Mon.Not.R.Astron.Soc.000,1–29(Xxxx) Printed6July2011 (MNLATEXstylefilev2.2) Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future γ-ray observatories I. The classical dSphs 1 1 0 A. Charbonnier1, C. Combet2, M. Daniel4, S. Funk5, J.A. Hinton2⋆, D. Maurin6,1,2,7⋆, 2 C. Power2,3, J. I. Read2,11, S. Sarkar8, M. G. Walker9,10⋆, M. I. Wilkinson2 ul 1LaboratoiredePhysiqueNucle´aireetHautesEnergies,CNRS-IN2P3/Universite´sParisVIetParisVII,4placeJussieu,Tour33,75252ParisCedex05,France J 2Dept.ofPhysicsandAstronomy,UniversityofLeicester,Leicester,LE17RH,UK 3InternationalCentreforRadioAstronomyResearch,UniversityofWesternAustralia,35StirlingHighway,Crawley,WesternAustralia6009,Australia 5 4Dept.ofPhysics,DurhamUniversity,SouthRoad,Durham,DH13LE,UK 5W.W.HansenExperimentalPhysicsLaboratory,KavliInstituteforParticleAstrophysicsandCosmology,DepartmentofPhysicsandSLACNationalAcceleratorLaboratory,Stanfor ] E 6LaboratoiredePhysiqueSubatomiqueetdeCosmologie,CNRS/IN2P3/INPG/Universite´JosephFourierGrenoble1,53avenuedesMartyrs,38026Grenoble,France 7Institutd’AstrophysiquedeParis,UMR7095CNRS,Universite´PierreetMarieCurie,98bisbdArago,75014Paris,France H 8RudolfPeierlsCentreforTheoreticalPhysics,UniversityofOxford,1KebleRoad,Oxford,OX13NP,UK . 9InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK h 10Harvard-SmithsonianCenterforAstrophysics,60GardenSt.,Cambridge,MA02138,USA p 11InstituteforAstronomy,DepartmentofPhysics,ETHZu¨rich,Wolfgang-Pauli-Strasse16,CH-8093Zu¨rich,Switzerland - o r t s AcceptedXxxx.ReceivedXxxx;inoriginalformXxxx a [ 2 ABSTRACT v Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are 2 promisingtargetsfortheindirectdetectionofdarkmatter(DM)inγ-rays.Weexaminetheir 1 detectability by present and future γ-ray observatories. The key innovative features of our 4 analysis are: (i) We take into account the angular size of the dSphs; while nearby objects 0 have higher γ ray flux, their larger angular extent can make them less attractive targets for . 4 background-dominatedinstruments.(ii)WederiveDMprofilesandtheastrophysicalJ-factor 0 (which parameterises the expected γ-ray flux, independently of the choice of DM particle 1 model)fortheclassicaldSphsdirectlyfromphotometricandkinematicdata.Weassumevery 1 little about the DM profile, modelling this as a smooth split-power law distribution, with : and without sub-clumps. (iii) We use a Markov Chain Monte Carlo (MCMC) technique to v i marginaliseoverunknownparametersanddeterminethesensitivityofourderivedJ-factorsto X bothmodelandmeasurementuncertainties.(iv)WeusesimulatedDMprofilestodemonstrate r thatourJ-factordeterminationsrecoverthecorrectsolutionwithinourquoteduncertainties. a Ourkeyfindingsare:(i)Sub-clumpsinthedSphsdonotusefullyboostthesignal;(ii)The sensitivity of atmosphericCherenkovtelescopesto dSphswithin ∼20kpcwith coredhalos canbeupto∼50timesworsethanwhenestimatedassumingthemtobepoint-like.Evenfor thesatellite-borneFermi-LATthesensitivityissignificantlydegradedontherelevantangular scalesforlongexposures,henceitisvitaltoconsidertheangularextentofthedSphswhen selectingtargets;(iii)NoDMprofilehasbeenruledoutbycurrentdata,butusingaprioron the inner dark matter cusp slope 0 6 γ 6 1 providesJ-factor estimates accurate to a prior factorofafewifanappropriateangularscaleischosen;(iv)TheJ-factorisbestconstrained atacriticalintegrationangleα = 2r /d(wherer isthehalflightradiusanddisthe c half half distanceto the dwarf)andwe estimate the correspondingsensitivity of γ-rayobservatories; (v)The‘classical’dSphscanbegroupedintothreecategories:well-constrainedandpromising (UrsaMinor,Sculptor,andDraco),well-constrainedbutlesspromising(Carina,Fornax,and LeoI),andpoorlyconstrained(SextansandLeoII);(vi)ObservationsofclassicaldSphswith Fermi-LAT integrated over the mission lifetime are more promising than observationswith the planned Cherenkov Telescope Array for DM particle mass .700 GeV. However, even Fermi-LATwillnothavesufficientintegratedsignalfromtheclassicaldwarfstodetectDM in the ‘vanilla’Minimal SupersymmetricStandard Model. Both the Galactic centre and the ‘ultra-faint’dwarfsarelikelytobebettertargetsandwillbeconsideredinfuturework. Key words: astroparticle physics — (cosmology:) dark matter — Galaxy: kinematics and dynamics—γ-rays:general—methods:miscellaneous 2 Charbonnier,Combet,Daniel etal. 1 INTRODUCTION This paper extends the earlier study of Walkeretal. (2011) which showed that there is a critical integration angle (twice the Thedetectionofγ-raysfromdarkmatter(DM)annihilationisone half-light radiusdivided bythedSph distance) wherewecan ob- ofthemostpromisingchannelsforindirectdetection(Gunnetal. tain a robust estimate of the J-factor (that parameterises the ex- 1978; Stecker 1978). Since the signal goes as the DM density pectedγ-rayfluxfromadSphindependentlyofthechoiceofdark squared, the Galactic centre seems to be the obvious location to matter particle model; see Section 2), regardless of the value of search for such a signal (Silk&Bloemen 1987). However, it is thecentralDMcuspslopeγ.Here,wefocusonthefullradialde- plaguedbyaconfusingbackground ofastrophysicalsources(e.g. pendenceoftheJ-factor.WeconsidertheeffectofDMsub-lumps Aharonianetal.2004).Forthisreason,thedwarfspheroidalgalax- withinthedSphs,discusswhichdSphsarethebestcandidatesfor ies(dSphs)orbitingtheMilkyWayhavebeenflaggedasfavoured anobservingprogramme,andexaminethecompetitivenessofnext- targetsgiven theirpotentiallyhigh DMdensitiesandsmallastro- generationACTsasdarkmatterprobes. physicalbackgrounds(Lake1990;Evansetal.2004). Thispaperisorganisedasfollows.InSection2,wepresenta Despitethegrowingamountofkinematicdatafromtheclas- studyoftheannihilationγ-rayflux,focusingonwhichparameters sical dSphs, the inner parts of their DM profiles remain poorly critically affect the expected signal. In Section 3, we discuss the constrained and can generally accommodate both cored or cuspy sensitivityof present/future γ-rayobservatories. In Section4, we solutions (e.g. Kochetal. 