CarnegieObservatoriesAstrophysicsSeries,Vol.2: MeasuringandModelingtheUniverse,2004 ed.W.L.Freedman(Cambridge:CambridgeUniv.Press) Dark Matter Theory JOSEPHSILK DepartmentofPhysics,UniversityofOxford Abstract I evaluate the dark matter budget and describe baryonic dark matter candidates and their detectability. Darkmatterissuesingalaxyformationtheoryarediscussed,andIreviewthe prospects for detecting nonbaryonicdark matter. Indirect detection via halo annihilations ofthefavoreddarkmattercandidate,theSUSYLSP,providesapotentialsignal. Therelic densityofdarkmatterparticlesspecifiestheannihilationcross-sectionwithinmodeluncer- tainties,andindirectdetectionprovidesouroptimalstrategyforconfirmingthedarkmatter candidate. Galaxyformationsimulationssuggestthatthepredictedclumpinessofthedark halowillfacilitateourimagingthedarkmatteringammarays,withcosmicraysignatures providinginvaluableconfirmation. Similarly, the supermassiveblack hole in the center of theMilkyWayshouldpresentauniquesignalamplifierbywhichwecanviewthedarkmat- terinneutrinosaswellasingammarays. Theastrophysicaluncertaintiesaresolargethat onehasnoalternativebuttolook. 1.1 Introduction Therearetwotypesofdarkmatter: baryonicandnonbaryonic.Severalcandidates forthe formerexist, butthe massfractionis unknown. Conversely,whilewe havenotyet detectedtheleadingnonbaryonicmatter(colddarkmatter;CDM)candidate,theneutralino, wecancalculateitsmassfractionandinteractioncross-section,withinmodeluncertainties. Dark matter dominatesthe Universe, amountingto 90%of the matter density. Bary- (cid:24) onic darkmatter, as yetunambiguouslyidentified, comprisesup to a third of the baryons, althoughtherearecompellingcandidates. Elucidatingthenatureofallofthedarkmatteris oneof the outstandingproblemsin astrophysicsto be addressedoverthe nextdecade. As will be discussed in this review, research at the interface of dark matter with galaxy for- mation has been particularlyactive in recent years, but has also raised challengesthat are leadingsometoquestiontheentiredarkmatteredifice. Darkmatterhasavenerablehistory.Inthesolarsystem,anomaliesintheorbitofUranus pointedtodarkmatterintheformofanewplanet,andthisledtothediscoveryoftheplanet Neptune,followingthepredictionsofAdamsandLeverrier.Theadvanceoftheperihelionof Mercury’sorbitalsostimulatedsearchesfordarkmatterintheformofanewplanetinterior to the orbit of Mercury, dubbed Vulcan. This turned out to be a red herring: the orbital anomalieseventuallyledEinsteintoproposeanewtheoryofgravitation,generalrelativity. Similarly,thereareparallelsthatmaybedrawntoday.ThemodifiedNewtoniandynamics 1 J.Silk (MOND) theoryseeks to modifythe law of gravity in orderto dispense with the need for darkmatter.Thereislittleinthewayofcompellingtheoryordatatosupportsuchaposition, but,atthesametime,MONDistenaciouslydifficulttokill(e.g.,Sanders&McGaugh2002). Itiscertainlyworthbearinginmindthatgeneralrelativityhasbeenthoroughlytestedonly inthe weak-fieldlimit, andonrelativelysmallscales, nowextendedup toa Mpc orso by gravitationallensingstudies. The modern dark matter problemwas first described in 1933 by Fritz Zwicky (Zwicky 1933),whonotedthatintheComaclusterofgalaxies,theratioofmasstolightasmeasured by the virial theorem is about 400 M L . Since individual galaxies are found to have (cid:12)= (cid:12) about 10 M L , there is a serious shortfall of luminous matter. When observations of (cid:12)= (cid:12) clusterswereextendedtoX-rayfrequencies,asignificantcomponentofmasswasfoundthat was notdetectedoptically. X-ray observationshave revealedthe presenceof a substantial amountofhotintraclusterdiffusegas,contributingabout15%oftheclustermass. However, 80%oftheclustermassisnotaccountedforinanyknownform. Moreover,thisunknown masscomponentmustbenonbaryonic,astheprimordialnucleosynthesismeasureofglobal baryonabundance,combinedwiththemeanmatterdensity,isconsistentwiththeobserved clusterbaryoncontentingasandstars. On largerscales, onecan probedarkmatter via bothHubble-flowperturbationsstudied viadeepredshiftsurveysandshearmapsfromweakgravitationallensing. Thedarkmatter contentdominates the total matter content. The generalconsensus is that 03 with m (cid:10) (cid:25) : ; about10%ofthisbeinginbaryons. Mostofthebaryonsmustalsobedark,althoughthere arepersuasiveargumentsabouttheirnature. Inowdescribeinmoredetailthedarkmatterbudget,describebaryonicdarkmattercan- didatesand their detectability, and then turn to CDM issues in galaxyformationtheory. I concludewithareviewoftheprospectsfordetectingnonbaryonicdarkmatter. 