthattheevolutionofI along λ λ allthedirectionsincludedwithinthetotalsolidangleassociatedwitharay(determinedbytheadoptedHEALPixschemeangularresolution) isexactlythesameasforthemaincentralraydirection(seeFig.5). TheaboveapproximationsimplythatthetotalluminositydensityassociatedwitharayandflowingthroughanHEALPixsolidangle ΩHP,EMatanydistancerfromthecentreoftheemittingcellisgivenby: Lλ,ray(r)=Iλ(r)ΩHP,EMAEM (6) whereAEMistheprojectedareaoftheemittingcell(assumedtobeequaltotheemittingcellsizesquared). ThevariationofI ,whentheassociatedraycrossesacell,iscalculatedusingthefollowingexpressions.Thevariationduetothecrossed λ opticaldepthτ =k ρ ∆randcellvolumeemissivityj withinthecelloriginatingtherayisequalto: λ λ c λ,c j ∆r I = λ,c (1−e−τλ) (7) λ,0 τ λ ifτ >0(cellcontainingdust)8.Ifτ =0,weassumed: λ λ I =j ∆r (8) λ,0 λ,c which isconsistent withthe previous expression when τ → 0. During the scatteringiterations, the scattered light isconsidered for the λ calculationof thecell volumeemissivity, asitwillbeshown later.Instead, thenew valueof I afterthecrossing ofaraythrough acell λ differentfromtheoriginaloneissimplygivenby: I =I e−τλ (9) λ,i+1 λ,i ApartfromcalculatinganewvalueforI ,whenaraycrossesacell,thecodedeterminesthecontributionoftheraytotheintersected λ cellRFEDandtheamountofenergyscatteredbythedustintheintersectedcell.However,thesecontributionscanbeaccuratelycalculated onlyifasufficientlyhighrayangulardensityisused.Infact,dependingonthecellsizesandtheadoptedHEALPixangularresolution,at anydistancefromtheemittingcell,theraybeamasawhole(notjustthemainraydirection)canintersecteitherasinglecellor agroup of cellsat thesametime.Atdistances largeenough fromtheemittingcell,thebeam, originallyintersecting onlyone cellat atime,will beginintersectingmorecellssimultaneously(seeFig.5).Assaidbefore,thecodetracestheevolutionofI onlyalongthemaindirectionof λ 8 Actuallythenumericalimplementationrequirestoassumeasmallthresholdvaluehigherthanzero,suchthate−τλ 6=1whentheexponentialfunctionis evaluated. 10 Nataleet al. Figure5.RaybeamassociatedwithanHEALPixpixel,propagatingthroughoutthemodel.DuringtheRTcalculation,thevariationofIλisfollowedonly alongthemaindirection(boldarrow).Thesamevariation isassumedfortheotherdirections withinthesameraybeam(dashedlines).Notethatatlarge distancesfromemittingcell,thebeambeginsintersectingmorecellssimultaneously. theraybeamanditisassumedthatforallthedirectionswithinthebeamtheI variationisexactlythesame.However,farawayfromthe λ emittingcell,thebeampropagatesthroughlargerphysicalvolumesandthepreviousapproximationcanbecomeveryinaccurate.Actually,in ordertoobtainaprecisecalculationoftheRFEDcontributedbyanemittingcellCEMtoacertaincellCINT,itisdesirablethatseveralrays originatingfromCEMareintersectingCINT.Inthisway,thecalculationofRFEDismoreaccuratebecauseofthebetterestimationofthe averageI withintheintersectedcell. λ IfonedefinesAINT,theprojectedareaoftheintersectedcell(approximatedbythecellsizesquared), andΩINT = ArIN2T,thesolid anglesubtendedbytheprojectedareaoftheintersectedcellandwithorigininthecentreoftheemittingcell(seeFig.6),inordertohave moreraysfromCEMcrossingCINTonerequiresthat: ΩHP,EM< NΩIrNayTs (10) where Nrays is an input parameter equal to the minimum number of rays which should cross CINT. If this condition is fulfilled by all theintersectedcellswithinacertainregionaround anemittingcell,wesaythattheraysare“fullysampling”thatregion,usingthesame terminologyalreadyintroducedin§2.2. Oncetheaboveconditionisfulfilledforanintersectedcell,thecodedefinesΩ=ΩHP,EMandthecontributionofaraytotheintersected cellRFEDδU isgivenby λ,INT δU = <Iλ >AEMΩ∆cr (11) λ,INT VINT wherecisthespeedoflight, ∆cr isequaltothetimeneededbythelighttocrosstheintersectedcell,VINTisthevolumeoftheintersected cellandtheaveragevalueofI alongthecrossingpathisequalto: λ I (1−e−τλ) <I >= λ,i (12) λ τ λ ifτ >0and λ <I >=I (13) λ λ,i ifτ =0. λ TheraycontributiontothespecificintensityscatteredbytheintersectedcellδI (θ,φ)is(seeFig.6): λ,sca δI (θ,φ)= Iλ,extwλ,scaAEMΩΦ(θ,φ) (14) λ,sca AINTΩHP,INT where ωλ = kkλλ,,escxat, ΩHP,INT is the solid angle determined by the HEALPixangular resolution adopted to store the scattered radiation intensityintheintersectedcell,Φ (θ,φ)isatermrepresentingtheintegrationoftheHenyey-Greensteinscatteringphasefunctionoverthe HG solidangleΩHP,INT:

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.