2007; Strigarietal. 2007; Walkeretal. present our method for the dynamical modelling of the observed 2009). There are two dSphs—Fornax and Ursa Minor—that kinematics of stars in dSphs. In Section 5, we derive DM den- show indirect hints of a cored distribution (Kleynaetal. 2003; sityprofilesfortheclassicaldSphsusinganMCMCanalysis,from Goerdtetal.2006);however,inbothcasesthepresenceofacore whichthedetectionpotentialoffutureγ-rayobservatoriescanbe is inferred based on a timing argument that assumes we are not assessed.WepresentourconclusionsinSection6.1 catching the dSph at a special moment. Theoretical expectations Thispaper includesdetailedanalyses frombothhigh-energy remain similarly uncertain. Cusps are favoured by cosmological astrophysics and stellar dynamical modelling. To assist readers modelsthatmodeltheDMalone,assumingitiscoldandcollision- fromthesedifferentfieldsinnavigatingthekeysections,wesug- less (e.g. Navarro,Frenk&White 1996). However, the complex gestthatthosewhoareprimarilyinterestedinthehigh-energycal- dynamicalinterplaybetweenstars,gasandDMduringgalaxyfor- culationsmaywishtofocustheirattentiononSections2,3and5 mationcoulderasesuchcuspsleadingtocoreddistributions(e.g. beforemovingtotheconclusions.Readersfromthedynamicscom- Navarroetal. 1996; Read&Gilmore 2005; Mashchenkoetal. munitymayinsteadprefertoreadSections2,4and5.Finally,those 2008;Goerdtetal.2010;Governatoetal.2010;Coleetal.2011). whoarewillingtotrusttheunderlyingmodellingshould proceed Cores could also be an indication of other possibilities such toSection5whereour mainresultsregardingthedetectabilityof as self-interacting dark matter (e.g. Hogan&Dalcanton 2000; dSphsarepresentedinFigs.12, 15, 16and17. Mooreetal.2000). Knowledge of the inner slope of the DM profile is of crit- ical importance as most of the annihilation flux comes from that region. Lacking this information, several studies have fo- 2 THEDARKMATTERANNIHILATIONSIGNAL:KEY cused on the detectability of these dSphs by current γ-ray ob- PARAMETERS servatories such as the satellite-borne Fermi-LAT and atmo- 2.1 Theγ-rayflux spheric Cherenkov telescopes (ACTs) such as H.E.S.S., MAGIC and VERITAS, using a small sample of cusped and cored pro- Theγ-rayfluxΦ (photonscm−2 s−1 GeV−1)fromDMannihi- γ files (generally one of each). Most studies rely on standard core lationsinadSph,asseenwithinasolidangle∆Ω,isgivenby(see and cusp profiles fitted to the kinematic data of the dSph of AppendixAfordefinitionsandconventionsusedintheliterature): interest (Bergstro¨m&Hooper 2006; Sa´nchez-Condeetal. 2007; Bringmannetal. 2009; Pierietal. 2009; Pierietal. 2009). Other dΦ authors use a ‘cosmological prior’ from large scale cosmological γ(E ,∆Ω)=Φpp(E ) J(∆Ω), (1) simulations (e.g. Kuhlen 2010). Both approaches may be com- dEγ γ γ × bined, such as in Strigarietal. (2007) and Martinezetal. (2009) Thefirstfactorencodesthe(unknown)particlephysicsofDMan- whorelypartiallyontheresultsofstructureformationsimulations nihilationswhichwewishtomeasure.Thesecondfactorencodes to constrain the inner slope and then perform a fit to the data to theastrophysicsviz. thel.o.s.integral of theDMdensity-squared derivetheotherparameters.Howeversuchcosmologicalpriorsre- oversolidangle∆ΩinthedSph—thisiscalledthe‘J-factor’.We mainsufficientlyuncertainthattheiruseisinappropriateforguid- nowdiscusseachfactorinturn. ing observational strategies. There have been only a few studies (e.g.,Essigetal.2009)whichhavenot assumed strongpriorsfor theDMprofiles. 1 TechnicaldetailsaredeferredtoAppendices.InAppendixA,wecom- Inthiswork,werevisitthequestionofthedetectabilityofdark mentonthevariousnotationsusedinsimilarstudiesandprovideconversion matterannihilationintheclassicalMilkyWaydSphs,motivatedby factorstohelpcompareresults.InAppendixB,weprovideatoymodelfor ambitiousplansfornext-generation ACTssuchastheCherenkov quickestimatesoftheJ-factor.InAppendixD,wecalculateinamoresys- tematicfashiontherangeofthepossible‘boostfactor’(duetoDMclumps TelescopeArray(CTA).Werelysolelyonpublishedkinematicdata within the dSphs)for generic dSphs. InAppendix E,we show that con- toderivethepropertiesofthedSphs,makingminimalassumptions volvingthesignalbythePSFoftheinstrumentisequivalent toacruder abouttheunderlyingDMdistribution.Mostimportantly,wedonot quadraturesumapproximation.InAppendixF,wediscusssometechnical restrictoursurveyofDMprofilestothosesuggestedbycosmolog- issuesrelatedtoconfidenceleveldeterminationfromtheMCMCanalysis. icalsimulations.Wealsoconsidertheeffectofthespatialextentof InAppendixG,thereconstructionmethodisvalidatedonsimulateddSphs. thedSphs,whichbecomesimportantfornearbysystemsobserved InAppendixH,wediscusstheimpactofthechoiceofthebinningofthe bybackground-limitedinstrumentssuchasACTs. starsandoftheshapeofthelightprofileontheJ-factordetermination. Darkmatterannihilationindwarfspheroidalgalaxiesandγ-rayobservatories:I. ClassicaldSphs 3 2.1.1 Theparticlephysicsfactor xγ Theparticlephysicsfactor(Φpp)isgivenby: /dNγ 1 A(IvBe)r BagMe4, ,B Berrginsgtrmoamn ent eatl a. l(.1 (929080)8) d 2 x 10-1 dΦ 1 σ v dN Φpp(Eγ)≡ dEγγ = 4πh2amnn2χi × dEγγ , (2) Forneτn+gτo- et al. (2004) 10-2 gluons where mχ is the mass of the DM particle, σann is its self- Z bosons annihilationcross-sectionand σ v theaverageoveritsvelocity W bosons ann h i bb distribution,anddN /dE isthedifferentialphotonyieldperan- nihilation.Abenchmγark vγalueis σannv 3 10−26cm3s−1 10-3 cttc (Jungmanetal. 1996), which wouhld resuilt∼in a×present-day DM ss mχ = 1 TeV uu or dd abundancesatisfyingcosmologicalconstraints. 10-4 differUenntliiakleatnhneihainlantiihoinlastpioenctrcuromss(dsNecti/odnEan(dEpa)r)tircelqeumireasssu,sthtoe 10-2 10-1 x = Eγ/mχ1 γ γ γ adoptaspecificDMparticlemodel.Wefocusonawell-motivated Figure1.Differentialspectra(multipliedbyx2)ofγ-raysfromthefrag- classof modelsthatarewithinreachofup-coming directandin- mentationofneutrinoannihilation products(hereforaDMparticlemass directexperiments:theMinimalSupersymmetricStandardModel of mχ = 1 TeV). Several different channels are shown, taken from (MSSM). In this framework, the neutralino is typically the light- Fornengoetal. (2004) and an average parametrisation Bergstro¨metal. eststableparticleandthereforeoneofthemostfavouredDMcan- (1998)ismarkedbytheblacksolid line; thisis whatweadopt through- didates (see e.g. Bertoneetal. 2005). A γ-ray continuum is pro- out this paper. The black dashed line is the benchmark model BM4 duced fromthe decay of hadrons (e.g. π0 γγ) resultingfrom (Bringmannetal.2008)whichincludesinternalbremsstrahlungandserves → toillustratethatverydifferentspectraarepossible.However,theexample theDMannihilation.Neutralinoannihilationscanalsodirectlypro- shownhereisdominatedbylineemissionandthereforehighlymodelde- ducemono-energeticγ-raylinesthroughloopprocesses,withthe pendent;forthisreason,wedonotconsidersucheffectsinthispaper. formationofeitherapairofγ-rays(χχ γγ;Bergstro¨m&Ullio → 1997),oraZ0bosonandaγ-ray(χχ γZ0;Ullio&Bergstro¨m 1998).Wedonottakeintoaccountsuc→hlineproductionprocesses 2004,2005).2ThisdependsinverselyontheDMparticlevelocity, since they are usually sub-dominant and very model dependent andthusrequiresprecisemodellingofthevelocitydistributionof (Bringmannetal.2008).Thedifferentialphotonspectrumweuse theDMwithinthedSph;wewillinvestigatethisinaseparatestudy. isrestrictedtothecontinuumcontributionandiswrittenas: 2.1.2 TheJ-factor dN dNi γ(E )= b γ(E ,m ), (3) ThesecondterminEq.(1)istheastrophysicalJ-factorwhichde- dEγ γ i dEγ γ χ pendsonthespatialdistributionofDMaswellasonthebeamsize. i X Itcorresponds tothel.o.s.integration of theDMdensity squared wherethedifferentannihilationfinalstatesiarecharacterisedbya oversolidangle∆ΩinthedSph: branchingratiob . i Using the parameters in Fornengoetal. (2004), we plot the continuum spectracalculatedfor a1TeVmassneutralino inFig. J = ρ2DM(l,Ω)dldΩ. (5) 1. Apart from the τ+τ− channel (dash-dotted line), all the an- Z∆ΩZ nihilation channels in the continuum result in very similar spec- Thesolidangleissimplyrelatedtotheintegrationangleαintby tra of γ-rays (dashed lines). For charged annihilation products, ∆Ω=2π (1 cos(α )). int internal bremsstrahlung (IB) has recently been investigated and · − foundtoenhancethespectrumclosetothekinematiccut-off(e.g., The J-factor is useful because it allows us to rank the dSphs by Bringmannetal.2008).Asanillustration,thelong-dashedlinein theirexpectedγ-rayflux,independentlyofanyassumedDMpar- Fig. 1 corresponds to the benchmark configuration for a wino- ticle physics model. Moreover, the knowledge of the relative J- like neutralino taken fromBringmannetal. (2008). However, the factors would also help us to evaluate the validity of any poten- shapeandamplitudeofthisspectrumarestronglymodeldependent tialdetectionofagivendSph,becauseforagivenparticlephysics (Bringmannetal. 2009) and, as argued in Cannonietal. (2010), modelwecouldthenscalethesignaltowhatweshouldexpectto thiscontributionisrelevantonlyformodels(andatenergies)where seeintheotherdSphs. thelinecontributionisdominantoverthesecondaryphotons. AllcalculationsofJ presentedinthispaperwereperformed Wewishtobeasmodel-independentaspossible,andsodonot usingthepubliclyavailableCLUMPYpackage(Charbonnier,Com- considerinternalbremsstrahlung.Intheremainderofthispaper,all bet, Maurin, in preparation) which includes models for a smooth our results will be based on an average spectrum taken from the DMdensityprofileforthedSph,clumpydarkmattersub-structures parametrisation(Bergstro¨metal.1998,solidlineinFig.1): insidethedSph,andasmoothandclumpyGalacticDMdistribu- tion.3 dN 1 dN 1 0.73e−7.8x γ = γ = , (4) dEγ mχ dx mχ x1.5 2 Thiseffectdependsonthemassandthevelocityoftheparticle;there- sultingboostofthesignalandtheimpactondetectabilityofthedSphshas withx Eγ/mχ.Finally,inordertobeconservativeinderiving beendiscussed,e.g.,inPierietal.(2009). ≡ detectionlimits,wealsodonotconsiderthepossible‘Sommerfeld 3 InAppendixB,weprovideapproximateformulaeforquickestimatesof enhancement’ of the DMannihilation cross-section (Hisanoetal. theJ-factorandcross-checkswiththenumericalresults. 4 Charbonnier,Combet,Daniel etal. 2.1.3 DMprofiles d J [dSph: d=20 kpc, r=1 kpc] FortheDMhaloweuseageneralised(α,β,γ)Hernquistprofile alise 1 s m givenby(Hernquist1990;rDeh−nγen1993;rZhaαo1γ9−α96β): Nor0.8 J(αinγγt)==/J10(α.5max=5°) ρ(r)=ρ 1+ , (6) s r r (cid:18) s(cid:19) (cid:20) (cid:18) s(cid:19) (cid:21) 0.6 where the parameter α controls the sharpness of the transition from inner slope, limr→0dln(ρ)/dln(r) = γ, to outer slope 0.4 limr→∞dln(ρ)/dln(r) = β, and rs is a c−haracteristic scale. (Ji+1-Ji) / J(αmax), with ∆αint=0.25° Inprinciple we could add an−additional parameter inorder toin- γ=0 troduce an exponential cut-off in the profile of Eq (6) to mimic 0.2 γ=1.5 the effects of tidal truncation, as proposed in e.g., the Aquarius (Springeletal.2008)orViaLacteaII(Diemandetal.2008)sim- 0 0 1 2 3 4 5 ulations. However, the freedom to vary parameters rs, α and β αint [deg] in Eq (6) already allows for density profiles that fall arbitrarily steeplyat largeradius. Moreover, given thatour MCMC analysis Figure2.Finitesizeeffects:J asafunctionoftheintegrationangleαint foradSphat20kpc(pointingtowardsthecentreofthedSph).Theblack latershowsthattheouterslopeβisunconstrainedbytheavailable solidlineisforacoredprofile(γ = 0)andthegreendashedlineisfora dataandthattheJ-factordoesnotcorrelatewithβ,wechoosenot cuspyprofile(γ=1.5);botharenormalisedtounityatαint=5◦. toaddfurthershapeparameters. For profiles such as γ > 1.5, thequantity J fromthe inner regionsdiverges. Thiscanbeavoidedbyintroducingasaturation alsoindicatedbythesymbolswhichshowthecontributionofDM scaler ,thatcorrespondsphysicallytothetypicalscalewherethe shellsintwoangular bins—whereas the(green) hollow squares sat annihilation rate [ σv ρ(r )/m ]−1 balances the gravitational haveaspikydistributioninthefirstbin(γ =1.5),the(black)filled sat χ infallrateofDMpahrticiles(Gρ¯)−1/2(Berezinskyetal.1992).Tak- circles(γ =0)showaverybroaddistributionforJ. ingρ¯tobeabout200timesthecriticaldensitygives The integration angle required to have asizeable fraction of the signal depends on several parameters: the distance d of the m 10−26cm3s−1 ρsat ≈3×1018 100GχeV × σv M⊙kpc−3. dteSgpraht,iothneainngnleersparroefidleessilroapbeleγs,inacnedtthhiessmcainleimraisdeisuscorns.taSmminaalltiinng- (cid:16) (cid:17) (cid:18) h i (cid:19) (7) backgroundγ-rayphotonsandmaximisesthesignaltonoise.Thus Theassociatedsaturationradiusisgivenby thetruedetectabilityofadSphwilldependonitsspatialextenton ρ 1/γ thesky,andthusalsoond,γandrs. r =r s r . (8) sat s(cid:18)ρsat(cid:19) ≪ s Thislimitisusedforallofourcalculations. 2.2.2 GenericdSphprofiles AswillbeseeninSection5,theerrorsonthedensityprofilesofthe MilkyWaydSphs arelarge,making itdifficulttodisentangle the 2.2 Motivationforagenericapproachandreferencemodels interplay between the key parameters for detectability. Hence we In many studies, the γ-ray flux (from DM annihilations) selectsome‘genericprofiles’toillustratethekeydependencies. is calculated using the point-source approximation (e.g., Themostconstrainedquantityisthemasswithinthehalf-light Bergstro¨m&Hooper 2006; Kuhlen 2010). This is valid so radiusr (typicallyafewtenthsofakpc),asthisiswheremostof half longastheinnerprofileissteep,inwhichcasethetotalluminosity thekinematicdatacomefrom(e.g.,Walkeretal.2009;Wolfetal. ofthedSphisdominatedbyaverysmallcentralregion.However, 2010).FortheclassicalMilkyWaydSphs,thetypicalmasswithin if the profile is shallow and/or the dSph is nearby, the effective rhalf 300pcisfoundtobeM300 107M⊙(Strigarietal.2008, ∼ ∼ sizeofthedSphontheskyislargerthanthepointspreadfunction — see also the bottom panel of Fig. 13). If the DM scale radius (PSF)of the detector, and the point-source approximation breaks is significantly larger than this (r r ) and the inner slope s half ≫ down. For upcoming instruments and particularly shallow DM γ &0.5,wecanapproximatetheenclosedmassby: profiles, the effective size of the dSph may even be comparable to the field of view of the instrument. This difference in the 4πρ r3 300pc 3−γ rSaedcitailonex3t)e.nHteonfctehweesidgonanlotdaosessummaetttheratitnhetedrmSpshoifsadeptoeicntito-snou(srceee M300 ≃ 3−sγs (cid:18) rs (cid:19) ≈107M⊙. (9) butratherderivesky-mapsfortheexpectedγ-rayflux. Theparameterρsisthusdeterminedcompletelybytheabovecon- dition,ifwechoosethescaleradiusr andcuspslopeγ. s Table 1 shows, for several values of r and γ, the value re- s 2.2.1 Illustration:acoredvscuspedprofile quiredforρ toobtaintheassumedM mass.Wefixα=1,β = s 300 3butourresultsarenotsensitivetothesechoices.4Thevaluesofr Fig. 2 shows J as a function of the integration angle α for a s int arechosentoencompasstherangeofr foundintheMCMCanal- dSphat20kpc(lookingtowardsitscentre).Theblacksolidlineis s ysis(seeSection5).Tofurtherconvinceourselvesthatthegeneric foracoredprofile(γ =0)andthegreendashedlineisforacuspy profile(γ =1.5);botharenormalisedtounityatα =5◦.Forthe int cuspyprofile, 100%ofthesignalisinthefirstbinwhileforthe 4 Fora different mass for the dSph, the results for J below have to be ∼ coredprofile,J buildsupslowlywithαint,and80%ofthesignal rescaledbyafactor(M3n0e0w/107M⊙)2sincethedensityisproportionalto (w.r.t.thevalueforαint = 5◦)isobtainedforα80% 3◦.Thisis M300,whileJgoesasthedensitysquared. ≈ Darkmatterannihilationindwarfspheroidalgalaxiesandγ-rayobservatories:I. ClassicaldSphs 5 dSph is at d = 100 kpc. We note that our consideration of a Table1.Therequired normalisation ρs tohaveM300 = 107M⊙ fora γ = 0 smooth component withNFW sub-clumps isplausible if, sampleof(1,3,γ)profileswithvaryingscaleradiusrs. e.g., baryon-dynamical processes erase cusps in the smooth halo butcannotdosointhesub-subhalos.ThetotalJ isthesumofthe ρs(107M⊙kpc−3) smoothandsub-clumpdistributions.Thecentreisdominatedbythe γ rs[kpc] 0.10 0.50 1.0 \ smooth component, whereas some graininess appears in the out- 0.00 224 25.8 16.02 skirtsof thedSph. Inthisparticular configuration, the‘extended’ 0.25 196 18.6 10.22 signal from the core profile, when integrated over a very small 0.50 170 13.4 6.47 solid angle, could be sub-dominant compared with the signal of 0.75 146 9.5 4.06 NFWsub-clumpsthatithosts.Thediscussionofcross-constraints 1.00 125 6.7 2.52 betweendetectabilityofsub-halosoftheGalaxyvs.sub-clumpsin 1.25 106 4.7 1.54 thedSphisleftforafuturestudy. 1.50 88 3.2 0.92 Intheremainder of thepaper, wewillreplace forsimplicity the calculation of J (α ) by its mean value, as we are pri- subcl int marilyinterested in ‘unresolved’ observations. Hence clumps are profileswepresenthereareapossibledescriptionofrealdSphs,we not drawn from their distribution function, but rather J is subcl checked(notshown)usingtypicalstellarprofilesandpropertiesof calculatedfromtheintegrationofthespatialandluminhosity(aisa theseobjects(i.e.,halflightradiusofafew100pc),thataflat 10 functionofthemass)distributions(seeAppendixB2). km s−1 velocity dispersion profilewithinthe error bars isre∼cov- ered.WealsostudybelowtheeffectofmovingthesedSphsfrom adistanceof10kpcto300kpc,correspondingtothetypicalrange 2.3.1 RadialdependenceJ(θ) coveredbytheseobjects. Theradial dependence of J isshown inFig.4for four values of γ (foranintegrationangleα = 0.01◦).Thedashedlinesshow int theresultforthesmoothdistribution;thedottedlinesshowthesub- 2.2.3 Sub-structureswithinthedSph clumpcontribution;andthesolidlinesarethesumofthetwo.The Structureformationsimulations inthecurrently favoured ΛCDM peakofthesignal istowardsthedSphcentre.Aslongasthedis- (coldDMplusacosmological constant)cosmology findthatDM tributionof clumps isassumed tofollow thesmooth one, regard- halosareself-similar,containingawealthofsmaller‘sub-structure’ lessofthevalueofγ,thequantity(1 f)2J (0)alwaysdomi- sm − halosdowntoEarth-masshalos(e.g.Diemandetal.2005).How- nates(atleastbyafactorofafew)over J (0) .(Recallthatin subcl h i ever,asemphasisedintheintroduction,suchsimulationstypically ourgenericmodels,alldSphshavethesameM .)Thescatterin 300 neglecttheinfluenceofthebaryonicmatterduringgalaxyforma- J (0)isabout4ordersofmagnitudeforγ [0.0 1.5],butonly tot ∈ − tion.ItisnotclearwhateffectthesehaveontheDMsub-structure afactorof20forγ [0.0 1.0].Beyondafewtenthsofdegrees, ∈ − distribution.Forthisreason,weadoptamoregenericapproach.We J dominates.Thecrossingpointdependsonacombination subcl assesstheimportanceofclumpsusingthefollowingrecipe:5 ohfthecilumpmassfractionf,γ,r ,d,α .ThedependenceofJ s int onthetwolatterparametersarediscussedinAppendixC.Thera- (i) we take a fraction f = 20% of DM mass in the form of dialdependenceisasexpected:thesmoothcontributiondecreases clumps; fasterthanthatofthesub-clumpone,becausethesignalispropor- (ii) thespatialdistributionofclumpsfollowsthesmoothone; tionaltothesquaredspatialdistributioninthefirstcase,butdirectly (iii) theclumpprofilesarecalculateda` laBullocketal.(2001) proportionaltothespatialdistributioninthesecondcase.Halvingf (hereafter B01), i.e. an ‘NFW’ profile (Navarro,Frenk&White tomatchthefractionfromN-bodysimulationswouldhavea 25% 1996)withconcentrationrelatedtothemassoftheclumps. effect on (1 f)2J , but decrease J by afactor 4, sothat (iv) theclumpmassdistributionis M−a(a= 1.9),within − sm subcl amassrangeMmin−Mmax =[10−6∝−106]M⊙. − tahneglceroinssF-oigv.er4.betweenthetwocomponentswouldoccuratalarger Although these parameters arevery uncertain, they allow us toinvestigatetheimpactofsubstructuresontheJ-factor.Theyare 2.3.2 Boostfactor variedwithinreasonableboundsinSection2.3.2(andAppendixD) to determine whether the sub-clump contribution can boost the Whetherornotthesignalisboostedbythesub-clumppopulation signal. Note that a 20% clump mass fraction is about twice as is still debated in the literature (Strigarietal. 2007; Kuhlenetal. largeasthefractionobtainedfromnumericalsimulations(see,e.g., 2008;Pierietal.2008;Pierietal.2009).Asunderlinedinthepre- Springeletal. 2008). This generous fraction does not affect our vioussections,thesub-clumpcontributiontowardsthedSphcentre conclusions,asdiscussedbelow. never dominates over the smooth one if the spatial profile of the sub-clumpsfollowsthatofthesmoothdistribution,andiftheinte- grationangleremainsbelowsomecriticalanglediscussedbelow. 2.3 JsmandJsubclforthegenericmodels Let us first define properly the parameters with respect to which this boost is calculated, as there is sometimes some con- Asanillustration,weshowinFig.3onerealisationofthe2Ddis- fusionaboutthis.Here,wedefineitwithrespecttotheintegration tribution of J from a generic core profile (γ = 0) with r = 1 s kpc(sub-clumpparametersareasdescribedinSection2.2.3).The angleαint(thepointingdirectionisstilltowardsthedSphcentre): (1 f)2J (α )+J (α ) 5 MoredetailsabouttheclumpdistributionscanbefoundinAppendixB2. B(αint)≡ − smJsmi(nαtint) subcl int . (10) Seealso,e.g.,Section2inLavalleetal.(2008)andreferencestherein,as Inmoststudies,theboosthasbeencalculatedbyintegratingoutto weusethesamedefinitionsasthosegiveninthatpaper. theclumpboundary (i.e.,αainllt = Rvir/d).Buttheboostdepends 6 Charbonnier,Combet,Daniel etal. 1 -5]kpc1012 f=0.20 αint =0.01o 2 J [M1011 ssuubbccll:: ddPP//ddMV ∝∝ sMm-o1.o90th, rs as smooth (T1o-tfa)2l J 0.5 1010 Msub=[1.0e-06-1.0e+06] M sm 1e+10 subcl profile: NFW97+B01 <Jsubcl> 109 108 0 107 106 γ=0.0 1e+09 γ=0.5 [r=0.5 kpc] 105 γ=1.0 s -0.5 γ=1.5 104 0 0.2 0.4 0.6 0.8 1 θ from dSph centre [deg] Figure4.J asafunctionoftheangleθawayfromthedSphcentrefora -1 1e+08 dSphat100kpcwithrs=0.5kpc(ρsisgiveninTable1).Theintegration 1-1 -0.5 0 0.5 1 angleisαint =0.01◦.Forthefourinnerslopevaluesγ,thevariouscon- tributionstoJareshownassolid(total),dashed(smooth),anddottedlines (sub-clumps). 0.5 1e+10 m ] / J+ Jsubcls 2.22 fss=uubb0cc.2ll::0 ddPP//ddVM ∝∝ sMm-o1.o90th, rs as smooth 0 2 J1-f)sm 11..68 Msubsucbcll =pr[o1f.0ilee-:0 N6-F1W.09e+7+06B]0 M1 r=0.1 kpc -0.5 1e+09 ≡ [(Boost 11..42 rs=1 kγγγp===c001...050 s γγγγ====0110....5050 γ=1.5 1 0.8 -1 1e+08 0.6 -1 -0.5 0 0.5 1 1 10-2 10-1 1 α × (d / 100 kpc) [deg] int Figure5.Boostfactor asafunction ofαint ×(d/100kpc) forprofiles sub-clumpsfollowsmooth(seeSection2.2.3):thedSphisatd=100kpc 0.5 (lines)ord=10kpc(symbols). 1e+10 crucially on α (the radial dependence of the smooth and sub- int clumpcontributionsdiffer,seeSection2.3.1). 0 WeplotinFig.5theboostfordifferentinnerslopesγ,where a direct consequence of Eq. (C7) is the α d rescaling. For int 1e+09 × r . 0.1kpc(regardlessofγ),orforγ & 1.5(regardlessofr ), s s thesignalisneverboosted.6 Forsmallenoughα ,B issmaller -0.5 int than unity, and if γ is steep enough, B (1 f)2. For large ≈ − values,aplateauisreachedassoonasα d&R (takentobe3 int vir kpchere).Inbetween,thevalueoftheboostdependsonr andγof s thesmoothcomponent.Goingbeyondthisqualitativedescriptionis -1 1e+08 difficult,asthetoymodelformulaeofAppendix B2givesresults -1 -0.5 0 0.5 1 Figure3.2Dview(xandyaxisareindegrees)ofJforthegenericdSph with γ = 0 and rs = 1 kpc at d = 100 kpc (M300 = 107M⊙). The sub-clumps are drawn from the reference model described in Sec- 6 Thedifferencebetweenthelevelofboostobservedforrs =0.1kpcor tion 2.2.3, i.e. f=20%, sub-clump distribution follows smooth, and sub- rs =1kpccanbeunderstoodifwerecallthatthetotalmassoftheclump clumpinnerprofileshaveNFWwithB01concentration.Fromtoptobot- isfixedat300pc,regardlessofthevalueofγorrs.Forrs=0.1kpc,ρs tsoammepacnoelol:uαrisnctal=ei0s.t1a◦k,en0.f0o5r◦t,haentdhr0e.e01in◦t.eFgorarttihoensaankgeleosf(cJomispainrisuonnit,sthoef AOs(1J0sm9M∝⊙ρk2spwc−he3r)e,awsJhseurebas∝foρrs,rtshe=re1latkivpec,aρmsou∼ntOof(J10su7bMw⊙ithkprecs−p3e∼c)t. M2 kpc−5). to Jsm is expected to decrease with smaller rs.This is indeed what we ⊙ observeinthefigure(solidvsdashedlines). Darkmatterannihilationindwarfspheroidalgalaxiesandγ-rayobservatories:I. ClassicaldSphs 7 correcttoonlyafactorof 2(whichisinadequatetoevaluatethe d 0.9 boostproperly). ∼ cale 0.8 s To conclude, the maximum value for sub-clump follows e smoothis.2,andthisvalueisreachedonlywhenintegratingthe α r800.7 signalouttoRvir/d.Theboostcouldstillbeincreasedbyvarying 0.6 thesub-clumpproperties(e.g.,takingahigherconcentration).Con- 0.5 versely,ifdynamicalfrictionhascausedthesub-clumppopulation tobecomemuchmorecentrallyconcentratedthanthesmoothcom- 0.4 ponent,thentheboostisdecreased.ThisisdetailedinAppendixD. 0.3 Forthe most realisticconfigurations, thereisnosignificant boost whenaclumpmassfractionf=20%isused.Naturallythisresult 0.2 isevenmoretrueforthesmallerf foundinN-bodysimulationsso 0.1 wedisregardtheboostfortherestofthispaperandconsideronly thesmoothcontribution. 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Inner slope γ Figure6.Theconeangleencompassing80%oftheannihilationfluxatas 3 SENSITIVITYOFPRESENT/FUTUREγ-RAY functionoftheinnerslopeγ.Severaldifferentvaluesofrsanddistanced OBSERVATORIES areshownforeachγ,allscaledby(1kpc/rs and100kpc/d).Thebest-fit curveisalsoshown,correspondingtoEq.(16). Major new ground-based γ-ray observatories are in the plan- ning stage, with CTA (CTAConsortium 2010) and AGIS (AGISCollaboration 2010) as the main concepts. As the designs where oftheseinstrumentsarestillevolving,weadoptheregenericper- formance curves (described below), close to the stated goals of X =log (PhotonEnergy/TeV), (14) 10 theseprojects.FortheLargeAreaTelescope(LAT)oftheFermiγ- LS = log (Differential Sensitivity/ergcm−2s−1), LA = raysatellite,theperformancefor1yearobservationsofpoint-like, 10 log (EffectiveArea/m2), and ψ is the 68% containment highGalacticlatitudesourcesisknown(Fermi-LATCollaboration 10 68 radiusofthepoint-spread-function(PSF)indegrees. 2010),butnoinformationisyetavailableforlongerexposuresor For the Fermi detector a similar simplified approach for extended objects. We therefore adopt a toy likelihood-based is taken, the numbers used below being those provided by modelfortheFermisensitivity,tunedtoreproducethe1yearpoint- Fermi-LATCollaboration(2010).Theeffectiveareachanges asa sourcecurves.Wenotethatwhilstthisapproachresultsinapprox- function of energy and incident angle to the detector, reaching a imate performance curves for both the ground- and space-based maximumof 8000cm2.Theeffectivetime-averagedareaisthen instruments,itcapturesthekeydifferences(inparticularthediffer- ≈ ǫAΩ/4πandthedata-takingefficiencyǫ 0.8(duetoinstrument encesincollectionareaandangularresolution)andillustratesthe ≈ dead-timeandpassagesthroughtheSouthAtlanticAnomaly).The advantagesandlimitationsofthetwoinstrumenttypes,aswellas pointspreadfunctionagainvariesasafunctionofenergy(witha theprospectsforthediscoveryofDMannihilationindSphswithin muchsmallerdependenceasafunctionofincidenceangle)varying thenextdecade. from10degreestoafewtenthsof adegreeovertheLATenergy range. A rate of 1.5 10−5 cm−2 s−1 sr−1 (> 100 MeV) and × 3.1 Detectormodels aphotonindexof2.1areassumedforthebackground. Thesensi- tivityisthenestimatedusingasimplifiedlikelihoodmethodwhich Thesensitivityofamajorfutureγ-rayobservatorybasedonanar- provides results within 20% of the sensitivity for a one year ob- ray of Cherenkov Telescopes (FCA in the following, for ‘Future servationofapoint-likesourcegivenbyFermi-LATCollaboration CherenkovArray’)isapproximatedbasedonthepoint-sourcedif- (2010). ferentialsensitivitycurve(fora5σdetectionin50hoursofobser- Whilstbothdetectorresponsesareapproximate,thecompar- vations)presentedbyBernlo¨hretal.(2008).Undertheassumption isonisstilluseful. Ourworkincorporatesseveral keyaspectsnot thattheangularresolutionofsuchadetectorisafactor2betterthan considered in earlier studies, including the strong energy depen- HESS(Funketal.2008)andhasthesameenergy-dependence,and dence of the angular resolution of both ground and space based that theeffective collectionareafor γ-rays growsfrom104m2 at instruments in the relevant energy range of 1 GeV to 1 TeV and 30 GeV to 1 km2 at 1 TeV, the implied cosmic-ray (hadron and hencetheenergy-dependentimpactoftheangularsizeofthetarget electron) background rate per square degree can be inferred and region. thesensitivitythusadaptedtodifferentobservationtimes,spectral shapesandsourceextensions.Giventhatthedesignofinstruments suchasCTAarenotyetfixed,weconsider thatsuchasimplified 3.2 Relativeperformanceforgenerichalos response,characterisedbythefollowingfunctionsisausefultool toexplorethecapabilitiesofagenericnext-generationinstrument: UsingtheresultsfromSection2.2.2andthedetectorperformance modelsdefinedabovewecanbegintoinvestigatethesensitivityof future ACT arrays and the Fermi-LATdetector (over long obser- LS= 13.1 0.33X+0.72X2, (11) vationtimes)toDMannihilationindSphs. Thedetectabilityof a − − sourcedependsprimarilyonitsflux,butalsoonitsangularextent. LA=6+0.46X 0.56X2, (12) The impact of source extension on detectability is dealt with ap- − proximately(ineach energybinindependently) byassuming that ψ =0.038+exp (X+2.9)/0.61, (13) theopeningangleofaconewhichincorporates80%ofthesignal 68 − 8 Charbonnier,Combet,Daniel etal. isgivenby 3-1] sm10-20 FCA HESS J=1012 M2 kpc-5 θ80 =qψ820+α280, (15) v> [c 20 h where ψ = 1.25ψ isassumed for the FCA and interpolated σ 10-21 80 68 < 20 h from values given for 68% and 95% containment for the LAT 200 h Fermi-LATCollaboration(2010);hereα80isthe80%containment 10-22 200 h angleofthehaloemission.Thevalidityofthisapproximation (at the level of a few percent) has been tested (see Appendix E) by 10-23 convolving realistic halo profiles with a double Gaussian PSF as 1 yr foundforHESS(Horns2005).An80%integrationcircleisclose Fermi 10-24 tooptimumforaGaussiansourceonaflatbackground(intheback- 10 yr groundlimitedregime).Fig.6showsthe80%containmentradius 10-25 oftheannihilationfluxofgenerichalosasafunctionoftheinner 10-2 10-1 1 10 mχ [TeV] slopeγ.Thisresultcanbeparametrisedas: α80 =0.8◦(1−0.48γ−0.137γ2)(cid:18)1krspc(cid:19)(cid:18)100dkpc(cid:19)−1. (16) 3-1] s> [cm10-20 FCA>1 GeV J=1012 M2 kpc-5 v It is clear that for abroad range of d, γ and rs the characteristic σ <10-21 angularsizeoftheemissionregionislargerthantheangularreso- ltuotiaosnseosfstthheeinpsetrrfuomrmenatnscuenadseracfounnscitdioernatoiofnth.eItaisngthuelraerfosirzeecoriftitchael 10-22 >100 GeV dSphaswellasthemassoftheannihilatingparticle. 10-23 Likelihood Fig. 7 shows the relative sensitivity of Fermi and an FCA within our framework as a function of the mass of the annihilat- Fermi 10-24 ing particle, adopting the annihilation spectrum given in Eq. (4), withtheseveralpanelsillustratingdifferentpoints.FromFig.7top (thecaseofapoint-likesignalfordifferentobservationtimes)itis 10-2510-2 10-1 1 10 clearthatFermi-LAThasaconsiderableadvantageforlowermass mχ [TeV] aDnMFCpaArti(cil.ee.so(mveχr a≪5-110TyeeVa)romnisthsieotnimliefsectiamlee)foirnccoonmstpruarcitsioonnotof 3-1] sm10-20 FCA J=1012 M2 kpc-5 c adeepACTobservationof200hours.Furthermore,Fermi-LATis > [ lessadversely affectedbytheangular extent of thetarget regions σ v10-21 (see Fig. 7 bottom), due to its modest angular resolution in the < 1o energyrangewhereitislimitedbybackground, meaningthatthe sourceextensioniswellmatchedtothePSFoftheinstrument.The 10-22 0.1o middle panel of this figure illustrates the impact of different ap- proachestotheanalysis.InthecasethatthereisaDMcandidate 10-23 Point-like inferred from the discovery of supersymmetry at the LHC (quite Fermi possible on the relevant timescale) a search optimised on an as- 10-24 sumedmassandspectralshapecanbemade(solidcurves).How- ever,allinstrumentsarelesssensitivewhenagenericsearchisun- 10-25 10-2 10-1 1 10 dertaken. Simpleanalyses usingallthephoton fluxabove afixed mχ [TeV] energy threshold (arbitrarilyset to reduce background) are effec- Figure 7. Approximate sensitivities of Fermi-LAT (blue lines), HESS tiveonlyinarelativelynarrowrangeofparticlemass.Forexample (black lines) and the FCA described above (red lines) to a generic halo keeping only >100 GeV photons works well for ACTs for 0.3-3 withJ = 1012 M2 kpc−5,asafunctionofthemassoftheannihilating TeVparticles;whereaskeepingallphotons>1GeVworksmoder- ⊙ particle andfortheannihilation spectrumofEq.(4).Top:Theimpactof atelywellinthe0.1-0.2TeVrange,butismuchlesssensitivethan observationtimeisillustrated:dashedlinesgivethe1yearand20hoursen- thehigherthresholdcutovertherestofthecandidatedarkmatter sitivitiesforFermiandFCA/HESSrespectivelywhilethesolidlinesrefer particle mass range. The features of these curves are dictated by to10year(200hour)observations.Middle:theimpactofanalysismeth- theexpectedshapeoftheannihilationspectrum.FromEq.(4)the odsisconsideredfor5year(100hour)observations usingFermi(FCA). peakphotonoutput (adoptingtheaveragespectrumforDManni- Solidlinesshowlikelihoodanalysesinwhichthemassandspectrumofthe hilation)occursatanenergywhichisanorderofmagnitudebelow annihilatingparticleareknowninadvance,whiledashedanddottedlines theparticlemass–effectivedetectionrequiresthatthispeakoccurs showsimpleintegralfluxmeasurementsabovefixedthresholdsof1GeV (dashed)and100GeV(dotted).Notethatthe1GeVcutimpliesaccepting within(orcloseto)theenergyrangeoftheinstrumentconcerned. alleventsfortheFCA(wherethetriggerthresholdis 20GeV).Bottom: The total annihilation flux from a dSph increases at smaller ≈ theimpactoftheangularextensionoftargetsources,asgivenbythehalo distances as 1/d2 for fixed halo mass, making nearby dSphs at- profileinFig.6isillustrated.Thesolidlinesreproducethelikelihoodcase tractiveforDMdetection.However,asFig.7shows,theincreased fromthemiddlepanelforapoint-like source,andwithvalues ofα80 of angular size of such nearby sources raises the required detection 0.1◦(dashed)and1◦alsoshown. flux.Fig.8illustratesthereductioninsensitivityforanFCAwith respecttoapoint-likesourceforgenericdSphhalosasafunction ofdistance,forinnerslopes,γ,ofzeroandoneandwithr fixedto s Darkmatterannihilationindwarfspheroidalgalaxiesandγ-rayobservatories:I. ClassicaldSphs 9 Spoint-like102 fwHoeerrmdeivwfoiedrerteht-heceavvleceluloolcacititetyythdseaissmterpipblreuotifiinoltenossc.wiSricpthueolcauirfitbcaiadnloslypc,toifnnogtraaianniygnigvpeaanrptipdcruSolpxah-r / Sγθ)(80 iemstaimtealyteetqhueaslencuomndbevresloocfitmyemmobmeernstta(rssq,u7aarenddvweiltohciintyeadcishpebrisniowne) as: γ=0 N 10 Vˆ2 = 1 [(V Vˆ )2 σ2], (17) γ=1 h i N 1 i−h i − i − i=1 Ideal background X whereN isthenumber ofmember starsinthebin.Wehold V Ring background h i fixed for all bins at the median velocity over the entire sample. 1 Foreachbinweuseastandardbootstrap re-samplingtoestimate theassociatederrordistributionfor Vˆ2 ,whichisapproximately 10 102 Distance [kpc] Gaussian.Fig.9displaystheresultinhgveilocitydispersionprofiles, Vˆ2 1/2(R),whicharesimilartopreviouslypublishedprofiles. Figure8.RelativeDMannihilationdetectionsensitivityfora100hourFCA h iIn order to relate these velocity dispersion profiles to dSph observation,asafunctionofdSphdistancefordifferentinnerslopesγand masses,wefollowW09inassumingthatthedatasampleineach withrs fixedto1kpc.Thesensitivity forarealistic approachusingθ80 dSphasingle,pressure-supported stellarpopulation thatisindy- isgivenrelativetothesensitivitytoapoint-likesourcewiththesameflux. namicalequilibriumandtracesanunderlyinggravitationalpoten- Largervaluescorrespondtopoorerperformance(largervaluesofthemin- tialdominated bydark matter.Implicitistheassumption that the imum detectable flux). The assumed spectral shape is again as given by orbital motions of stellar binary systems contribute negligibly to Eq.(4)withmχ = 300GeV.Thissensitivityratiodependsonthestrat- egyusedtoestimatethebackgroundlevelatthedSphposition.Thedashed themeasuredvelocitydispersions.8 Furthermore,assumingspher- lines showtheimpactofusinganannulus between 3.5◦ and4.0◦ ofthe icalsymmetry,themassprofile,M(r),of theDMhalorelatesto dSphcentreasabackgroundcontrolregion.Thesolidlineassumesthatthe (moments of) the stellar distribution function via the Jeans equa- backgroundcontrolregionliescompletely outsidetheregionofemission tion: fromthedSph. 1 d β(r)v¯2 GM(r) (νv¯2)+2 r = , (18) νdr r r − r2 1kpc,relativetotheassumptionofthefullannihilationsignaland where ν(r), v¯2(r), and β β(r) 1 v¯2/v¯2 describe apoint-likesource.Evenforγ = 1,thepoint-likeapproximation the 3-dimensiornal density, rrad≡ial velocity≡disp−ersioθn, arnd orbital leadstoanorderofmagnitudeoverestimateofthedetectionsensi- anisotropy,respectively,ofthestellarcomponent.Projectingalong tivityfornearby( 20kpc)dSphs.Afurthercomplicationishowto the l.o.s., the mass profile relates to observable profiles, the pro- ∼ establishthelevelofbackgroundemissionarisingfromtheresidual jectedstellardensityI(R)andvelocitydispersionσ (R),accord- p non-γ-raybackground.Acommonmethodinground-basedγ-ray ingto(Binney&Tremaine2008,BT08hereafter) astronomyistoestimatethisbackground fromanannulusaround thetargetsource(see,e.g.,Bergeetal.2007).Thedashedlinesin σ2(R)= 2 ∞ 1 β R2 νv¯r2r dr. (19) Fig.8showtheimpactofestimatingthebackgroundusinganan- p I(R) − r r2 √r2 R2 nulusbetween3.5◦ and4.0◦ fromthetarget.Thisapproachhasa ZR (cid:18) (cid:19) − Noticethatwhileweobservetheprojectedvelocitydispersionand modest impact on sensitivity and isignored in the following dis- stellar density profiles directly, the l.o.s. velocity dispersion pro- cussionsasitreducesthedetectablefluxbutalsoθ andleadstoa 80 files provide no information about the anisotropy, β(r). There- smallimprovementinsomecases. fore werequire an assumption about β(r); here we assume β = constant, allowing for nonzero anisotropy in the simplest way. Forconstant anisotropy, theJeans equationhasthesolution(e.g., 4 JEANS/MCMCANALYSISOFDSPHKINEMATICS Mamon&Łokas2005): ∞ 4.1 dSphkinematicswiththesphericalJeansequation νv¯2 =Gr−2βr s2βr−2ν(s)M(s)ds. (20) r Extensive kinematic surveys of the stellar components of dSphs Zr have shown that these systems have negligible rotational sup- WeshalladoptparametricmodelsforI(R)andM(r)andthenfind port (with the possible exception of the Sculptor dSph, see valuesoftheparametersofM(r)that,viaEqs.(19)and(20),best Battagliaetal.2008).IfweassumethatthedSphsareinvirialequi- reproducetheobservedvelocitydispersionprofiles. librium,thentheirinternalgravitationalpotentialsbalancetheran- dommotionsoftheirstars.Inorder toestimatedSphmasses,we consider herethebehaviour ofdSphstellarvelocitydispersionas 7 KinematicsamplesareoftencontaminatedbyinterlopersfromtheMilky afunctionofdistancefromthedSphcentre(analogoustorotation Wayforeground.FollowingW09,wediscardallstarsforwhichthealgo- curvesofspiralgalaxies).Specifically,weusethestellarkinematic rithmdescribed byWalkeretal.(2009)returnsamembershipprobability lessthan0.95. data of Walkeretal. (2009) for the Carina, Fornax, Sculptor and 8 Olszewskietal. (1996)and Hargreavesetal. (1996)conclude that this SextansdSphs,thedataofMateoetal.(2008)fortheLeoIdSph, assumptionisvalidfortheclassicaldSphsstudiedhere,whichhavemea- and data fromMateo et al. (inpreparation) for the Draco, Leo II sured velocity dispersions of 10 km s−1. This conclusion does not and Ursa Minor dSphs. Walkeretal. (2009, W09 hereafter) have necessarily apply to recently-∼discovered ‘ultra-faint’ Milky Way satel- calculated velocity dispersion profiles from these same data un- lites,whichhavemeasuredvelocitydispersionsassmallas 3kms−1 ∼ der the assumption that l.o.s. velocity distributions are Gaussian. (McConnachie&Coˆte´2010). 10 Charbonnier,Combet,Danielet al. Figure 9. Velocity dispersion profile data for the 8 classical dSphs, obtained as described in the text (the impact of the binning choice is discussed in AppendixH1).Thesolidlinescorrespondtothebest-fitmodelsfortheinnerslopewhenγisleftfree(dark),γisfixedto1(blue),andγisfixedto0(red). Becauseofthelargedegeneraciesamongthehaloparameters(seeSection5.1foralist),wedonotlistthecorrespondingbest-fitparameters.Themotivation forshowingtheseprofilesistoillustratethatourhalomodeliscapableofdescribingthekinematicdata,andthattheinnerprofileisnotconstrainedbythe data. 4.1.1 StellarDensity thatasteeperouterslopeorasteeperinnerslopeforthelightprofile leavesunchangedtheconclusions(seeAppendixH2). Stellar surface densities of dSphs are typically fit by Plummer (1911), King (1962) and/or Sersic (1968), profiles (e.g., Irwin&Hatzidimitriou 1995). For simplicity, we adopt here the Plummerprofile: L 1 4.1.2 Darkmatterhalo I(R)= , (21) πrh2alf [1+R2/rh2alf]2 FortheDMhalowefollowW09inusingageneralisedHernquist whichhasjusttwofreeparameters:thetotalluminosityLandthe profile,asgiven by Eq.(6).Intermsof theseparameters, i.e,the projected9 half-light radius rhalf. Given spherical symmetry, the densityρsatscaleradiusrs,plusthe(outer,transition,inner)slopes Plummerprofileimpliesa3-dimensionalstellardensity(BT08)of: (α,β,γ),themassprofileis: ν(r)=−π1 Zr∞ ddRI √Rd2R−r2 = 4π3rLh3alf [1+r2/1rh2alf]5/(222.) M(r)=4πZ0rs2ρ(s)ds= 43π−ρsrγs3(cid:18)rrs(cid:19)3−γ (23) 3 γ β γ 3 γ+α r α Salilnrcaediwi(eaallsmsuemaseutrheadtdDSMphsdohmavienacteenstrtahlemgarsasv-ittoa-tliiognhatlrpaotitoesn&tial10at, 2F1(cid:20) −α , −α ; −α ;−(cid:18)rs(cid:19) (cid:21), e.g.,Mateo1998),thevalueofLhasnobearingonouranalysis. where F (a,b;c;z)isGauss’hypergeometricfunction. 2 1 Weadoptvaluesofr (andassociatederrors)fromTable1inthe half Eq. (6) includes plausible halo shapes ranging from the publishederratumtoW09;thesedataoriginallycomefromthestar constant-density ‘cores’ (γ = 0) that seem to describe rotation count study of Irwin&Hatzidimitriou (1995). We have checked curvesofspiralandlow-surface-brightnessgalaxies(e.g.,deBlok 2010 and references therein) to the centrally divergent ‘cusps’ 9 ForconsistencywithWalkeretal.(2009)wedefinerhalf astheradius (γ >0)motivatedbycosmologicalN-bodysimulationsthatmodel ofthecircleenclosinghalfofthedSphstellarlightasseeninprojection. onlytheDMcomponent. For(α,β,γ) = (1,3,1)Eq.(6)isjust Elsewherethisradiusiscommonlyreferredtoasthe‘effectiveradius’. thecuspyNFW(Navarro,Frenk&White1996,1997)profile.
Description: