ebook img

Dark sector shining through 750 GeV dark Higgs boson at the LHC PDF

0.28 MB·
by  P. Ko
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dark sector shining through 750 GeV dark Higgs boson at the LHC

Dark sector shining through 750 GeV dark Higgs boson at the LHC P. Ko and Takaaki Nomura ∗ † School of Physics, KIAS, Seoul 02455, Korea (Dated: May 23, 2016) We consider a dark sector with SU(3)C ×U(1)Y ×U(1)X and three families of dark fermions thatarechiralunderdarkU(1)X gaugesymmetry,whereasscalardarkmatterX istheSMsinglet. U(1)X darksymmetryisspontaneouslybrokenbynonzeroVEVofdarkHiggsfieldhΦi,generating themassesofdarkfermionsanddarkphotonZ′. TheresultingdarkHiggsbosonφcanbeproduced attheLHCbydarkquarkloop(involving3generations)andwilldecayintoapairofphotonthrough chargeddarkfermionloop. Itsdecaywidthcanbeeasily∼45GeVduetoitspossibledecaysintoa 6 pairofdarkphoton,whichisnotstronglyconstrainedbythecurrentLHCsearchespp→φ→Z′Z′ 1 followed by Z′ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density 0 without conflict with direct detection bound or theinvisible φ decay intoa pair of DM. 2 y INTRODUCTION Let us introduce a dark sector with new dark fermions a M whichcarryboththeSMSU(3)C U(1)Y quantumnum- × Recently both ATLAS and CMS Collaborations an- bers as well as darkU(1)X gauge charges,anda SM sin- 0 nouncedthattherearesomeexcessinthediphotonchan- glet complex scalar field X as summarized in Table I. In 2 nel around mγγ 750 GeV [1, 2]: thismodel,everyright-handedfermionfR intheSMhas ≈ its partner fermion FL with nonzero dark charge in the ph] σ(pp→φ→γγ) = (6.2+−22..40) fb (ATLAS) (1) udnardkersetchteorS.MThgeanutgheetFraLnfsRforompeartaiotonr. bIetcsomnoenszienrvoardiaarnkt = (5.6 2.4) fb (CMS) (2) - ± charge is cancelled by the dark charge of scalar DM X p Γ (φ) 45GeV(ATLAS) (3) e tot ∼ in such a way that FLfRX becomes gauge invariant op- h erator. And F becomes vectorlike under the SM gauge whereasthe CMSdata prefers a smaller decaywidth [2]. L [ groupbyintroducingitschiralpartnerF . Themodelis Furthermore, at Moriond 2016, ATLAS and CMS have R 2 reportedthatthelocal(global)significancesofthedipho- very simple and free from gauge anomalies for arbitrary v a and b. A novel feature of this model is that the new ton excess are about 3.9(2.0)σ and 3.4(1.6)σ, respec- 0 fermions F and F are chiral under dark U(1) gauge tively, where CMS added 0.6 fb 1 new data to the 13 L R X 9 − symmetry so that they are massless before spontaneous 4 TeV analysis and combined with 8 TeV data [3, 4]. symmetry breaking. And their effects on φ gg,γγ 2 Thisexcessmotivatedalotofphenomenologicalstudy → 0 on possible scenarii of new physics beyond the Stan- throughtrianglediagramevadesfromthedecouplingthe- . orem as their mass becomes heavy. 1 dard Model (BSM) which include models related to DM 0 physics [5–44], new gauge symmetry models [13, 20, 23, The Yukawa interactions and the scalar potential in- 6 35, 38–40, 43, 45–57] and other models [58–161]. It is cluding new fields in the dark sector are described by 1 not easy to generate a large enough width 45 GeV : ∼ v with large BR(φ γγ), maintaining relevant cross sec- Xi tion of σ(pp→φ→→γγ)∼O(10) fb and evading various LYukawa =yEE¯LERΦ+yNN¯LNRΦ†+yUU¯LURΦ† collider search bounds. ar In this letter, we solve these problems by introducing +yDD¯LDRΦ+yEeE¯LeRX +yUuU¯LuRX† darkU(1)X gaugesymmetry,darkphotonZ′, threegen- +yDdD¯LdRX +h.c., (4) erations of dark fermions with SU(3) U(1) charges C Y × andsingletscalarDMX. DarkphotonZ candecayinto ′ SM fermions via a small Z Z mixing. Dark fermions ′ − areassumedtobechiralunderU(1) darkgaugesymme- Fermions Scalar X tryandgetmassiveafterspontaneousbreakingofU(1)X EL ER NL NR UL UR DL DR Φ X by nonzero VEV of U(1)X-charged complex scalar field SU(3) 1 1 1 1 3 3 3 3 1 1 Φ, and a new Higgs boson φ appears from Φ. This sim- SU(2) 1 1 1 1 1 1 1 1 1 1 pinlteerseesttuipngfosrigdnaartkurmesaatttehrigishaenveiargbylecDolMlidesrcse.nario with U(1)Y −1 −1 0 0 23 23 −31 −31 0 0 U(1)X a −b −a b −a b a −b a+b a TABLE I: Contents of new fermions and scalar fields MODEL and their charge assignments under the gauge symmetry SU(3)×SU(2)L×U(1)Y×U(1)X. We consider three families of dark fermions. 2 V =µ2H H +λ(H H)2+µ2Φ Φ+µ2 X X X˜ ; † † Φ † X † µ +λΦ(Φ†Φ)2+λX(X†X)2+λHΦ(H†H)(Φ†Φ) = 1Wa Waµν +λ (H H)(X X)+λ (X X)(Φ Φ). (5) Lkin − 4 µν HX † † XΦ † † 1 1 s B˜µν (B˜ ,X˜ ) χ , (9) where H denote the SM Higgs field [177]. We have sup- − 4 µν µν sχ 1 ! Z˜′µν ! pressed the generation indices on the SM and the dark where s sinχ. The kinetic terms are diagonalized by fermionsforsimplicity. TheYukawainteractionsprovide χ ≡ the following non-unitary transformation; masstermsforthedarkfermionsF,whichdecaythrough cFan→didXatfe.. XNoitsetthheatSMthesriengilsetananadcccidanenbtaelaZgosoydmDmMe- B˜µ = 1 −tχ Bµ , (10) try, X X, F F and F F wh2ich make X˜µ ! 0 1/tχ ! Xµ ! L L R R → − → − → − X stable at renormalizable level. There could be gauge where t = tanχ. After Φ and H develop non-zero χ invariantoperatorsthatbreakthisaccidentalZ2 symme- VEVs,the massmatrixforneutralgaugefieldisapprox- try: X†Φn and/or XΦn which would generate nonzero imately given by VEV for X after U(1) symmetry breaking by nonzero X T Φ =0. Gauge invariance requires that a/(a+b)=n 1 Z˜ (g2+g2)v2 t g g2+g2v2 Z˜ h i6 ± ′ χ ′ ′ . to be an integer. We can forbid this type of operators 8 X ! tχg′ g2+g′2v2 4(ap+b)2gX2 vΦ2 ! X ! by making a judicious choice of a,b so that a/(a+b) (11) ± p is not an integer. Or we can make n very large so that where W3 =cosθ Z +sinθ A and B = sinθ + evenif X develops a nonzeroVEV, the lifetime of X be- µ W µ W µ µ − W cosθ A areused. Assumingχ 1[178],neutralgauge W µ comes long enough (τ & 1028 sec) to be a good DM ≪ X boson masses are candidate. This model can be considered as a general- 1 ization of the singlet portal extensions of the SM where m2Z ≃ 4(g2+g′2)v2, m2Z′ ≃(a+b)2gX2 vΦ2. (12) dark matter lives in the dark sector [166], but the dark sector now contains dark fields which are charged under The mass eigenstates are given by the SM gauge group as well as dark gauge group, unlike Z cosθ sinθ Z˜ the earlier models [166]. µ = − µ , (13) ThegaugesymmetryisbrokenafterH andΦgetnon- Zµ′ ! sinθ cosθ ! Xµ ! zero VEVs: and the small Z Z mixing angle is given by ′ − g g2+g2v2 G+ 1 tan2θ ′ ′ t . (14) H = √12(v+h+iG0)! , Φ= √2(vφ+φ+iGφ), ≃ 2(pm2Z −m2Z′) χ (6) InFig.1,weshowthebranchingratiosofZ′asafunction whereG ,G0 andG areNGbosonswhichareabsorbed of its mass. Here q = u,d,s,c,b, and νν¯ includes all the ± φ by W±, Z and Z′ respectively. We shall call φ as dark three flavors. Note that Z′ decays into the SM through Higgs boson, since it appears as a result of spontaneous the kinetic mixing so that Γ(Z′)/mZ′ O(χ2) . 10−4. ∼ breaking of dark U(1)X gauge symmetry. Therefore Z′ would be a very narrow resonance. We also find that Yukawa coupling of new dark We assume λ is negligible and the mixing between HΦ SMHiggsbosonhandφisnegligiblysmallwhichiscon- fermions andλΦ canbe written interms of gX andmZ′; sistentwith the currentHiggs data analysis [167]. Then √2(a+b)g M the scalar VEVs are given approximately by yF = X F, (15) m ′Z (a+b)2m2g2 φ X v −µ2, vΦ −µ2Φ. (7) λΦ = 2m2Z′ . (16) ≃r λ ≃s λΦ In our analysis,we require these couplings are perturba- tive as yF <4π and λ <4π. The masses of new fermions are generated such that Φ yF PHENOMENOLOGY M = v , (8) F Φ √2 750 GeV Diphoton Excess where F =E,N,U and D. We consider kinetic mixing of the U(1) and U(1) In this section, we analyze the production of φ and Y X gauge fields which are denoted respectively as B˜ and its decays at the LHC 13 TeV. The production of φ is µ 3 1.00 0.8 yU,D=4Π Kgg=2.0 qq 0.7 0.50 0.6 ΛF=4Π e+e-+Μ+Μ- R 0.20 0.5 40 30 B ΝΝ X 20 g 0.4 Τ+Τ- 0.10 10 0.3 5 0.05 0.2 1 150 200 250 300 350 0.1 m @GeVD 150 200 250 300 350 Z' m @GeVD Z' FIG. 1: Branching ratios of Z′ as a function of mZ′. FIG.2: Theσ(gg→φ)inunitofpbwhere3copyoffermions in Table I are applied and a ≃ b ≃ 1 with a 6= b is adopted. We used parameter set as {MU,D,ME,N,mX,λXΦ} = throughgluonfusionprocesswherethe relevanteffective {800GeV,400GeV,350GeV,0.075}. Gray(light gray) region coupling is given by indicate yU,D(λΦ)>4π usingEq. (15) and (16). α (a+b)√2g = s XA (τ ) φGaµνGa , Lφgg 8π  mZ′ 1/2 F  µν F=U,D X   (17) where Q and NF are electric charge and number of F c where A (τ) = 2τ[1 + (1 τ)f(τ)] with f(τ) = color of an exotic fermion F. The partial decay width 1/2 − [sin−1(1/√τ)] for τ ≥ 1 and τF ≡ 4m2F/m2φ. We for φ→Zγ is also formulated by find that the effective coupling is described by mZ′ and g since exotic fermion mass is given by VEV X of Φ. Applying the effective coupling, the produc- m3 m2 3 btiyonucserososfseCcatlicoHnEfPor [t1h6e9]dawrikthHiCgTgEsQ6φLisPDcaFlcu[l1a7t0e]d. Γφ→Zγ =32φπ |AZγ|2 1− mZ2φ! , (20) Fig. 2 shows the cross section in the mZ′ − gX plane A =2√2αsWgX using parameter setting {MU,D,ME,N,mX,λXΦ} = Zγ πcW K{w8e-0fa0aclGtsooerVinf,od4r0ic0galGtueoeVnex,fc3ul5us0idoGendeaVps,a0Kr.a0gm7g5e}=tera2sr.0ea.giorInenfewtrheheniccfiheguvairnoed-, × F NcF(am+Z′b)Q2F[I1(τF,λF)−I2(τF,λF)], X late perturbative condition yU,D < 4π and λ < 4π de- Φ rivedfromEq.(15) and(16)respectively. Thus asizable productioncrosssectioncanbe obtainedin perturbative where λF = 4m2F/m2Z and the loop integrals are given parameter region. as [171]: The partial decay widths for φ gg mode is derived → by xy x2y2 2 I (x,y)= + [f(x)2 f(y)2] α2m3 (a+b)g 1 2(x y) 2(x y)2 − Γ = s φ XA (τ ) . (18) − − φ→gg 32π3 (cid:12)(cid:12)F=U,D 2mZ′ 1/2 F (cid:12)(cid:12) + x2b [g(x) g(y)], (cid:12) X (cid:12) (x y)2 − (cid:12) (cid:12) − Similarlythe partial(cid:12)(cid:12)decaywidthforφ→γγ is(cid:12)(cid:12) givenvia I2(x,y)= xy [f(x)2 f(y)2], dark fermion loops such that − 2(x y) − − 2 g(t)=√t 1sin−1(1/√t). (21) α2m3 (a+b)g Q2 − Γ = φ NF X FA (τ ) , φ→γγ 256π3 (cid:12) c mZ′ 1/2 F (cid:12) (cid:12)XF (cid:12) (cid:12) (cid:12) (19) Ontheotherhand,thedecaywidthsofφintoZ Z ,X X (cid:12) (cid:12) ′ ′ ∗ (cid:12) (cid:12) 4 and F¯F modes are given at tree level as 1 Z'Z' Γφ Z′Z′ =(a+b)2gX2 m2Z′ 0.1 mX=350GeV → 32πmφ × m4φ−4m2φmm4Z2Z′′ +12m4Z′s1− 4mm2φ2Z′ , BR 0.01 gg XX (22) 0.001 λ2 m2 4m2 Γφ→X∗X =16π(aX+Φb)2Zg′X2 mφs1− m2φX, (23) ΓΓ ZΓ 10-4 g2 M2 4M2 Γφ→F¯F =4Xπm2ZF′mφs1− m2ZF′ . (24) 0.2 0.4 gX0.6 0.8 1.0 Fig. 3 shows the total decay width of φ in the mZ′ gX FIG. 4: Branching fraction for decay of φ. − plane where the same parameter set as in Fig. 2 is used. The branching fractions of φ decay can be ob- tained by partial decay widths, which is shown as a 0.8 function of gX in Fig. 4 for mZ′ = 300 GeV with the yU,D=4Π 0.7 above parameter setting. Finally Fig. 5 shows contours othfeσre(gfogre→finφd)BthRa(tφ3→ γ1γ0)fbinctrhoessmseZc′t−iongXforpldainpeh.otWone 0.6 ΛF=4Π 10 − modecanbeobtainedintheregionofg 0.2 0.5and 0.5 7 X ≃ − mZ′ < mS/2, simultaneously with a rather large decay gX 5 0.4 width of φ: Γ (φ) 5 40 GeV. tot ≈ − 3 0.3 0.8 yU,D=4Π 0.2 0.7 ΛF=4Π 50 0.1 0.6 40 30 150 200 250 300 350 m @GeVD 0.5 Z' 20 X g 0.4 FIG.5: Theσ(gg→φ)BR(φ→γγ)in unitoffbwith same 10 parameter setting as Fig. 2. 0.3 5 0.2 1 of DM in our model are XX (NN¯) Z Z assuming ∗ ′ ′ 0.1 → mX,N > mZ′. We have included the t(u) channel pro- 150 200 250 300 350 − cesses mediated by virtual F exchange as well as the m @GeVD Z' s channel process mediated by φ exchange. Note that − theZ -exchangingprocessesaresuppressedsinceinterac- FIG.3: ThetotaldecaywidthofφinunitofGeVwithsame ′ tions between Z and SM particles are small due to the parameter setting as Fig. 2. ′ small Z Z mixing we assume. ′ − Thethermalrelicdensityisnumericallyestimatedwith micrOMEGAs 4.1.5 [173]to solvethe Boltzmannequa- tion by implementing relevant interactions relevant for Dark Matter Phenomenology the DM pair annihilation processes. In calculating the relic density we assume a b 1 (but a = b). We ≃ ≃ 6 The DM candidates of our model are X and N. We find that the DM relic density is given dominantly by assume that the Higgs portal coupling λ =0 for sim- scalar DM X in the parameter region where one can ex- HX plicity, since this case is studied in great detail [172]. plain the 750 GeV diphoton excess. It turns out that We alsoassumethat the Yukawa couplingsinvolvingthe the relic density of N is small due to large Yukawa cou- DM X and SM fermions in Eq. (4) are small enough pling yN which makes the amplitude for the N¯N → so that their contribution to thermal relic calculation φ Z Z process large. Thus the thermal relic density ′ ′ → is negligible. Then the dominant annihilation processes of scalar DM X is calculated with fixed parameter set 5 of M ,M ,m = 800GeV,400GeV,350GeV 0.45 U,D E,N X and{by taking {gX,λ}XΦ,m{Z′} as free parameters. W}e mΛXXS==3050 GeV thensearchfortheparameterregionwhichgivetheright thermal relic density, i.e. Ωh2 = 0.1199 0.0027 as re- ± 0.40 ported by Planck Collaboration [174]. The upper figure in Fig. 6 shows the parameter region in the (mZ′,gX) plane providing the observed relic density for λXΦ = 0. gX On the other hand, the lower figure in Fig. 6 shows the 0.35 correspondingparameter regionin the (mZ′,λXΦ) plane for g = 0.1 and 0.3. We find that interference between X t(u) channel processes and φ exchanging s channel − − process makes λXΦ dependence of the relic density non- 0.30 trivial. For smaller λ and g , small amount of Higgs XΦ X 150 200 250 300 portal coupling λHX can help us to achieve the correct mZ'@GeVD thermal relic density. 0.035 mX=350 GeV In this model, DM-nucleon scattering occurs through h, φ and Z exchanges. The amplitude for Z exchange ′ ′ 0.030 will be small since it involves Z Z mixing which can ′ − be sufficiently small. Also the Higgs contribution can 0.025 gX=0.3 be made small enough if we take a small λ . For φ HX F exchange,wehavecontributiontoDM-nucleonscattering ΛX 0.020 amplitude from φ-gluon-gluon coupling in Eq. (17) and φ X X coupling even if we suppress φ h mixing. − − − The relevant effective coupling is given by 0.015 gX=0.1 α λ 0.010 LXXGG = 4πS  mX2ΦA1/2(τF)X†XGaµνGaµν 150 200 250 300 F=XU,D φ mZ'@GeVD ≡ α4πSCgX†XGaµνGaµν.  (25) FIG. 6: The colored region in upper(lower) plot indicate pa- rameter space in mZ′ −gX(mZ′ −λXΦ) plane which explain Then the spin-independent DM-nucleon scattering cross observed relic density of X where other parameters are indi- section is obtained as [175] cated in thefigures. m2 σ = N f2 (26) SI π(m +m )2 N X N ForsuchalargeYukawacoupling,however,wehavelarge f 2 N = C f(N) (27) crosssectionforDMannihilationintoleptonpairthrough m −9 g TG N the t-channel exchange of E . Therefore when the muon i (g 2) isexplainedbythedarkleptonswithinourmodel, wheremN isthenucleonmassandfT(NG) isthemassfrac- th−e thµermal relic density of X is too small and we need tion of gluonic operators in the nucleon mass. For the another component of DM. Therefore we don’t consider numerical values for these parameters, we adopt values this possibility any more in this letter. in Ref. [176]. We find that DM-nucleon scattering cross section is small as σ . 10 48cm2 for the λ provid- SI − XΦ ing the observed relic density in Fig. 6. Therefore it is Stability of the potential difficult to observe the DM-nucleon scattering in direct detection experiment. Herewebrieflydiscussthestabilityofthescalarpoten- tial. Theone-loopbetafunctionsoftheYukawacoupling yF and λ are given by [128] Muon (g−2)µ φ 18 It is interesting to note that this model can also solve βyF =yF 3(2NcF +1)(yF)2− 5 Q2Fg12−8g32 , (28) (cid:20) (cid:21) themuon(g 2) throughthedarkmuonanddarkmat- ter loop. Fo−r mµX = 350 GeV and mEi = 400 GeV, βλΦ =8λΦ NcF(yF)2+18λ2Φ−8 NcF(yF)4 (29) we can account for the deficit in the a = 8 10 10 XF XF µ − × if yEiµ ∼ 2−3 assuming the universal yEiµ and mEi. where g1(3) are gauge couplings for SU(1)Y(SU(3)) and If we assume flavor conserving Yukawa, y 5 is needed. the MS scheme is applied. As aroughestimation,we ig- ∼ 6 nore the running of gauge couplings in the energy range LHC@√s = 13 TeV. Therefore a dedicated search for of O(1) TeV to O(10) TeV since the moderate running dark photon pair could confirm or exclude our model. ofgaugecouplingsinthe RHSofEq.(28)doesnotmake Our model also opens widely a new window for DM significant changes for the running behavior of yF and model building, especially the Higgs portal DM. By as- λΦ. In Fig. 7, we show the renormalization group run- suming that the dark sector matter fields carry nonzero SM charges, the collider signatures become richer and 5 also the Higgs signal strength can be different from the yF=1.2 usualHiggsportalDMmodelsinthepresenceofthemix- ing between the dark Higgs and the SM Higgs bosons. 4 Our model can satisfy all the constraints from (in)direct search bounds as well as DM searches at colliders. 3 F Λ 2 CONCLUSION 1 In this letter, we proposed a new dark matter model with3generationsofdarkfermionsthatarechiralunder 0 newdarkU(1) gaugesymmetry. Bothdarkphotonand X 1.5 2.0 3.0 5.0 7.0 10.0 15.0 the dark fermions get their masses entirely from sponta- Μ@TeVD neous breaking of dark U(1)X gauge symmetry from the nonzeroVEVofΦ, anddarkHiggsbosonφ appearsas a FIG. 7: The running of λΦ according to Eq. (28) and (29) result. Thenthediphotonexcessat750GeVisidentified where we adopted yF =1.2 and λΦ ={1.3,1.4,1.5} at µ=1 as the dark Higgs boson from U(1) symmetry break- X TeV as reference points. ing. The main decay mode of φ is a pair of dark photon ′ ′ (φ Z Z ) and could be probed at the LHC by search- → ingfor 4j,2j+ll,2j+E ,4l,2l+E . It isremainedto ningofλ wherewetookλ = 1.3,1.4,1.5 asreference 6 T 6 T Φ Φ { } be seen if the 750 GeV diphoton excess survives in the points atµ=1TeVandassumeduniversalYukawacou- futuredataaccumulation. Ifitdoes,themodelpresented plings yF = 1.2 at the same µ for simplicity. We thus in this letter would be an interesting possibility without find thatλ cannotbe too smallortoo largeto stabilize Φ conflict with the known experimental constraints even the potential. Also relative magnitude between yF and for large decay width of φ. In particular the production λ changestherunningpropertysignificantly,whichcan Φ and the decay of the dark Higgs boson φ involves dark betunedbychangingU(1) chargeofΦ,a+b,according X fermions in the triangle loops, opening a new window to to Eq.(15) and(16). By tuning the parameters,the sta- the dark sector. bility of the potential can be achieved up to 10 TeV. ∼ We are grateful to Jack Kai-Feng Chen, Sung Won The complete analysis is beyond the scope of this letter Lee and Hwidong Yoo for discussions on the experi- and we left it as future work. mental status on the dark photon searches. We also thank the anonymous referee for valuable suggestions. Future Tests of This Model This work is supported in part by National Research Foundation of Korea (NRF) Research Grant NRF- 2015R1A2A1A05001869, and by SRC program of NRF Themodelpresentedinthislettercanbetestedatthe GrantNo. 20120001176fundedbyMESTthroughKorea upcoming LHC experiments by searching for a pair of Neutrino Research Center at Seoul National University dark photons around m ′ ′ 750 GeV in the following Z Z ∼ (PK). channels: ′ ′ pp φ Z Z → → ′ ′ Z Z 4j ,2j+ll ,2j+E ,4l ,2l+E , T T → 6 6 where E is from νν¯ pair. Note that the total de- ∗ [email protected] T cay wid6 th of dark photon Z′ should be very narrow, † [email protected] Γtot(Z′)/mZ′ . 10−4. If the current ATLAS result on [[12]] TChMeSACToLlAlaSbocroaltlaiobnor[aCtMionS,CAoTllLaAboSr-aCtOioNn]F,-c2o0l1li5s-i0o8n1s.at Γ 45 GeV is confirmed in the future, our model φ ∼ 13TeV,” CMS-PAS-EXO-15-004. predicts that the main decay channel of dark Higgs φ [3] The ATLAScollaboration, ATLAS-CONF-2016-018. should be a pair of dark photon, with a large cross sec- [4] CMS Collaboration [CMS Collaboration], CMS-PAS- ′ ′ tion, σ(φ Z Z ) O(5 40) pb (see Fig. 1) at the EXO-16-018. → ≈ − 7 [5] Y.Mambrini, G.Arcadi andA.Djouadi, Phys.Lett.B [41] S. Bhattacharya, S. Patra, N. Sahoo and N. Sahu, 755, 426 (2016) [arXiv:1512.04913 [hep-ph]]. arXiv:1601.01569 [hep-ph]. [6] M.Backovic,A.MariottiandD.Redigolo,JHEP1603, [42] F.D’Eramo,J.deVriesandP.Panci,arXiv:1601.01571 157 (2016) [arXiv:1512.04917 [hep-ph]]. [hep-ph]. [7] R. Franceschini et al., JHEP 1603, 144 (2016) [43] D.Borah,S.PatraandS.Sahoo,arXiv:1601.01828[hep- [arXiv:1512.04933 [hep-ph]]. ph]. [8] J.Ellis,S.A.R.Ellis,J.Quevillon,V.SanzandT.You, [44] Y.Bai,J.BergerandR.Lu,arXiv:1512.05779 [hep-ph]. JHEP 1603, 176 (2016) [arXiv:1512.05327 [hep-ph]]. [45] R. Martinez, F. Ochoa and C. F. Sierra, [9] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, arXiv:1512.05617 [hep-ph]. Phys.Rev.D93,no.5,055032(2016)[arXiv:1512.05439 [46] S. Chang, Phys. Rev. D 93, no. 5, 055016 (2016) [hep-ph]]. [arXiv:1512.06426 [hep-ph]]. [10] J. M. No, V. Sanz and J. Setford, arXiv:1512.05700 [47] T. F. Feng, X. Q. Li, H. B. Zhang and S. M. Zhao, [hep-ph]. arXiv:1512.06696 [hep-ph]. [11] W.Chao, R.HuoandJ.H.Yu,arXiv:1512.05738 [hep- [48] S. M. Boucenna, S. Morisi and A. Vicente, ph]. arXiv:1512.06878 [hep-ph]. [12] L. Bian, N. Chen,D. Liu and J. Shu,arXiv:1512.05759 [49] A.E. C.Hernandezand I.Nisandzic, arXiv:1512.07165 [hep-ph]. [hep-ph]. [13] W. Chao, arXiv:1512.06297 [hep-ph]. [50] G.M.Pelaggi, A.StrumiaandE.Vigiani,JHEP1603, [14] C. Han, H. M. Lee, M. Park and V. Sanz, Phys. Lett. 025 (2016) [arXiv:1512.07225 [hep-ph]]. B 755, 371 (2016) [arXiv:1512.06376 [hep-ph]]. [51] J. de Blas, J. Santiago and R. Vega-Morales, [15] X. J. Bi, Q. F. Xiang, P. F. Yin and Z. H. Yu, arXiv:1512.07229 [hep-ph]. arXiv:1512.06787 [hep-ph]. [52] W. C. Huang, Y. L. S. Tsai and T. C. Yuan, [16] W.S.Cho,D.Kim,K.Kong,S.H.Lim,K.T.Matchev, arXiv:1512.07268 [hep-ph]. J. C. Park and M. Park, arXiv:1512.06824 [hep-ph]. [53] K.Das and S.K. Rai, arXiv:1512.07789 [hep-ph]. [17] J. M. Cline and Z.Liu, arXiv:1512.06827 [hep-ph]. [54] Q.H.Cao, Y.Liu,K.P.Xie,B.YanandD.M.Zhang, [18] M. Bauer and M. Neubert,arXiv:1512.06828 [hep-ph]. arXiv:1512.08441 [hep-ph]. [19] D.Barducci,A.Goudelis,S.KulkarniandD.Sengupta, [55] Y. Jiang, Y. Y. Li and T. Liu, arXiv:1512.09127 [hep- arXiv:1512.06842 [hep-ph]. ph]. [20] U. KumarDey,S. Mohanty and G. Tomar, Phys. Lett. [56] A.Dasgupta,M.MitraandD.Borah,arXiv:1512.09202 B 756, 384 (2016) [arXiv:1512.07212 [hep-ph]]. [hep-ph]. [21] P. S.B. Dev and D. Teresi, arXiv:1512.07243 [hep-ph]. [57] A.Karozas,S.F.King,G.K.LeontarisandA.K.Mead- [22] S.MorettiandK.Yagyu,Phys.Rev.D93,no.5,055043 owcroft, arXiv:1601.00640 [hep-ph]. (2016) [arXiv:1512.07462 [hep-ph]]. [58] K. Harigaya and Y. Nomura, Phys. Lett. B 754, 151 [23] K.M.PatelandP.Sharma,arXiv:1512.07468 [hep-ph]. (2016) [arXiv:1512.04850 [hep-ph]]. [24] H. Davoudiasl and C. Zhang, Phys. Rev. D 93, no. 5, [59] A. Angelescu, A. Djouadi and G. Moreau, Phys. Lett. 055006 (2016) [arXiv:1512.07672 [hep-ph]]. B 756, 126 (2016) [arXiv:1512.04921 [hep-ph]]. [25] H.Han,S.Wangand S.Zheng,arXiv:1512.07992 [hep- [60] Y. Nakai, R. Sato and K. Tobioka, arXiv:1512.04924 ph]. [hep-ph]. [26] J. C. Park and S.C. Park, arXiv:1512.08117 [hep-ph]. [61] S. Knapen, T. Melia, M. Papucci and K. Zurek, [27] G. Li, Y. n. Mao, Y. L. Tang, C. Zhang, Y. Zhou and arXiv:1512.04928 [hep-ph]. S. h.Zhu,arXiv:1512.08255 [hep-ph]. [62] D.Buttazzo, A.Greljo and D.Marzocca, Eur.Phys.J. [28] W. Chao, arXiv:1512.08484 [hep-ph]. C 76, no. 3, 116 (2016) [arXiv:1512.04929 [hep-ph]]. [29] C. W. Chiang, M. Ibe and T. T. Yanagida, [63] A. Pilaftsis, Phys. Rev. D 93, no. 1, 015017 (2016) arXiv:1512.08895 [hep-ph]. [arXiv:1512.04931 [hep-ph]]. [30] X. J. Huang, W. H. Zhang and Y. F. Zhou, [64] S. Di Chiara, L. Marzola and M. Raidal, arXiv:1512.08992 [hep-ph]. arXiv:1512.04939 [hep-ph]. [31] S. Kanemura, K. Nishiwaki, H. Okada, Y. Orikasa, [65] T. Higaki, K. S. Jeong, N. Kitajima and F. Takahashi, S. C. Park and R. Watanabe, arXiv:1512.09048 [hep- Phys. Lett. B 755, 13 (2016) [arXiv:1512.05295 [hep- ph]. ph]]. [32] A. E. C. Hernandez, arXiv:1512.09092 [hep-ph]. [66] S.D.McDermott,P.MeadeandH.Ramani,Phys.Lett. [33] K. Kaneta, S. Kang and H. S. Lee, arXiv:1512.09129 B 755, 353 (2016) [arXiv:1512.05326 [hep-ph]]. [hep-ph]. [67] M. Low, A. Tesi and L. T. Wang, JHEP 1603, 108 [34] T.NomuraandH.Okada,Phys.Lett.B755,306(2016) (2016) [arXiv:1512.05328 [hep-ph]]. [arXiv:1601.00386 [hep-ph]]. [68] B. Bellazzini, R. Franceschini, F. Sala and J. Serra, [35] P.Ko,Y.OmuraandC.Yu,arXiv:1601.00586[hep-ph]. arXiv:1512.05330 [hep-ph]. [36] K. Ghorbani and H. Ghorbani, arXiv:1601.00602 [hep- [69] R.S.Gupta,S.Jager,Y.Kats,G.PerezandE.Stamou, ph]. arXiv:1512.05332 [hep-ph]. [37] D. Palle, arXiv:1601.00618 [physics.gen-ph]. [70] C. Petersson and R. Torre, arXiv:1512.05333 [hep-ph]. [38] T.Modak,S.SadhukhanandR.Srivastava,Phys.Lett. [71] E. Molinaro, F. Sannino and N. Vignaroli, B 756, 405 (2016) [arXiv:1601.00836 [hep-ph]]. arXiv:1512.05334 [hep-ph]. [39] F. F. Deppisch, C. Hati, S. Patra, P. Pritimita and [72] Q.H.Cao, Y.Liu,K.P.Xie,B.YanandD.M.Zhang, U. Sarkar,arXiv:1601.00952 [hep-ph]. arXiv:1512.05542 [hep-ph]. [40] A. Berlin, Phys. Rev. D 93, no. 5, 055015 (2016) [73] S.MatsuzakiandK.Yamawaki,arXiv:1512.05564 [hep- [arXiv:1601.01381 [hep-ph]]. ph]. 8 [74] A. Kobakhidze, F. Wang, L. Wu, J. M. Yang and arXiv:1512.06732 [hep-ph]. M. Zhang, arXiv:1512.05585 [hep-ph]. [105] W. Liao and H.q. Zheng,arXiv:1512.06741 [hep-ph]. [75] P. Cox, A. D. Medina, T. S. Ray and A. Spray, [106] J. J. Heckman, Nucl. Phys. B 906, 231 (2016) arXiv:1512.05618 [hep-ph]. [arXiv:1512.06773 [hep-ph]]. [76] D.Becirevic,E.Bertuzzo,O.SumensariandR.Z.Fun- [107] M.DhuriaandG.Goswami,arXiv:1512.06782[hep-ph]. chal, arXiv:1512.05623 [hep-ph]. [108] J. S. Kim, K. Rolbiecki and R. R. de Austri, [77] S. V. Demidov and D. S. Gorbunov, arXiv:1512.05723 arXiv:1512.06797 [hep-ph]. [hep-ph]. [109] L. Berthier, J. M. Cline, W. Shepherd and M. Trott, [78] S. Fichet, G. von Gersdorff and C. Royon, arXiv:1512.06799 [hep-ph]. arXiv:1512.05751 [hep-ph]. [110] M. Chala, M. Duerr, F. Kahlhoefer and [79] D. Curtin and C. B. Verhaaren, Phys. Rev. D 93, no. K. Schmidt-Hoberg, Phys. Lett. B 755, 145 (2016) 5, 055011 (2016) [arXiv:1512.05753 [hep-ph]]. [arXiv:1512.06833 [hep-ph]]. [80] J. Chakrabortty, A. Choudhury, P. Ghosh, S. Mondal [111] C. W. Murphy,arXiv:1512.06976 [hep-ph]. and T. Srivastava,arXiv:1512.05767 [hep-ph]. [112] A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, [81] A.Ahmed,B.M.Dillon,B.Grzadkowski,J.F.Gunion A.Parolini and H.Serodio, arXiv:1512.07242 [hep-ph]. and Y. Jiang, arXiv:1512.05771 [hep-ph]. [113] M. Badziak, arXiv:1512.07497 [hep-ph]. [82] P. Agrawal, J. Fan, B. Heidenreich, M. Reece and [114] S. Chakraborty, A. Chakraborty and S. Raychaudhuri, M. Strassler, arXiv:1512.05775 [hep-ph]. arXiv:1512.07527 [hep-ph]. [83] C. Csaki, J. Hubisz and J. Terning, Phys. Rev. D 93, [115] Q. H. Cao, S. L. Chen and P. H. Gu, arXiv:1512.07541 no. 3, 035002 (2016) [arXiv:1512.05776 [hep-ph]]. [hep-ph]. [84] A. Falkowski, O. Slone and T. Volansky, JHEP 1602, [116] W. Altmannshofer, J. Galloway, S. Gori, A. L. Kagan, 152 (2016) [arXiv:1512.05777 [hep-ph]]. A.Martin and J. Zupan, arXiv:1512.07616 [hep-ph]. [85] D. Aloni, K. Blum, A. Dery, A. Efrati and Y. Nir, [117] M. Cvetic, J. Halverson and P. Langacker, arXiv:1512.05778 [hep-ph]. arXiv:1512.07622 [hep-ph]. [86] E.Gabrielli,K.Kannike,B.Mele,M.Raidal,C.Speth- [118] J. Gu and Z. Liu, Phys. Rev. D 93, 075006 (2016) mann and H. Veermae, Phys. Lett. B 756, 36 (2016) [arXiv:1512.07624 [hep-ph]]. [arXiv:1512.05961 [hep-ph]]. [119] B.C.Allanach,P.S.B.Dev,S.A.RennerandK.Saku- [87] R. Benbrik, C. H. Chen and T. Nomura, Phys. Rev. D rai, arXiv:1512.07645 [hep-ph]. 93, no. 5, 055034 (2016) [arXiv:1512.06028 [hep-ph]]. [120] N. Craig, P. Draper, C. Kilic and S. Thomas, [88] J.S.Kim,J.Reuter,K.RolbieckiandR.RuizdeAustri, arXiv:1512.07733 [hep-ph]. Phys. Lett. B 755, 403 (2016) [arXiv:1512.06083 [hep- [121] K. Cheung, P. Ko, J. S. Lee, J. Park and P. Y. Tseng, ph]]. arXiv:1512.07853 [hep-ph]. [89] A. Alves, A. G. Dias and K. Sinha, Phys. Lett. B 757, [122] J.Liu,X.P.WangandW.Xue,arXiv:1512.07885 [hep- 39 (2016) [arXiv:1512.06091 [hep-ph]]. ph]. [90] E.Megias, O.PujolasandM.Quiros,arXiv:1512.06106 [123] J. Zhang and S. Zhou,arXiv:1512.07889 [hep-ph]. [hep-ph]. [124] J. A. Casas, J. R. Espinosa and J. M. Moreno, [91] L. M. Carpenter, R. Colburn and J. Goodman, arXiv:1512.07895 [hep-ph]. arXiv:1512.06107 [hep-ph]. [125] L. J. Hall, K. Harigaya and Y. Nomura, JHEP 1603, [92] J. Bernon and C. Smith, arXiv:1512.06113 [hep-ph]. 017 (2016) [arXiv:1512.07904 [hep-ph]]. [93] M. T. Arunand P.Saha, arXiv:1512.06335 [hep-ph]. [126] A. Salvio and A. Mazumdar, Phys. Lett. B 755, 469 [94] I.Chakraborty and A.Kundu,Phys.Rev.D 93, no. 5, (2016) [arXiv:1512.08184 [hep-ph]]. 055003 (2016) [arXiv:1512.06508 [hep-ph]]. [127] D. Chway, R. Dermisek, T. H. Jung and H. D. Kim, [95] R.Ding,L.Huang,T.LiandB.Zhu,arXiv:1512.06560 arXiv:1512.08221 [hep-ph]. [hep-ph]. [128] M. Son and A.Urbano, arXiv:1512.08307 [hep-ph]. [96] H.Han,S.Wangand S.Zheng,arXiv:1512.06562 [hep- [129] Y.L. Tang and S.h. Zhu,arXiv:1512.08323 [hep-ph]. ph]. [130] H.An,C.CheungandY.Zhang,arXiv:1512.08378[hep- [97] X.F.HanandL.Wang,Phys.Rev.D93,no.5,055027 ph]. (2016) [arXiv:1512.06587 [hep-ph]]. [131] J.Cao, F.WangandY.Zhang,arXiv:1512.08392 [hep- [98] M.x.Luo,K.Wang,T.Xu,L.ZhangandG.Zhu,Phys. ph]. Rev.D93,no.5,055042(2016)[arXiv:1512.06670[hep- [132] F. Wang,W. Wang,L. Wu,J. M. Yangand M. Zhang, ph]]. arXiv:1512.08434 [hep-ph]. [99] J. Chang, K. Cheung and C. T. Lu, Phys. Rev. D 93, [133] C. Cai, Z. H. Yu and H. H. Zhang, arXiv:1512.08440 075013 (2016) [arXiv:1512.06671 [hep-ph]]. [hep-ph]. [100] D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, [134] J. E. Kim, Phys. Lett. B 755, 190 (2016) S.Raychaudhuriand T. Samui,arXiv:1512.06674 [hep- [arXiv:1512.08467 [hep-ph]]. ph]. [135] J.Gao,H.ZhangandH.X.Zhu,arXiv:1512.08478[hep- [101] O. Antipin, M. Mojaza and F. Sannino, ph]. arXiv:1512.06708 [hep-ph]. [136] X.J. Bi et al., arXiv:1512.08497 [hep-ph]. [102] F. Wang, L. Wu, J. M. Yang and M. Zhang, [137] F.Goertz, J. F.Kamenik, A.Katzand M.Nardecchia, arXiv:1512.06715 [hep-ph]. arXiv:1512.08500 [hep-ph]. [103] J. Cao, C. Han, L. Shang, W. Su, J. M. Yang [138] L. A. Anchordoqui, I. Antoniadis, H. Goldberg, and Y. Zhang, Phys. Lett. B 755, 456 (2016) X. Huang, D. Lust and T. R. Taylor, Phys. Lett. B [arXiv:1512.06728 [hep-ph]]. 755, 312 (2016) [arXiv:1512.08502 [hep-ph]]. [104] F. P. Huang, C. S. Li, Z. L. Liu and Y. Wang, [139] P. S. B. Dev, R. N. Mohapatra and Y. Zhang, JHEP 9 1602, 186 (2016) [arXiv:1512.08507 [hep-ph]]. [165] J. Guo, Z. Kang, P. Ko and Y. Orikasa, Phys. Rev. D [140] N. Bizot, S. Davidson, M. Frigerio and J.-L. Kneur, 91, no. 11, 115017 (2015) [arXiv:1502.00508 [hep-ph]]. JHEP 1603, 073 (2016) [arXiv:1512.08508 [hep-ph]]. [166] S.Baek,P.KoandW.I.Park,JHEP1307,013(2013) [141] L. E. Ibanez and V. Martin-Lozano, arXiv:1512.08777 [arXiv:1303.4280 [hep-ph]]. [hep-ph]. [167] S. Choi, S. Jung and P. Ko, JHEP 1310, 225 [142] S. K.Kang and J. Song, arXiv:1512.08963 [hep-ph]. (2013) [arXiv:1307.3948 [hep-ph]]; K. Cheung, P. Ko, [143] Y. Hamada, T. Noumi, S. Sun and G. Shiu, J. S. Lee and P. Y. Tseng, JHEP 1510, 057 arXiv:1512.08984 [hep-ph]. (2015) [arXiv:1507.06158 [hep-ph]]; K. Cheung, P. Ko, [144] S. Kanemura, N. Machida, S. Odori and T. Shindou, J. S. Lee, J. Park and P. Y. Tseng, arXiv:1512.07853 arXiv:1512.09053 [hep-ph]. [hep-ph]. [145] I. Low and J. Lykken,arXiv:1512.09089 [hep-ph]. [168] J. Jaeckel, M. Jankowiak and M. Spannowsky, Phys. [146] L. Marzola, A. Racioppi, M. Raidal, F. R. Urban and Dark Univ.2, 111 (2013) [arXiv:1212.3620 [hep-ph]]. H.Veermae,JHEP1603,190(2016)[arXiv:1512.09136 [169] A. Belyaev, N. D. Christensen and A. Pukhov, Com- [hep-ph]]. put.Phys.Commun.184,1729(2013)[arXiv:1207.6082 [147] E. Ma, arXiv:1512.09159 [hep-ph]. [hep-ph]]. [148] S. Jung, J. Song and Y. W. Yoon, arXiv:1601.00006 [170] P. M. Nadolsky, H. L. Lai, Q. H. Cao, J. Huston, [hep-ph]. J. Pumplin, D. Stump, W. K. Tung and C.-P. Yuan, [149] C. T. Potter, arXiv:1601.00240 [hep-ph]. Phys.Rev.D78, 013004 (2008) [arXiv:0802.0007 [hep- [150] E. Palti, arXiv:1601.00285 [hep-ph]. ph]]. [151] X.F.Han,L.Wang,L.Wu,J.M.YangandM.Zhang, [171] J. F.Gunion,H.E. Haber,G.L. KaneandS.Dawson, Phys. Lett. B 756, 309 (2016) [arXiv:1601.00534 [hep- Front.Phys. 80, 1 (2000). ph]]. [172] J. M. Cline, K. Kainulainen, P. Scott and C. Weniger, [152] U.Danielsson,R.Enberg,G.IngelmanandT.Mandal, Phys. Rev. D 88, 055025 (2013) [Phys. Rev. D 92, no. arXiv:1601.00624 [hep-ph]. 3, 039906 (2015)] [arXiv:1306.4710 [hep-ph]]. [153] W. Chao, arXiv:1601.00633 [hep-ph]. [173] G.Belanger,F.Boudjema,A.PukhovandA.Semenov, [154] C. Csaki, J. Hubisz, S. Lombardo and J. Terning, arXiv:1407.6129 [hep-ph]. arXiv:1601.00638 [hep-ph]. [174] P. A. R. Adeet al. [Planck Collaboration], Astron. As- [155] A. E. C. Hernandez, I. d. M. Varzielas and E. Schu- trophys.(2014) [arXiv:1303.5076 [astro-ph.CO]]. macher, arXiv:1601.00661 [hep-ph]. [175] F. Giacchino, A. Ibarra, L. L. Honorez, M. H. G. Tyt- [156] B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze, T. Li, gat and S. Wild, JCAP 1602, no. 02, 002 (2016) Q. Shafi and J. W. Walker, arXiv:1601.00866 [hep-ph]. [arXiv:1511.04452 [hep-ph]]. [157] H. Ito, T. Moroi and Y. Takaesu, Phys. Lett. B 756, [176] J. Hisano, R. Nagai and N. Nagata, JHEP 1505, 037 147 (2016) [arXiv:1601.01144 [hep-ph]]. (2015) [arXiv:1502.02244 [hep-ph]]. [158] H. Zhang, arXiv:1601.01355 [hep-ph]. [177] Fora=b=1,thereappearsanextratermΦ†X2 inthe [159] I. Sahin,arXiv:1601.01676 [hep-ph]. potential,whichbreaksU(1)X downtoZ2 subgroupaf- [160] S. Fichet, G. von Gersdorff and C. Royon, terS developsnonzeroVEV.Likewise,for3a=(a+b), arXiv:1601.01712 [hep-ph]. thereappearsanextratermΦ†X3,whichbreaksU(1)X [161] D.StolarskiandR.Vega-Morales,Phys.Rev.D93,no. downtoZ3 subgroupafterS developsnonzeroVEV.In 5, 055008 (2016) [arXiv:1601.02004 [hep-ph]]. this paper, we do not consider these possibilities, rele- [162] S. Baek, P. Ko and W. I. Park, Phys. Lett.B 747, 255 gating the readers to Ref. [162] and Refs. [163–165] for (2015) [arXiv:1407.6588 [hep-ph]]. Z2 and Z3 cases, respectively. [163] P. Ko and Y. Tang, JCAP 1405, 047 (2014) [178] The upper bound on the kinetic mixing is roughly . [arXiv:1402.6449 [hep-ph],arXiv:1402.6449]. 0.01 in the dark photon mass range mZ′ . 350 GeV [164] P. Ko and Y. Tang, JCAP 1501, 023 (2015) considered in thisletter [168]. [arXiv:1407.5492 [hep-ph]].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.