1.2 GlobalBaryonInventory Primordialnucleosynthesisofthelightelementsdemonstratesthatthebaryonfrac- tion is =004 0004 In effect, this is measured at z 109 when the light-element b (cid:10) : (cid:6) : : (cid:25) ; abundancesfreezeout. Therearetwootherindependentmeasuresofthetotalbaryoncon- tent of the Universe. The heights of the cosmic microwave background (CMB) acoustic peaks, in particular the odd peaks that correspond to wave compressions and rarefactions onthelast-scatteringsurfacescale andathalfofthisscale, arecontrolledprimarilybythe baryondensityatz 1000 TheLy forestindirectlymeasuresthebaryondensityatz 3, (cid:25) : (cid:11) (cid:25) once a correction is made for the predominantionized fraction, whose density is inferred from ionization balance by invoking the ionizing radiation field from quasars. All three measuresofthebaryondensityconvergeon 004 b (cid:10) (cid:25) : : At the present epoch, the baryon inventory is rather different, however. Stars account foramodestfractionofallthebaryonspresent,about0.0026inspheroidstarsand0.0015 in disk stars and cold gas, in units of the Einstein-de Sitter density (Fukugita, Hogan, & Peebles1998). Thesenumbersare inapproximateagreementwith a recentdetermination, includingallcoldinterstellarmatterandstarsinlow-massaswellasinmassivegalaxiesin thelocalUniverse,whichyields00024 0001,correspondingto8% 4%of (Bellet b : (cid:6) : (cid:6) (cid:10) al. 2003). Intraclustergasin richclusters, mappedinX-rays,accountsforanother0.0026 oftheclosuredensity,consistentwiththeconjecturethat,outsideofthegreatclusters,most 2 J.Silk ofthehotgasisabletocoolandformgalaxydisks. Intotal,onlysome20%ofthebaryons isactuallyobservedatlowredshift. Therearestrongtheoreticalindications,however,thatmostofthebaryons,anadditional 0.01 to 0.015 in units of the closure density, or a fraction 25% to 40% of are in the b (cid:10) ; formofawarm/hotintergalacticmedium(WHIM)inlow-densityenvironmentsoutsidethe rich clusters. A quantitative estimate of the WHIM fraction comes from large-scale nu- mericalsimulations of the intergalacticmedium (IGM; Davé et al. 2001). The heating is gravitational, due to accretionshocksin filamentsand sheets, and generallyoccurson the peripheriesofgalaxies, galaxygroups,andgalaxyclusters. TheWHIM has recentlybeen detected via excess soft X-ray emission toward clusters of galaxies (Sołtan, Freyberg, & Hasinger2002)andalsoviaabsorptioninOVItowardquasars(Simcoe,Sargent,&Rauch 2002),althoughitisnotyetpossibletoquantifytheobservedWHIMmassfraction. TheIGMsimulationsalsosuggestthatthereshouldbesomecoldintergalacticgas, vis- ible as local, metal-poor,Ly forestlines, althoughquantitativepredictionsare unreliable (cid:11) becausemostofthecoldgaswillpresumablyhaveformedstars,oratleastfallenintogalax- ies. However,observationsofthelocalLy -absorbingintergalacticcloudssuggestthatthey (cid:11) couldcontributenomorethan0.008oftheclosuredensity,or20%of ,towardthebaryon b (cid:10) budget (Penton, Shull, & Stocke 2000). The net effect is that some 80% of the globally distributed baryons are plausibly accounted for, despite the fact that no more than 20% have hitherto been directly and quantitatively observed. The uncertainties in the gaseous baryonfraction,especiallyforthewarmgas,aresuchthatonecaninferthatthereisnose- riousglobaldarkbaryonproblem.However,thesituationmaybequitedifferentongalactic scales. 1.3 GalacticBaryonInventory Rich clusters contain a reservoir of gas that reflects the initial baryon content of the Universe on 10 Mpc scales, and that, for the most part, consists of gas that has been frustrated from forming disks. Processes such as galaxy collisions and tidal harassment inhibitanaccumulationofcoolinggasingalaxyhalos. Thisfrustratesthepresumedmeans bywhichdisksordinarilyaccretecoldgas. Itisthemaintenanceofalong-livedsupplyof coldgasthatenablesstarformationtocontinueovera Hubbletimein low-densityregions oftheUniverse. Theclustergasfractionisapproximately15%. Thisplausiblyreflectstheinitialbaryon fractioninprotodisks. Indeed,simulationsofdiskformationgenerallyrequireaninitialgas fractionof15%to20%. Thisisnecessaryforsufficientcoolingtohaveoccurredtobeable toformthedisks. Semi-analyticgalaxyformationpredictsthathaloscurrentlycontainlarge amountsofgas,aboutasmuchaseventuallyformsthedisk. Coldcloudsinthehalowouldbeeasilyobservable. Thegas,ifinthehalo,mustbeata temperatureofseveralmilliondegrees. However,thereisequallyaproblemfordiffusegas inthe halo: theresultingX-rayemission wouldexceedthatobservedbyupto an orderof magnitude(Bensonetal. 2000),unlessrelativelylargesupernovafeedbackisimplemented (Toftetal. 2002)toejectthegas. Ifthisgasweretoendupinthedisk,themassofthedisk wouldpresumablyexceedobservedlimitsfromtherotationcurve. Onlyasmallfractionof thediskmasscanbepresentinthehaloashotgas. The Milky Way stellar disk mass is well constrained by a combination of gravitational microlensing and infrared observations(Klypin, Zhao, & Somerville 2002). The mass of 3 J.Silk the disk and bulge is 6 1011M whereas the total mass, predominantly in the halo as measuredbytherotation(cid:2)curveou(cid:12)t;tothe virialradius, is1012M Ifthe darkhaloprofile (cid:12): is NFW-like (Navarro, Frenk, & White 1996), there is no room for any further baryonic componentthatmightbeinanoncompactformandnotalreadymeasuredbythepowerful combinationofbulgemicrolensingandtheGalacticrotationcurve. Ithasbeenarguedthat the darkhalomust actuallyhavea softer, more isothermal, corethan the power-lawNFW profile;otherwise,thecontributionofthedarkmattertotherotationcurveintheinnergalaxy wouldbeexcessive(Binney&Evans2001). This leaves us in a quandary: where have the baryonsgone, which once were present? There are two possibilities. The baryons may still be present, but hidden. For example, they may be in dense, cold clumps in the outer halo, which are too large, by exceeding the Einstein radius, to give a strong microlensing signal. Or they could be in the form of compactobjects,suchasmassivecompacthaloobjects(MACHOs),sincetheobservational limit on halo MACHOs obtained by microlensing of stars in the Large Magellanic Cloud allows a halo fraction in MACHOs of up to 20%, in compactclump masses below a few solar masses. The positive signal reported by one experiment indeed favors a MACHO mass of about 05M In fact, one only needs to hide a halo mass fraction of about 6%, : (cid:12): and possibly as large as 10%, to arrive at an initial baryon mass fraction of 15%. An (cid:24) alternativepossibilityisthattheunaccountedbaryonswereejectedfromtheprotogalaxyin anearlywind. I nowconsiderthese variouspossibilities in turn. Cold denseclumpsof H , of Jupiter- 2 like mass and sizes of order a few astronomical units, have been invoked to account for extreme scattering events (Walker & Wardle 1998) and for unidentified SCUBA submil- limeter sources (Lawrence 2001). As such halo clumps orbit the Galaxy, they cross the Galactic plane up to 100 times over the age of the disk. These traversalsresult in the gas clumps acquiring on the order of 1 magnitude of extinction as they sweep up interstellar dust(Kerins,Binney,&Silk2002). Inordertoavoidanexcessiverateofcollisionsandyet keeptheclumpslargeenoughtobeJeansstableatagivenmassandtemperature,theclump coveringfactormustbeontheorderof0.0001. Suchclumpsarepotentiallydetectablevia gaseousmicrolensingevents(Rafikov& Draine2001),aswellasbyoccultationsofback- groundstarsinaMACHO-typeexperimentthatmonitorsmillionsofstarsseveraltimesper night. Of course,suchcloudswouldcooltoafewdegreesKelvinandcollapse, unlessheated, andtheonlyplausibleproposedheatsourceiscosmicrays.Itisnotclearifthecloudscould maintainastableequilibrium(Gerhard&Silk1996;Wardle&Walker1999),althoughthe reemittedradiationisconsistentwithmeasurementsofthefar-infraredbackground(Sciama 2000).Iftheclumpscollapse,theobservationalmotivationforinvokingthemisremoved. The MACHOoptionmostlikelycentersonhalowhite dwarfs. Therehavebeenclaims andcounterclaimsofdetectionsofold,high-velocitywhitedwarfs. Thefewdetectedhave generallybeenattributedtothethickdisk. Ifevenafewpercentofthehalomasswasinthe formofwhitedwarfs,amostunusualstellarinitialmassfunction(IMF)wouldberequired fortheprecursorstars, peakedinthe intermediate-massrange. With a solar neighborhood IMF, one could hide only of order 0.1% of the stellar mass in the Milky Way disk in our halo. Iftheprecursorstarshadprimordialabundances( 10- 4 solar),onecouldplausibly < suppress helium flashes and associated C or N dredge-(cid:24)up, thereby avoiding the obvious concernaboutstellarejectaoverpollutingtheinterstellarmediumandprotogalaxybyafactor 4 J.Silk of up to 1000 in the elements primarily producedby intermediate-massstars. One would stillperhapshavetotolerateagreatlyenhancedrateofTypeIasupernovae(SNIa).However, thelikelihoodthatmostoftheSNIaejectaescapefromthegalaxyviawinds,combinedwith theunknownscenarioforSNIaformation,whichitselfinvariablyinvolvesoldwhitedwarfs inbinarysystems,renderssuchestimateshighlyuncertain. 1.4 Outflows AnalternativeviewisthatgalaxiessuchasourMilkyWayhaveundergonemassive outflowsinthepast. Thereisstrongevidencethatmanygalaxiespresentlyundergoingstar- burstsaredrivingsuperwinds,withoutflowsontheorderofthecurrentstarformationrate. The high-redshiftevidenceis especially compelling. At z 3 the Lyman-breakgalaxies, (cid:25) ; manyofwhichhavehighstarformationrates,occasionallyrevealinversePCygniprofiles and,moregenerally,broadlinewidths, with inferredoutflowvelocitiesoftheorderofthe escape velocity from the galaxy (Pettini et al. 2002; Shapley et al. 2003). Studies of the Ly forestinthevicinityoftheLyman-breakgalaxies,viaabsorptioninthespectraofback- (cid:11) groundquasars,revealMpc-sizedholes. TheseareseenbothintheHIforestandinCIV absorption, centered on the Lyman-break galaxies (Adelberger et al. 2003). A vigorous windcouldexcavatesuchholes,althoughonecannotexcludeaphotoionizationsource. Itmaybethatspiralshaveexpelledamassingascomparabletothatremaininginstars, whereas, on the basis of gravitational lensing of background quasars, the time-delay ev- idence suggests that many massive ellipticals have not lost a significant fraction of their initialbaryoncontent.Indeed,ellipticalsneedtohaveconservedtheprimordialbaryonfrac- tion,andpossiblyevenaccretedmorecoldbaryons,inordertoretainconsistencybothwith theHubbleconstantandaNFW-likeprofile(Kochanek2003). This would also be in accordance with the following conjecture, namely that the dark halosinmassiveellipticalshavepristinedarkmatterprofiles,asgeneratedbymajormergers andpredictedbyN-bodysimulations,whereasthedarkmatterconcentrationsinthehalosof manyspiralsmayhavebeenmodifiedbytheastrophysicsofdiskformation.Suchmodifica- tionscouldplausiblyoccurasaconsequenceofthedynamicalheatingandassociatedearly outflows,linkedtotheformationofmassive,transientprotogalacticgaseousbars(Weinberg & Katz 2002). An alternativepossibility appealsto the formationof supermassivecentral black holes and associated early AGN activity that would have resulted in massive winds (Binney,Gerhard,&Silk2001). Thedesiredmodificationsinhalosofspirals,bothmassiveanddwarf-like,consistofthe following. Theamountofsubstructuremustbesuppressed,bothtobeconsistentwiththat vieweddirectlybycountingvisibledwarfs,andinferredindirectlybythenear-conservation ofthe initialangularmomentumacquiredviatidaltorqueswithneighboringprotogalaxies thatis necessary to accountfor the observedsizes of galactic disks. The concentrationof darkmatterwithinacoupleofdiskscalelengthsmayneedtobereducedfromthe50%orso bymasspredictedbythesimulationstothe10%orlessinferredfrommicrolensingforthe MilkyWayGalaxyandfromdynamicalfrictionofbarsactingonthedarkhalosforspirals withrapidlyrotatingcentralbars(Debattista&Sellwood2000). Actually,thelatterargumentiscontroversial,asitissubjecttoignoringdestructionand reformationofbarsthatcouldoccurseveraltimesoverthediskage,ifgasaccretionoccurs overasimilartimescaleandataboutthesamerateasthediskstarformationrate(Bournaud &Combes2002).Thismightallowbarstoberelativelyshort-lived,decayingviadynamical 5 J.Silk friction against the dark matter if the halo profile is NFW-like, or decaying on a similar timescaleduetotheeffectsofdestabilizationviacentralgasaccretionandbulgeformation. Provided the disk that reformed via cold gas accretion was sufficiently cold, it would be unstabletobarformation.Presumablythestellaragesofbarswouldcontaincluesaboutthe starformationhistorythatcouldperhapsbeunravelledbydetailedspectrophotometry. Thedarkhalosofdwarfspiralsgenericallyseemtobemostlycuspless,insomecasesin possiblecontradictionwiththeextentofacentralcuspthatispredictedbyCDMsimulations. The dark matter profilescan be fit either by CDM profiles with anomalouslylow concen- trationsor by dark matter profileswith nearly isothermalcores (de Blok & Bosma 2002). Again,thiscouldbeaconsequenceofvigorousearlywinds,whichwouldbeconsistentwith thelowobservedmetallicitiesofdwarfs. Finally, a substantialsubsetof massiveellipticalshassoftcores. Thesegalaxiesareas- sociatedwithslowrotationandboxyprofiles. Numericalsimulationssuggestanoriginvia majormergers(Burkert&Naab2004). Onecouldplausiblyimaginethatsuchmergersre- sultedinsubstantialcentralgasflowsandgeneratedluminousstarburststhatdrovemassive winds. Supermassiveblackholeformationbymergersofblackholesof comparablemass wouldalsoheatandscouroutthedarkmattercusp,producingasoftcoreorevenacentral minimuminthestellarluminositydensity(Laueretal. 2002). Itisindeedpossiblethatgalaxieshaveundergonea widevarietyofformationhistories. Some of these, such as massive gas accretion onto disky ellipticals and major mergers to form boxy ellipticals, may have had a strong but possibly indirect influence on the dark matterprofiles,includingcusp,substructureandconcentration. One could possibly distinguish between these alternative hypotheses by the prediction that a massive early starburst would result in boosting the rate of Type II supernova pro- ductionrelativeto the longertime scale forSNIa explosions,andhencelead to an [ Fe] (cid:11)= enhancement in the stellar core. Boxy ellipticals should therefore display systematically higher[ Fe] thandiskyellipticals, whichoftenhavecentralcusps, orpower-lawprofiles (cid:11)= in surface brightness, and have also presumably undergone more quiescent accretion and extendedperiodsofstarformationthatledtodiskformation. Anotherlensingresultfromtheimageratiosofquadruplelensimagesofquasarscanonly be explained if the massive elliptical lenses have substructure on subgalactic mass scales (Dalal&Kochanek2002).Asimilarconclusionisinferredfromthebendingofradiojetson milli-arcsecondscales(Metcalf2002).Somemassiveellipticalshavesubstructureconsistent withthefullpredictedpowerofCDM,thatistosayoforderafewpercentofthehalodark matter in inhomogeneities, with much of this in million-solar mass clumps. Some of the massive ellipticals, those with disky isophotes, as well as low-mass ellipticals and bulges, oftenhavecentralpower-lawstellarcusps. Itwouldofcoursebeinterestingtoknowifthese propertieswere indeed correlated, and characteristic of the disky ellipticals and spheroids thatarethoughtnottohaveundergonemajormergers. Thereisonecrucialissuetobeaddressedifmassivewindswithoutflowratesontheorder ofthestarformationratearetobeconsideredseriouslyinthecontextofgalaxyformation. Simulationsfailtoproducesuchwindsinmassivegalaxies.Onefindsthatthewindsinteract withambientgas,undergostrongradiativecooling,andarequenched.Ihavesuggestedthat afundamentalproblemwithallexistingwindsimulationsistheomissionofcrucialsubgrid physics(Silk 2003). In particular,Rayleigh-Taylorinstabilities, as the wind interactswith thesurroundingmatterandtheshockedshellofdense,cooledgasdecelerates,increasethe 6 J.Silk interstellarmediumporosity. This enablesthe galactic outflowsto proceedwith enhanced efficiency. Simultaneously,Kelvin-Helmholtzinstabilitiesentraincoldinterstellargasinto the outflows. Ablationand evaporationof the cold cloudsaddsto the mass loadingof the wind. Theenhancedefficiencymeansthatevenmassivegalaxiescanhavewinds. Thestar formationratepeaksintheprotogalacticphase.Thisiswhentheinterstellarcoldgasdensity isgreatest,andhencecoolingismostimportant.Ifawindisindeeddriven,thewindoutflow isoforderthestarformationrate. However,asuccessfulwindrequiresthattherebesufficientenergyintheoutflowtodrive the gas out of the galactic potential well. Normal supernovae of Type II, associated with thestarburstthatcharacterizestheelevatedstarformationrate,maynotsufficetogenerate enoughenergyifthegalaxyescapevelocityexceeds 100kms- 1. However,Ihaveargued (cid:24) thatevenmassivegalaxiesshouldhaveundergoneamassiveoutflowphase. Theresolution mightliewithhypernovae,withcharacteristickineticenergies 1053 erg. Ithasbeensug- (cid:24) gestedthathypernovaeareassociatedwiththedeathsofstarsinexcessof30M thehigh (cid:12); energiesbeing generatedvia release of bindingenergyfrom infall onto the formingblack hole. Therearecluesfromtheobservedmetallicitiesinatleastonestarburstgalaxyandin metal-poorhalostarsthathypernovaemaymakeanimportantcontributiontotheobserved chemical abundances. Indeed, hypernovae may even be the dominant contributors to the abundancepatternsinextremelymetal-poorhalostars(Umeda&Nomoto2003). Ifindeed all stars above 30M explode as hypernovae in metal-poor environments, the specific (cid:24) (cid:12) energyinputintotheinterstellarmediumwouldbeenhancedrelativetothatofordinarysu- pernovaebyanorderofmagnitude.Thiswouldsufficetodrivewindsfromthemostmassive protogalaxies. Ithasalsobeensuggestedthathypernovaearepreferentiallyproducedviastellarmergers (PortegiesZwartetal. 2002),whichareprimecandidatesforproducingthemassive,rapid rotatorspreferredinhypernovamodels(Nakamuraetal. 2001). Suchmergersarelikelyto bemostimportantinhigh-densitycoresassociatedwithstarbursts,andmightbeespecially frequentduringtheprotogalacticstarburstphaseassociatedwithspheroidformation. 1.5 ProspectsforNonbaryonicDarkMatterDetection CDM,despitethecurrentissuesthatarebeingraisedconcerningsubstructureand darkmatterconcentrationonsmallscales,hasbeenremarkablysuccessfulinaccountingfor large-scalestructureandinleadingtothepredictionoftheamplitudeoftheCMB temper- ature fluctuations. However, detection, director indirect, has beenelusive, at least for the dominantnonbaryonicdarkmattercomponent. Massive neutrinosare the only formof nonbaryonicdark matter known to exist. How- ever, they are subdominant. The relic neutrino number density is 3n where the relic photon density n is 024(kT hc)3 and T is the measured CMB tem11pe(cid:13)r;ature of 2725 (cid:13) : =(cid:22) : (cid:6) 0002K A lower boundto the mass comesfromatmospheric oscillations, and is e m: 0:1eV Upperlimits come fromparticle physicsand from(cid:23)(cid:22)a!stro(cid:23)nomy. Now, h2= > m(cid:23) (cid:24)9:15eV: Theneutrinolessdoublebetadecaylimitontheelectronneutrinomas(cid:10)s,(cid:23)com- (cid:6) (cid:23)= : : binedwith recentreactorconstraints(usingKamLANDdata) onoscillations, setan upper bound h2 007 (Minakata & Sugiyama 2002). A similar, but stronger bound comes < fromla(cid:10)rg(cid:23)e-sc(cid:24)ale:structure,andinparticularthelinearpowerspectrumderivedfromthe2dF galaxyredshiftsurvey, such that the sum of the neutrinomasses must be less than 2.5 eV 7 J.Silk (Elgarøyetal. 2002;Hannestad2002). Neutrinoscanbecomparabletothebaryondensity incontributingtothemattercontentoftheUniverse. Neutrinos decouple relativistically, since decouplingat kT 1MeV 2m c2 is con- dec e (cid:25) (cid:25) trolled by neutron freeze-out. Generic massive weakly interacting particle candidatesthat oncewere in thermalequilibriumdecouplenon-relativisticallyatkT m c2 20 and are (cid:31) (cid:25) (cid:31) = ; suppressedinnumberdensitybythecorrespondingBoltzmannfactorrelativetothephoton numberdensity. ThereistheoreticalprejudicethatfavorsthelightestSUSYparticle,which is stable if there is a commonly adopted symmetry among the SUSY family of particle partnersto the knownbosonsand fermions. Constraintsfromthe LargeElectronPositron Collider set a lower bound on the particle mass of about 50 GeV. A generic upper bound comesfromtheory: theSUSY scale, andhencetheWIMPmass, cannotbemuchabove1 TeV if SUSY is to be relevant for accounting for the electroweak scale. Since the cross- sectionforannihilationdecreasesintheunitaritylimitwithincreasingmassabove100GeV, one cannot go to too high a mass, typically less than a few TeV, without overclosing the UniversewithWIMPs. RealisticmodelswiththeobservedCDMdensity(Melchiorri&Silk 2002) =012 004h- 2 andincludingallcoannihilationchannels(Edsjöet al. 2003) cdm (cid:10) : (cid:6) : suggestanupperboundof1500GeV. One may hope to detect CDM in the form of the LSP via its annihilations in the halo. Theannihilationproductsincludehigh-energypositrons,antiprotons,gammarays,andneu- trinos. If the halo is uniform, the predicted fluxes fall a factor of 100 or more below ob- servationallimitsasset, forexample,by thediffusehighgalacticlatitude EGRETgamma rayflux. However,secondaryproductionofgammaraysvia p- pand p- interactionsof (cid:11) cosmicraysresultsina spectralenergydistributionthatissofterthantheobserveddiffuse gammarayflux,suggestingthatamoreexoticexplanation,suchasthatfromannihilations, maypossiblybemerited. High-resolutionnumericalsimulationsofrealizationsofgalaxyhalospredictstrongclumpi- ness on small scales. This would help boost the expected annihilation signal. A reported high-energypositronfluxshowsaspectralexcessrelativetopredictedcosmicraysecondary positronsnear50GeV.Withaboostfactorof100to1000,thiscouldbeduetoWIMPanni- hilationsinthehalo,thefittothedatacertainlybeingimprovedbyacarefullytunedWIMP mass(Baltzetal. 2002). Oneconsequenceisthepredictionofaprimaryhigh-energy pfeaturethatmightbepo- (cid:22) tentially observable with the forthcomingPAMELA and AMS experiments. The possible spectralsignaturesofthediffusegammarayandneutrinofluxesfromhaloannihilationsare moreelusive. Withregardtothegammarays, oneexpectsa 0 decaysignaturebothfrom (cid:25) cosmicrayinteractionswith interstellargasandfromtheannihilations,althoughthe latter wouldproduceaharderspectrumformassiveWIMPs. However,onemayhopetoidentify individualhaloclumpsaspointlikegammaraysourcesatthesensitivityandangularresolu- tionoftheGLASTsatellite,tobelaunchedin2007. Gammaraylinesareanotherpotential signal,thatwouldbeauniquetracerofannihilations. One concern is that the clumpiness of the dark halo may be greatly overestimated by the numerical simulations. This is because significant astrophysics is omitted from halo modeling. Clumps self-destructvia dynamicalinteractionswith each other and especially withtheGalactictidalfield. Nevertheless,eventheneutrinofluxfromannihilationsmaybe detectablewithamoreextremestrategythattargetstheGalacticCenter. Observationsstronglysuggestthattheformationofthespheroidstarsiscloselycoupled 8 J.Silk totheformationofthecentralsupermassiveblackhole. OneobservesthatM 10- 3M sph (cid:15)(cid:25) overawidedynamicrange,withonlymodestdispersion.InadiskgalaxysuchastheMilky Way,itislikelythatthesupermassiveblackholeattheGalacticCenterof 26 106M (cid:24) : (cid:2) (cid:12) (Ghez2004)formedbyacombinationofgasaccretionontoaseedblackholeandmerging ofsmallerblackholes,ratherthanbymajorblackholemergingevents. Cosmology,andin particularstudiesofprimordialstarformation,suggeststhattheseedblackholemassesare likelytobearound100M InferencesabouttheprimordialIMFleadtothelikelypresence (cid:12): in the protogalactic halo of large numbers of 100M black holes (Islam, Taylor, & Silk (cid:12) 2002;Volonteri,Haardt,&Madau2003). Gasaccretioninthegas-richprotogalaxyisthen thefavoredformationmodelforthecentralsupermassiveblackhole. Another optionwould be for the black hole and accompanyingspheroidto form by hi- erarchicalclusteringandmergingofroughlyequal-massblackholesthatareembeddedin mini-spheroidsofstars. ThisseemsimplausiblefortheMilkyWayblackholeandspheroid because the merging time scales would seem to be very long, and also because of the re- markableobservedchemodynamicalcontinuitybetweenthindisk,thickdisk,andspheroid stars. Thisissuggestiveofarelativelynonviolenthistory.Thelastsignificantmergerwould havetohaveoccurredatleast12Gyragoandprecededdiskformation.Thestellaragesand chemicalpropertiesofthediskandbulgesuggestacoevalformation.Inordertoaccountfor barandbulgeformation,secularevolutionratherthanmergingisusuallypreferredinMilky Way-typegalaxies,andmoregenerallyinlate-typedisks. A rather differenthistory may be applicable to massive spheroidformation. Of course, ellipticalgalaxiesmaywellbeolder,onaverage,andformindenserenvironments. Major mergersthattriggeredbursts of star formationmostlikely played an importantrole in the formationofmassiveellipticals,asinferredforexamplefromthehighcentralstellarsurface densitiesandmuchcircumstantialevidencefromultraluminousinfraredgalaxies.Ourhalo, however,appearstohaveretainedthekinematicsubstructurecharacteristicofminormergers (Gilmore,Wyse,&Norris2002). TheMilkyWayisanespeciallyinterestingcase. Thereisacentralbar,andtherearealso indicationsfromtherotationcurveandthegravitationalmicrolensingopticaldepththatno morethan10%ofthemasswithintwodiskscale lengthscanbenonbaryonicdarkmatter. Theformationofthesupermassiveblackholeaddsafurthercomplicationthatmaymodify thedarkmatterprofileclosetothecenter.Infact,wecantakeadvantageofthis,iftheCDM consistsofthelighteststableSUSYparticle. Thepresenceofthesupermassiveblackholeallowsapotentiallyimportantprobeofthe dark matter density concentrationin the inner galaxy. As the black hole forms within the preexistingdarkmatterpotentialwell,adarkmattercuspdevelopswithinthezoneofgrav- itational influence of the black hole, or about 0.1 pc. The cusp slope is r- 9 4 for a soft = galacticcore,andissteeperforaninitiallypower-lawprofileinthegalaxyinnerhalo. Dark matterannihilationsarecorrespondinglyboosted,withinaradiusbetween0.1pcandabout 100Schwarzschildradii,withinwhichthedarkmatterannihilatesinlessthanadynamical crossingtime.Oneconsequenceisthatapointsourceofhigh-energyneutrinosshouldbede- tectabletowardtheGalacticCenter(Gondolo&Silk1999;Ullio, Zhao,&Kamionkowski 2001). However, this is not the end of the story, for there are also radio and gamma ray signatures. Infact,theadvection-dominatedaccretionmodelforSgrA ,fortheflowintheaccretion (cid:3) diskaroundthecentralblackholeintheMilkyWay,explainsalloftheobservationsexceptin 9 J.Silk thelow-frequencyradioandgammarayregimes(Quataert&Narayan1999).Anadditional nonthermalsourceofenergeticparticlesisneeded.Annihilationsboostedbytheblackhole– enhancedcuspprovideanattractivepossibleexplanation. The annihilations into e+e- pairs generate synchrotron emission. Remarkably, the pre- dicted spectral shape, dominated by synchrotron self-absorption, matches that observed. MoreovertheunidentifiedEGRETgammaraysourceattheGalacticCentercanalsobefit spectrally,andthemagneticfieldstrengthcanthenbeinferredbycomparingtheradioand gammarayfluxes(Bertone,Sigl,&Silk2002). Theinferredfieldstrengthdependsonthe initial profile and the WIMP cross-section at a specified dark matter density, both leading toseveralordersofmagnitudeuncertaintyintherequiredmagneticfieldstrength,whichin factspanstheequipartitionestimate. Inpractice,theprofileuncertaintiesdominate. The observed radio and gamma ray luminosities can then be explainedas being a con- sequenceofthe energyinputfromannihilationsifthe initialcentralcoredensityprofileis reasonably soft, as compared to the NFW profile. Detection of a neutrino source by the Northernhemisphereunderwaterneutrinotelescopes ANTARES or NESTOR couldeven- tuallyprovidethesmokinggunthatconfirmsannihilationsasasignificantenergysourcein theinner0.1pcoftheMilkyWay. 1.6 Conclusions Darkmatterhasbeenremarkablyelusive.Despite70yearsoverwhichtheproblem ofthedarkmatterhasbeenrecognized,therehasbeennoconfirmationofitsnature. How- ever, observations are proceeding at a great pace, both from the observational astronomy side,especially,butnotexclusively,viagravitationallensing,andontheexperimentalside by the enormousprogressbeingmade in directand indirectdetection experiments. There isincreasingrecognitionthattwo of the greatestunresolvedissues in physicalcosmology, the nature of the dark matter and the formation of the galaxies, are intimately connected. Supermassiveblack holesand active galactic nucleiare importantingredientsthat need to beincorporatedintoourmodelingbeforewecanunderstandhowprotogalaxiesevolve. Imagingdarkmatterwouldbeawonderfulachievementtocrownourstudiesoftheseas- trophysicalpuzzles. Ifourprejudicesaboutdarkmatterarecorrect,annihilationsprovidea potentialsignal. Directdetectioncannotcompete: attheLargeHadronCollideranySUSY evidence will have no direct relevance for dark matter, although, of course, the comple- mentarity is an essential strategy. Even direct detection experimentsin deep underground laboratoriesaresearchingforaSUSY-inspiredscatteringsignalthatmaybefarbelow10- 10 picobarns,andsowillbebeyondanypossiblereachintheforeseeablefuture,wherethegoal forton-scaledetectorsisoforder10- 8picobarns. The relic density of dark matter particlesspecifies the annihilationcross-section within modeluncertainties,andindirectdetectionprovidesouroptimalstrategyforconfirmingthat theSUSYLSPisthedarkmattercandidate. Itmaywellbethattheclumpinessofthedark halo will facilitate our obtainingthese images in the gammaray domain. The cosmic ray signatureswill provideinvaluableconfirmation,aswill detectionofhigh-energyneutrinos fromtheSun thatare generatedby annihilationsofWIMPstrappedin thesolar core. The supermassive black hole in the center of the Milky Way may present a unique signal am- plifier bywhich we can view the dark matter, in neutrinosas well asin gammarays. The uncertaintiesinthehalofine-structureandinhowthedarkmatteraggregatedandthecentral 10
Description: