ebook img

Dark matter profiles and annihilation in dwarf spheroidal galaxies PDF

31 Pages·2011·3.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dark matter profiles and annihilation in dwarf spheroidal galaxies

Mon.Not.R.Astron.Soc.418,1526–1556(2011) doi:10.1111/j.1365-2966.2011.19387.x Dark matter profiles and annihilation in dwarf spheroidal galaxies: γ prospectives for present and future -ray observatories – I. The classical dwarf spheroidal galaxies (cid:2) A. Charbonnier,1 C. Combet,2 M. Daniel,3 S. Funk,4 J. A. Hinton,2 (cid:2) (cid:2) D. Maurin1,2,5,6 C. Power,2,7 J. I. Read,2,8 S. Sarkar,9 M. G. Walker10,11 and M. I. Wilkinson2 1LaboratoiredePhysiqueNucle´aireetHautesEnergies,CNRS-IN2P3/Universite´sParisVIetParisVII,4PlaceJussieu,Tour33,75252ParisCedex05, France 2DepartmentofPhysicsandAstronomy,UniversityofLeicester,LeicesterLE17RH D 3DepartmentofPhysics,DurhamUniversity,SouthRoad,DurhamDH13LE o w 4W.W.HansenExperimentalPhysicsLaboratory,KavliInstituteforParticleAstrophysicsandCosmology,DepartmentofPhysicsandSLACNational n lo AcceleratorLaboratory,StanfordUniversity,Stanford,CA94305,USA a d 5LaboratoiredePhysiqueSubatomiqueetdeCosmologie,CNRS/IN2P3/INPG/Universite´JosephFourierGrenoble1,53avenuedesMartyrs,38026 ed Grenoble,France fro 6Institutd’AstrophysiquedeParis,UMR7095CNRS,Universite´PierreetMarieCurie,98bisbdArago,75014Paris,France hm 7InternationalCentreforRadioAstronomyResearch,TheUniversityofWesternAustralia,35StirlingHighway,Crawley,WA6009,Australia ttp 8DepartmentofPhysics,InstituteforAstronomy,ETHZu¨rich,Wolfgang-Pauli-Strasse16,CH-8093Zu¨rich,Switzerland ://m 9RudolfPeierlsCentreforTheoreticalPhysics,UniversityofOxford,1KebleRoad,OxfordOX13NP n 10InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA ras .o 11Harvard–SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA x fo rd jo u rn Accepted2011July5.Received2011July1;inoriginalform2011April3 a ls .o rg a/ ABSTRACT t L e Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are ice s promisingtargetsfortheindirectdetectionofdarkmatter(DM)inγ-rays.Weexaminetheir ter U detectability by present and future γ-ray observatories. The key innovative features of our n iv analysisareasfollows:(i)wetakeintoaccounttheangularsizeofthedSphs;whilenearby ers objectshavehigherγ-rayflux,theirlargerangularextentcanmakethemlessattractivetargets ity L for background-dominated instruments; (ii) we derive DM profiles and the astrophysical J- ib ra factor(whichparametrizestheexpectedγ-rayflux,independentlyofthechoiceofDMparticle ry o model)fortheclassicaldSphsdirectlyfromphotometricandkinematicdata.Weassumevery n N o littleabouttheDMprofile,modellingthisasasmoothsplit-power-lawdistribution,withand v e m withoutsubclumps;(iii)weuseaMarkovchainMonteCarlotechnique tomarginalizeover b e unknownparametersanddeterminethesensitivityofourderivedJ-factorstobothmodeland r 1 1 measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our , 2 0 1 J-factordeterminationsrecoverthecorrectsolutionwithinourquoteduncertainties. 5 Ourkeyfindingsareasfollows:(i)subclumpsinthedSphsdonotusefullyboostthesignal; (ii)thesensitivityofatmosphericCherenkovtelescopestodSphswithin∼20kpcwithcored haloes can be up to ∼50 times worse than when estimated assuming them to be point-like. Evenforthesatellite-borneFermi-LargeAreaTelescope(Fermi-LAT),thesensitivityissignif- icantlydegradedontherelevantangularscalesforlongexposures;hence,itisvitaltoconsider theangularextentofthedSphswhenselectingtargets;(iii)noDMprofilehasbeenruledout bycurrentdata,butusingapriorontheinnerDMcuspslope0≤γ ≤1providesJ-factor prior estimatesaccuratetoafactorofafewifanappropriateangularscaleischosen;(iv)theJ-factor (cid:2) E-mail:[email protected](JAH);[email protected](DM);[email protected](MGW) (cid:4)C 2011TheAuthors MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS γ-rayfromdarkmatterannihilation indSphs 1527 isbestconstrainedatacriticalintegrationangleα =2r /d(wherer isthehalf-lightradius c h h andd isthedistancefromthedwarf)andweestimatethecorrespondingsensitivityofγ-ray observatories;(v)the‘classical’dSphscanbegroupedintothreecategories:wellconstrained andpromising(UrsaMinor,SculptorandDraco),wellconstrainedbutlesspromising(Carina, Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of classical dSphs with the Fermi-LAT integrated over the mission lifetime are more promis- ing than observations with the planned Cherenkov Telescope Array for DM particle mass (cid:2) 700 GeV. However, even the Fermi-LAT will not have sufficient integrated signal from theclassicaldwarfstodetectDMinthe‘vanilla’MinimalSupersymmetricStandardModel. BoththeGalacticCentreandthe‘ultrafaint’dwarfsarelikelytobebettertargetsandwillbe consideredinfuturework. Key words: astroparticle physics – methods: miscellaneous – galaxies: dwarf – galaxies: kinematicsanddynamics–darkmatter–gamma-rays:general. D o w n lo a d e d fro m etal.2007;Bringmann,Doro&Fornasa2009;Pierietal.2009a; 1 INTRODUCTION h Pieri, Lattanzi & Silk 2009b). Other authors use a ‘cosmologi- ttp Thedetectionofγ-raysfromdarkmatter(DM)annihilationisoneof calprior’fromlarge-scalecosmologicalsimulations(e.g.Kuhlen ://m themostpromisingchannelsforindirectdetection(Gunnetal.1978; 2010). Both approaches may be combined, such as in Strigari nra s Stecker1978).SincethesignalgoesastheDMdensitysquared,the et al. (2007b) and Martinez et al. (2009) who rely partially on .o x GalacticCentreseemstobetheobviouslocationtosearchforsuch the results of structure formation simulations to constrain the in- fo asignal(Silk&Bloemen1987).However,itisplaguedbyaconfus- ner slope and then perform a fit to the data to derive the other rdjo u ingbackgroundofastrophysicalsources(seee.g.Aharonianetal. parameters.However,suchcosmologicalpriorsremainsufficiently rn a 2004).Forthisreason,thedwarfspheroidalgalaxies(dSphs)orbit- uncertain that their use is inappropriate for guiding observational ls .o ingtheMilkyWayhavebeenflaggedasfavouredtargets,giventheir strategies.Therehavebeenonlyafewstudies(e.g.Essig,Sehgal rg potentiallyhighDMdensitiesandsmallastrophysicalbackgrounds & Strigari 2009) which have not assumed strong priors for the a/ t L (Lake1990;Evans,Ferrer&Sarkar2004). DMprofiles. e ic Despitethegrowingamountofkinematicdatafromtheclassical Inthiswork,werevisitthequestionofthedetectabilityofDMan- e s dSphs, the inner parts of their DM profiles remain poorly con- nihilationintheclassicalMilkyWaydSphs,motivatedbyambitious ter U strainedandcangenerallyaccommodatebothcoredorcuspysolu- plansfornext-generationACTssuchastheCherenkovTelescope n iv tions(seee.g.Kochetal.2007;Strigarietal.2007a;Walkeretal. Array(CTA).Werelysolelyonpublishedkinematicdatatoderive e rs 2009a,hereinafterW09).TherearetwodSphs–FornaxandUrsa thepropertiesofthedSphs,makingminimalassumptionsaboutthe ity Minor–thatshowindirecthintsofacoreddistribution(Kleynaetal. underlying DM distribution. Most importantly, we do not restrict L ib 2003;Goerdtetal.2006);however,inbothcases,thepresenceofa oursurveyofDMprofilestothosesuggestedbycosmologicalsim- ra ry coreisinferredbasedonatimingargumentthatassumeswearenot ulations. We also consider the effect of the spatial extent of the o n catching the dSph at a special moment. Theoretical expectations dSphs,whichbecomesimportantfornearbysystemsobservedby N o remain similarly uncertain. Cusps are favoured by cosmological background-limitedinstrumentssuchasACTs. v e m modelsthatmodeltheDMalone,assumingitiscoldandcollision- ThispaperextendstheearlierstudyofWalkeretal.(2011)which b e less(e.g.Navarro,Frenk&White1996a).However,thecomplex showedthatthereisacriticalintegrationangle(twicethehalf-light r 1 dynamicalinterplaybetweenstars,gasandDMduringgalaxyfor- radiusdividedbythedSphdistance)wherewecanobtainarobust 1, 2 mationcoulderasesuchcuspsleadingtocoreddistributions(e.g. estimateoftheJ-factor(thatparametrizestheexpectedγ-rayflux 01 5 Navarro,Eke&Frenk1996b;Read&Gilmore2005;Mashchenko, from a dSph, independently of the choice of DM particle model; Wadsley&Couchman2008;Goerdtetal.2010;Governatoetal. seeSection2),regardlessofthevalueofthecentralDMcuspslope 2010; Cole, Dehnen & Wilkinson 2011). Cores could also be an γ. Here, we focus on the full radial dependence of the J-factor. indication of other possibilities such as self-interacting DM (e.g. WeconsidertheeffectofDMsublumpswithinthedSphs,discuss Hogan&Dalcanton2000;Mooreetal.2000). whichdSphsarethebestcandidatesforanobservingprogramme, Knowledge of the inner slope of the DM profile is of critical andexaminethecompetitivenessofnext-generationACTsasDM importance as most of the annihilation flux comes from that re- probes. gion. Lacking this information, several studies have focused on This paper is organized as follows. In Section 2, we present a the detectability of these dSphs by current γ-ray observatories studyoftheannihilationγ-rayflux,focusingonwhichparameters such as the satellite-borne Fermi-Large Area Telescope (Fermi- critically affect the expected signal. In Section 3, we discuss the LAT) and atmospheric Cherenkov telescopes (ACTs) such as the sensitivityofpresent/futureγ-rayobservatories.InSection4,we HESS, MAGIC and VERITAS, using a small sample of cusped present our method for the dynamical modelling of the observed and cored profiles (generally one of each). Most studies rely on kinematicsofstarsindSphs.InSection5,wederiveDMdensity standard core and cusp profiles fitted to the kinematic data of profilesfortheclassicaldSphsusingaMarkovchainMonteCarlo the dSph of interest (Bergstro¨m & Hooper 2006; Sa´nchez-Conde (MCMC) analysis, from which the detection potential of future (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS 1528 A.Charbonnieretal. γ-rayobservatoriescanbeassessed.Wepresentourconclusionsin Inthisframework,theneutralinoistypicallythelighteststablepar- Section6.1 ticle and therefore one of the most favoured DM candidates (see Thispaperincludesdetailedanalysesfrombothhigh-energyas- e.g. Bertone, Hooper & Silk 2005). A γ-ray continuum is pro- trophysicsandstellardynamicalmodelling.Toassistreadersfrom duced from the decay of hadrons (e.g. π0 → γγ) resulting from thesedifferentfieldsinnavigatingthekeysections,wesuggestthat theDMannihilation.Neutralinoannihilationcanalsodirectlypro- thosewhoareprimarilyinterestedinthehigh-energycalculations ducemono-energeticγ-raylinesthroughloopprocesses,withthe may wish to focus their attention on Sections 2, 3 and 5 before formationofeitherapairofγ-rays(χχ→γγ;Bergstro¨m&Ullio movingtotheconclusions.Readersfromthedynamicscommunity 1997),oraZ0bosonandaγ-ray(χχ →γZ0;Ullio&Bergstro¨m mayinsteadprefertoreadSections2,4and5.Finally,thosewho 1998).Wedonottakeintoaccountsuchline-productionprocesses arewillingtotrusttheunderlyingmodellingshouldproceedtoSec- since they are usually subdominant and very model-dependent tion5whereourmainresultsregardingthedetectabilityofdSphs (Bringmann, Bergstro¨m & Edsjo¨ 2008). The differential photon arepresentedinFigs12,15,16and17(shownlater). spectrumweuseisrestrictedtothecontinuumcontributionandis writtenas 2SITGHNEALD:AKREKYMPAATRTAEMREATNENRISHILATION ddNEγγ(Eγ)=(cid:2)i bi ddNEγγi(Eγ,mχ), (3) D o w 2.1 Theγ-rayflux wbrhaenrcehtihnegdraiftfioerbeni.tannihilationfinalstatesiarecharacterizedbya nload Theγ-rayflux(cid:5)γ(photonscm−2s−1GeV−1)fromDMannihilation Using the parameters in Fornengo, Pieri & Scopel (2004), we ed inadSph,asseenwithinasolidangle(cid:6)(cid:7),isgivenby(seeAppendix plotthecontinuumspectracalculatedfora1-TeVmassneutralino fro m Afordefinitionsandconventionsusedintheliterature) inFig.1. h dd(cid:5)Eγγ(Eγ,(cid:6)(cid:7))=(cid:5)pp(Eγ)×J((cid:6)(cid:7)). (1) lγa-triAoapynascrt(hdafarnosnhmeeldsthlieinnτeth+s)eτ.−cFoocnrhtiacnnhunauermgle(ddreoastnu–nldtiahisnihlaevtdeiorlyninspeir)mo,dailulalcrtthss,peeiancntternarinhoai-fl ttp://mnra s The first factor encodes the (unknown) particle physics of DM bremsstrahlung(IB)hasrecentlybeeninvestigatedandfoundtoen- .o x annihilationwhichwewishtomeasure.Thesecondfactorencodes hancethespectrumclosetothekinematiccut-off(e.g.Bringmann fo the astrophysics viz. the line-of-sight (l.o.s.) integral of the DM etal.2008).Asanillustration,thelong-dashedlineinFig.1cor- rdjo u densitysquaredoversolidangle(cid:6)(cid:7)inthedSph–thisiscalledthe respondstothebenchmarkconfigurationforawino-likeneutralino rn a ‘J-factor’.Wenowdiscusseachfactorinturn. takenfromBringmannetal.(2008).However,theshapeandam- ls .o plitudeofthisspectrumarestronglymodel-dependent(Bringmann rg et al. 2009) and, as argued in Cannoni et al. (2010), this contri- at L/ 2.1.1 Theparticlephysicsfactor butionisrelevantonlyformodels(andatenergies)wheretheline e ic Theparticlephysicsfactor((cid:5)pp)isgivenby contributionisdominantoverthesecondaryphotons. este Wewishtobeasmodel-independentaspossible,andsodonot r U (cid:5)pp(Eγ)≡ dd(cid:5)Eγγ = 41π(cid:6)σ2amnn2χv(cid:7) × ddNEγγ , (2) cboenbsaidseerdIoBn.aInnatvheeraregmeasipnedcetrruomfttahkisenpafrpoemr, tahlleopuarrarmeseutrlitzsatwioilnl nivers ity cwtirohones,rse-asnmedcχtdiioNsntγh/aednEmdγa(cid:6)sσissaotnhnfveth(cid:7)deiisfDfetMhreenpataviraetlircaplgheeo,σtooavnnenyriisietilstdsvpseeellorfc-aaintnynnidihhiisillatartitibioounn-. Library o A benchmark value is (cid:6)σannv(cid:7) ∼ 3 × 10−26cm3s−1 (Jungman, n N Kamionkowski & Griest 1996), which would result in a present- ov e dayDMabundancesatisfyingcosmologicalconstraints. m b Unliketheannihilationcross-sectionandparticlemass,thedif- er 1 ferentialannihilationspectrum[dNγ/dEγ(Eγ)]requiresustoadopt 1, 2 aspecificDMparticlemodel.Wefocusonawell-motivatedclass 0 1 ofmodelsthatarewithinreachofupcomingdirectandindirectex- 5 periments:theMinimalSupersymmetricStandardModel(MSSM). 1Technicaldetailsaredeferredtoappendices.InAppendixA,wecomment on the various notations used in similar studies and provide conversion factorstohelpcompareresults.InAppendixB,weprovideatoymodel forquickestimatesoftheJ-factor.InAppendixD,wecalculateinamore Figure1. Differentialspectra(multipliedbyx2)ofγ -raysfromthefrag- systematic fashion the range of the possible ‘boost factor’ (due to DM mentationofneutrinoannihilationproducts(hereforaDMparticlemassof clumpswithinthedSphs)forgenericdSphs.InAppendixE,weshowthat mχ =1TeV).Severaldifferentchannelsareshown,takenfromFornengo convolvingthesignalbythepointspreadfunction(PSF)oftheinstrument et al. (2004), and an average parametrization (Bergstro¨m et al. 1998) is isequivalenttoacruderquadraturesumapproximation.InAppendixF,we markedbytheblacksolidline;thisiswhatweadoptthroughoutthispaper. discusssometechnicalissuesrelatedtoconfidencelevel(CL)determination TheblackdashedlineisthebenchmarkmodelBM4(Bringmannetal.2008) from the MCMC analysis. In Appendix G, the reconstruction method is whichincludesIBandservestoillustratethatverydifferentspectraarepos- validatedonsimulateddSphs.InAppendixH,wediscusstheimpactofthe sible.However,theexampleshownhereisdominatedbylineemissionand choiceofthebinningofthestarsandoftheshapeofthelightprofileonthe thereforehighlymodel-dependent;forthisreason,wedonotconsidersuch J-factordetermination. effectsinthispaper. (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS γ-rayfromdarkmatterannihilation indSphs 1529 (Bergstro¨metal.1998;solidlineinFig.1): available data and that the J-factor does not correlate with β, we dNγ = 1 dNγ = 1 0.73e−7.8x , (4) choFoosrepnroofitlteosasdudchfuarsthγer≥sh1a.5p,ethpearqaumanettietrys.Jfromtheinnerregions dEγ mχ dx mχ x1.5 diverges.Thiscanbeavoidedbyintroducingasaturationscaler sat with x ≡ Eγ/mχ. Finally, in order to be conservative in deriving that corresponds physically tothe typical scalewhere the annihi- detection limits, we also do not consider the possible ‘Sommer- lationrate[(cid:6)σv(cid:7)ρ(rsat)/mχ]−1 balancesthegravitationalinfallrate feld enhancement’ of the DM annihilation cross-section (Hisano, of DM particles (Gρ¯)−1/2 (Berezinsky, Gurevich & Zybin 1992). Matsumoto&Nojiri2004;Hisanoetal.2005).2 Thisdependsin- Takingρ¯ tobeabout200timesthecriticaldensitygives verselyontheDMparticlevelocity,andthusrequiresprecisemod- (cid:8) (cid:9) (cid:10) (cid:11) ellingofthevelocitydistributionoftheDMwithinthedSph;we ρ ≈3×1018 mχ × 10−26cm3s−1 M(cid:12)kpc−3. sat 100GeV (cid:6)σv(cid:7) willinvestigatethisinaseparatestudy. (7) Theassociatedsaturationradiusisgivenby (cid:10) (cid:11) 2.1.2 TheJ-factor ρ 1/γ r =r s (cid:13)r . (8) Thesecondterminequation(1)istheastrophysicalJ-factorwhich sat s ρ s sat dependsonthespatialdistributionofDMaswellasonthebeam D Thislimitisusedforallofourcalculations. o size. It corresponds to the l.o.s. integration of the DM density w n squaredoversolidangle(cid:6)(cid:7)inthedSph: lo a (cid:3) (cid:3) d 2.2 Motivationforagenericapproachandreferencemodels e d J = (cid:6)(cid:7) ρD2M(l,(cid:7))dld(cid:7). (5) Inmanystudies,theγ-rayflux(fromDMannihilation)iscalculated from (cid:6)Th(cid:7)es=ol2idπa[1ng−leciosss(iαminpt)l]y.relatedtotheintegrationangleαintby u2st0sei0en6pg;,itKnheuwhphleoicnihnt2c-0aso1seu0r)thc.eeTthaopitsaplrisoluxvmiamilniadotisosiotnyl(ooefn.gtgh.eaBdseStrphghestirison¨dmnoemr&pinrHaotfioeoldepbeiysr http://mn TheJ-factorisusefulbecauseitallowsustorankthedSphsbytheir averysmallcentralregion.However,iftheprofileisshallowand/or ras.o expected γ-ray flux, independently of any assumed DM particle thedSphisnearby,theeffectivesizeofthedSphontheskyislarger xfo physicsmodel.Moreover,theknowledgeoftherelativeJ-factors than the PSF of the detector, and the point-source approximation rd wouldalsohelpustoevaluatethevalidityofanypotentialdetection breaks down. For upcoming instruments and particularly shallow jou of a given dSph, because for a given particle physics model, we DMprofiles,theeffectivesizeofthedSphmayevenbecomparable rnals coothueldrdthSepnhss.calethesignaltowhatweshouldexpecttoseeinthe teoxttehnetfiofeltdheosfigvnieawldoofesthmeaitntsetrriunmteernmt.sTohfidsedteifcfteiroenn(cseeeinStehcetiroand3ia)l. a.org/ All calculations of J presented in this paper were performed Hence,wedonotassumethatthedSphisapointsourcebutrather t L usingthepubliclyavailableCLUMPYpackage(Charbonnier,Combet deriveskymapsfortheexpectedγ-rayflux. eice s &Maurin,2011)whichincludesmodelsforasmoothDMdensity te profileforthedSph,clumpyDMsubstructuresinsidethedSph,and r U asmoothandclumpyGalacticDMdistribution.3 2.2.1 Illustration:acoredversuscuspedprofile niv e Fig.2showsJasafunctionoftheintegrationangleαintforadSph rsity at 20kpc (looking towards its centre). The black solid line is for L 2.1.3 DMprofiles a cored profile (γ = 0) and the green dashed line is for a cuspy ibra FortheDMhalo,weuseageneralized(α,β,γ)Hernquistprofile profile(γ =1.5);botharenormalizedtounityatαint=5◦.Forthe ry o givenby(Hernquist1990;Dehnen1993;Zhao1996) cuspyprofile,∼100percentofthesignalisinthefirstbin,while n N (cid:4)r(cid:5)−γ(cid:6) (cid:4)r(cid:5)α(cid:7)γ−αβ forthecoredprofile,J buildsupslowlywithαint,and80percent ovem ρ(r)=ρs rs 1+ rs , (6) ber 1 1 where the parameter α controls the sharpness of the transition , 20 from inner slope, limr→0dln(ρ)/dln(r) = −γ, to outer slope 15 limr→∞dln(ρ)/dln(r) = −β, and rs is a characteristic scale. In principle,wecouldaddanadditionalparameterinordertointro- duceanexponentialcut-offintheprofileofequation(6)tomimic the effects of tidal truncation, as proposed in, for example, the Aquarius (Springel et al. 2008) or Via Lactea II (Diemand et al. 2008)simulations.However,thefreedomtovarytheparametersr , s αandβ inequation(6)alreadyallowsfordensityprofilesthatfall arbitrarilysteeplyatlargeradius.Moreover,giventhatourMCMC analysislatershowsthattheouterslopeβ isunconstrainedbythe 2Thiseffectdependsonthemassandthevelocityoftheparticle;theresult- ingboostofthesignalandtheimpactondetectabilityofthedSphshasbeen Figure2. Finitesizeeffects:Jasafunctionoftheintegrationangleαintfor discussed,forexample,inPierietal.(2009b). adSphat20kpc(pointingtowardsthecentreofthedSph).Theblacksolid 3InAppendixB,weprovideapproximateformulaeforquickestimatesof lineisforacoredprofile(γ =0)andthegreendashedlineisforacuspy theJ-factorandcross-checkswiththenumericalresults. profile(γ =1.5);botharenormalizedtounityatαint=5◦. (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS 1530 A.Charbonnieretal. Table 1. The required normaliza- barsisrecovered.Wealsostudybelowtheeffectofmovingthese tionρstohaveM300=107M(cid:12)for dSphsfromadistanceof10kpcto300kpc,correspondingtothe asampleof(1,3,γ)profileswith typicalrangecoveredbytheseobjects. varyingscaleradiusrs. ρs(107M(cid:12)kpc−3) 2.2.3 SubstructureswithinthedSph γ/rs(kpc) 0.10 0.50 1.0 Structureformationsimulationsinthecurrentlyfavoured(cid:14)CDM 0.00 224 25.8 16.02 (coldDMplusacosmologicalconstant)cosmologyfindthatDM 0.25 196 18.6 10.22 haloesareself-similar,containingawealthofsmaller‘substructure’ 0.50 170 13.4 6.47 haloesdowntoEarth-masshaloes(e.g.Diemand,Moore&Stadel 0.75 146 9.5 4.06 2005). However, as emphasized in the introduction, such simula- 1.00 125 6.7 2.52 tionstypicallyneglecttheinfluenceofthebaryonicmatterduring 1.25 106 4.7 1.54 galaxyformation.ItisnotclearwhateffectthesehaveontheDM 1.50 88 3.2 0.92 substructuredistribution.Forthisreason,weadoptamoregeneric approach.Weassesstheimportanceofclumpsusingthefollowing ofthesignal(withrespecttothevalueforα =5◦)isobtainedfor recipe5: D int o α80percent≈3◦.Thisisalsoindicatedbythesymbolswhichshowthe w contributionofDMshellsintwoangularbins–whereasthe(green) (i) wetakeafractionf =20percentofDMmassintheformof nloa hollowsquareshaveaspikydistributioninthefirstbin(γ =1.5), clumps; de d the (black) filled circles (γ = 0) show a very broad distribution ((iiii)i)ththeescplautmialpdpisrtorfiibleustioanreocfacllcuumlaptesdfoa`llloawBsutlhloecskmeotoathl.o(2n0e;01) from forTJh.eintegrationanglerequiredtohaveasizeablefractionofthe (hereinafterB01),thatis,an‘NFW’profile(Navarroetal.1996a) http tashingegnliaenlsndaeerreppedrneodsfiisrleaobnsllesoespvienercγaeltaphnaidsramtmhieentisemcrasiz:leethsreacdodiniusttsaamrnsci.neSadtminfargollbmianctthkeeggrrdoaStuipnohdn, wmiat(shivsc)roatnnhcgeeecnMlturammtiinpo–nmMramesalsxat=deids[tt1roi0bt−uh6te–io1mn0a6iss]sM∝o(cid:12)fMt.h−eac(laum=p−s;1.9),withina ://mnras.o x γ-ray photons and maximizes the signal-to-noise ratio. Thus, the Althoughtheseparametersareveryuncertain,theyallowusto fo rd truedetectabilityofadSphwilldependonitsspatialextentonthe investigatetheimpactofsubtructuresontheJ-factor.Theyarevar- jo sky,andthusalsoond,γ andrs. ied within reasonable bounds in Section 2.3.2 (and Appendix D) urn a todeterminewhetherthesubclumpcontributioncanboostthesig- ls .o nal.Notethata20percentclumpmassfractionisabouttwiceas rg 2.2.2 GenericdSphprofiles largeasthefractionobtainedfromnumericalsimulations(seee.g. at L/ AswillbeseeninSection5,theerrorsonthedensityprofilesofthe Springel et al. 2008). This generous fraction does not affect our eic MilkyWaydSphsarelarge,makingitdifficulttodisentanglethe conclusions,asdiscussedbelow. es te interplaybetweenthekeyparametersfordetectability.Hence,we r U selectsome‘genericprofiles’toillustratethekeydependencies. 2.3 J andJ forthegenericmodels niv Themostconstrainedquantityisthemasswithinthehalf-light sm subcl ers radius r (typically a few tenths of a kpc), as this is where most As an illustration, we show in Fig. 3 one realization of the ity ofthekihnematicdatacomefrom(e.g.W09;Wolfetal.2010).For 2D distribution of J from a generic core profile (γ = 0) with Lib theclassicalMilkyWaydSphs,thetypicalmasswithinrh∼300pc rs=1kpc(subclumpparametersareasdescribedinSection2.2.3). rary is found to be M ∼ 107M(cid:12) (Strigari et al. 2008, see also the The dSph is at d = 100kpc. We note that our consideration of a o 300 n bottom panel of Fig. 13 shown later). If the DM scale radius is γ =0smoothcomponentwithNFWsubclumpsisplausibleif,for N o significantlylargerthanthis(rs(cid:15)rh)andtheinnerslopeγ (cid:3)0.5, example, baryon-dynamical processes erase cusps in the smooth vem wecanapproximatetheenclosedmassby halobutcannotdosointhesub-subhaloes.ThetotalJ isthesum b e M300(cid:16) 43π−ρsγrs3 (cid:10)30r0spc(cid:11)3−γ ≈107M(cid:12). (9) oboyfutttshhkeeirsstmsmooofoottthhheacndodSmpsphuo.bncelunmt,pwdhiesrteraibsustoiomnes.gTrahienicneenstsreaipspdeoarmsiinnatthede r 11, 2015 Theparameterρ isthusdeterminedcompletelybytheabovecon- In this particular configuration, the ‘extended’ signal from the s dition,ifwechoosethescaleradiusr andcuspslopeγ. coreprofile,whenintegratedoveraverysmallsolidangle,could s Table1shows,forseveralvaluesofr andγ,thevaluerequired besubdominantcomparedwiththesignalofNFWsubclumpsthat s for ρ to obtain the assumed M mass. We fix α = 1, β = 3 ithosts.Thediscussionofcross-constraintsbetweendetectability s 300 but our results are not sensitive to these choices.4 The values of ofsubhaloesoftheGalaxyversussubclumpsinthedSphisleftfor r are chosen to encompass the range of r found in the MCMC afuturestudy. s s analysis (see Section 5). To further convince ourselves that the Intheremainderofthispaper,wewillreplaceforsimplicitythe genericprofileswepresenthereareapossibledescriptionofreal calculationofJsubcl(αint)byitsmeanvalue,asweareprimarilyin- dSphs, we checked (not shown) using typical stellar profiles and terestedin‘unresolved’observations.Hence,clumpsarenotdrawn properties of these objects (i.e. half-light radius of a few 100pc) fromtheirdistributionfunction,butrather(cid:6)Jsubcl(cid:7)iscalculatedfrom that a flat ∼10kms−1 velocity dispersion profile within the error 4ForadifferentmassforthedSph,theresultsforJbelowhavetoberescaled 5MoredetailsabouttheclumpdistributionscanbefoundinAppendixB2. byafactor(M3n0e0w/107M(cid:12))2sincethedensityisproportionaltoM300,while See also, for example, Section 2 in Lavalle et al. (2008) and references Jgoesasthedensitysquared. therein,asweusethesamedefinitionsasthosegiveninthatpaper. (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS γ-rayfromdarkmatterannihilation indSphs 1531 D Figure4. JasafunctionoftheangleθawayfromthedSphcentreforadSph o w aαtin1t0=0k0◦p.0c1w.Fitohrrtshe=fo0u.5rkinpnce(rρssloipsegvivaeluneisnγT,atbhleev1a)r.iTouhsecionntetgrirbautitoionnasntgoleJ nload areshownasthesolid(total),dashed(smooth)anddottedlines(subclumps). ed fro m theintegrationofthespatialandluminosity(asafunctionofmass) h distributions(seeAppendixB2). ttp ://m n ra 2.3.1 RadialdependenceofJ(θ) s.o x TheradialdependenceofJisshowninFig.4forfourvaluesofγ (for ford faonrinthteegrsamtiooonthandgilsetrαibinutt=ion0,◦.0th1e).dTohteteddaslihneedslsinheoswshthoewstuhbecrleusmulpt journa ls contribution,andthesolidlinesarethesumofthetwo.Thepeakof .o thesignalistowardsthedSphcentre.Aslongasthedistributionof arg/ clumpsisassumedtofollowthesmoothone,regardlessofthevalue t L ofγ,thequantity(1−f)2Jsm(0)alwaysdominates(atleastbya eice factorofafew)over(cid:6)Jsubcl(0)(cid:7).(Recallthatinourgenericmodels, ste alldSphshavethesameM300.)ThescatterinJtot(0)isaboutfour r U ordersofmagnitudeforγ ∈[0.0–1.5],butonlyafactorof20for niv γTh∈e[c0ro.0s–si1n.0g].poBienytodnedpeanfdeswotnenathcsoomfbdinegatrieoens,o(cid:6)fJstuhbecl(cid:7)clduommpinmataesss. ersity L fractionf,γ,r ,dandα .ThedependenceofJ onthetwolatter ib s int ra parametersarediscussedinAppendixC.Theradialdependenceis ry asexpected:thesmoothcontributiondecreasesfasterthanthatof on N thesubclumpone,becausethesignalisproportionaltothesquared o v spatial distribution in the first case, but directly proportional to em thespatialdistributioninthesecondcase.Halvingf tomatchthe be fractionfromN-bodysimulationswouldhavea25percenteffect r 1 1 on (1 − f)2J , but decreases J by a factor of 4, so that the , 2 sm subcl 0 cross-over between the two components would occur at a larger 15 angle(Fig.4). 2.3.2 Boostfactor Whetherornotthesignalisboostedbythesubclumppopulationis stilldebatedintheliterature(Strigarietal.2007b;Kuhlen,Diemand &Madau2008;Pieri,Bertone&Branchini2008;Pierietal.2009a). Figure3. Two-dimensionalview(x-andy-axesareindegrees)of J for the generic dSph with γ = 0 and rs = 1kpc at d = 100kpc (M300 = Asunderlinedintheprevioussections,thesubclumpcontribution 107M(cid:12)).Thesubclumpsaredrawnfromthereferencemodeldescribedin towards the dSph centre never dominates over the smooth one if Section2.2.3,thatis,f=20percent,subclumpdistributionfollowssmooth, the spatial profile of the subclumps follows that of the smooth andsubclumpinnerprofileshaveNFWwithB01concentration.Fromthe distribution,andiftheintegrationangleremainsbelowsomecritical toptobottompanel:αint=0◦.1,0◦.05and0◦.01.Forthesakeofcomparison, anglediscussedbelow. thesamecolourscaleistakenforthethreeintegrationangles(Jisinunits Letusfirstdefineproperlytheparameterswithrespecttowhich ofM2(cid:12)kpc−5). thisboostiscalculated,asthereissometimessomeconfusionabout this.Here,wedefineitwithrespecttotheintegrationangleα (the int (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS 1532 A.Charbonnieretal. 3 SENSITIVITY OF PRESENT/FUTURE γ-RAY OBSERVATORIES Major new ground-based γ-ray observatories are in the planning stage, with the CTA (CTA Consortium 2010) and AGIS (AGIS Collaboration2010)asthemainconcepts.Asthedesignsofthese instrumentsarestillevolving,weadoptheregenericperformance curves(describedbelow),closetothestatedgoalsoftheseprojects. FortheLAToftheFermiγ-raysatellite,theperformancefor1-year observationsofpoint-like,high-Galactic-latitudesourcesisknown (Fermi-LATCollaboration2010),butnoinformationisyetavail- able for longer exposures or for extended objects. We therefore adoptatoylikelihood-basedmodelfortheFermisensitivity,tuned toreproducethe1-yearpoint-sourcecurves.Wenotethatwhilstthis approach results in approximate performance curves for both the ground-andthespace-basedinstruments,itcapturesthekeydiffer- D Figure 5. Boost factor as a function of αint × (d/100 kpc) for different ences(inparticular,thedifferencesincollectionareaandangular ow innerslopesγ andwithsubclumpsfollowingthesmoothprofile(seeSec- resolution)andillustratestheadvantagesandlimitationsofthetwo n tion2.2.3):thedSphisatd=100kpc(lines)ord=10kpc(symbols). instrumenttypes,aswellastheprospectsforthediscoveryofDM load e annihilationindSphswithinthenextdecade. d fro m pointingdirectionisstilltowardsthedSphcentre): 3.1 Detectormodels http (1−f)2J (α )+J (α ) The sensitivity of a major future γ-ray observatory based on an ://m B(αint)≡ smJsm(inαtint) subcl int . (10) aCrhraeyreonfkoCvhAerrernakyo’)vitsealepspcroopxeims(aFteCdAbainsetdheonfotlhloewpionign,t-fsooru‘rFceutduirfe- nras.o Ithnemclousmtsptubdoiuensd,athrye(bio.eo.sαtahlla=sbReen/cda)l.cHuloawteedvebry,tihnetebgoroatsitndgepoeuntdtos fvearteionntisa)lpsreensseintitveidtybcyuBrveern(lfo¨ohrrae5tσal.d(e2te0c0t8io).nUinnd5e0rhthoeurasssoufmopbtsieorn- xfordjo cruciallyonα (theradialindtependviernceofthesmoothandsubclump thattheangularresolutionofsuchadetectorisafactorof2better urn druscisoingrn(cid:2)Wienttcyare,t0ilb.acpi1usnoltokdnintopseineicfvnqs(eγurFidrneeitigbifngsfaoc.erose5rdtsselo,tteeehfsspdeese.eq6ebonuoSfFoaoeγotuscir)tgto,ishfnooom,nr(rBaCf2dlo.7li≈3rf)ef.γ1eni(sr)o1(cid:3)e.utnh−gt1ehi.f5nαα)ni2(nier.ntetrF,×gsoBalrorddiplslareeersssgsmscγeaoa,vllfiwlanerlhgrsu)e.et,rhsFte,ahoneaar (tstpfhhhrheoaeaanmndpdsreeeot1snnhn0sceai4eantH,imndvdaEi2stnoeSyadluStetrhtc3ch(tu0erFasoteuGnaxnt)edhtkeVabenpaeesttctoeifkofdage1nlcrt.sookt.i2umvGd0nei20idfvf8caeero)tnarle1tlaetnenhTctpdateoetiVorbhtn,hsadeetsehargdvret2eheaiaestcmiiaogfsnponnalrbmitoeieγfmedi-inecrneafsonsey,tserrsmsrrupgegmieydcrce-oatrdnwrnaeatydss-l at Leicester Uals.org/ cpboleamttwepaeouennie,sntrhte.eaGcvohaielnudgeabsoefsyotohonendbatoshoαissitnqtdduea(cid:3)plietRnatdviivsre(otdnakersescnraitnpodtbioγen3oifskptdhciefhfisecmruelo)t.,oaIthns srtoeuscephxopanlssoetrh,eecthhCaeTrcaAacptiesarbnizioleitdtiyebesytofitfhxaeedgf,oewlnleoerwcicionnngseixfdute-ngrcetthnioaentrasst,uiiocshnaainusssitemrfuupmllietfioneotd:l niversity L thetoy-modelformulaeofAppendixB2giveresultscorrecttoonly LS=−13.1−0.33X+0.72X2, (11) ib afactorof∼2(whichisinadequatetoevaluatetheboostproperly). rary Toconclude,themaximumvalueforsubclumpfollowssmooth LA=6+0.46X−0.56X2, (12) on is (cid:2)2, and this value is reached only when integrating the signal N o outtoR /d.Theboostcouldstillbeincreasedbyvaryingthesub- ψ =0.038+exp−(X+2.9)/0.61, (13) ve vir 68 m cdlyunmamppicraolpferritciteison(eh.ga.stackaiunsgedahthigehseurbccolunmcepntpraotpiounla)t.iConontovebresecloym,ief where ber 1 1 muchmorecentrallyconcentratedthanthesmoothcomponent,then X=log (photonenergy/TeV), (14) , 2 10 0 theboostisdecreased.ThisisdetailedinAppendixD.Forthemost LS = log (differential sensitivity/ergcm−2s−1), LA = 15 realisticconfigurations,thereisnosignificantboostwhenaclump 10 log (effectivearea/m2), and ψ is the 68 per cent contain- massfractionf =20percentisused.Naturally,thisresultiseven 10 68 mentradiusofthePSFindegrees. more true for the smaller f found in N-body simulations so we For the Fermi detector, a similar simplified approach is taken; disregardtheboostfortherestofthispaperandconsideronlythe thenumbersusedbelowarethoseprovidedbyFermi-LATCollab- smoothcontribution. oration(2010).Theeffectiveareachangesasafunctionofenergy and the incident angle to the detector, reaching a maximum of ≈8000cm2.Theeffectivetime-averagedareaisthen(cid:17)A(cid:7)/4πand the data-taking efficiency (cid:17) ≈ 0.8 (due to instrument dead-time andpassagesthroughtheSouthAtlanticAnomaly).ThePSFagain 6The difference between the level of boost observed for rs = 0.1 and varies as a function of energy (with a much smaller dependence 1kpc can be understood if we recall that the total mass of the clump is as a function of incidence angle), from 10◦ to a few tenths of a OJfisxm(e1d0∝9toρMs23(cid:12)0w0khppecrc,e−ar3es)g,Jaswrudbhl∝eersesρaoss,ffthtohererrevslaa=ltuive1eokafpmcγo,uoρnrstr∼os.fFJOsou(rb1r0ws7i=tMh(cid:12)r0e.s1kpkpepcc−ct,3to)ρ.sJAs∼ms dsre−g1re(e>o1v0e0rMtheeVL)AaTndenaerpghyortoanngien.dAexraotfe2o.f11a.r5e×as1su0m−5ecdmfo−r2sth−e1 isexpectedtodecreasewithsmallerrs.Thisisindeedwhatweobservein background. The sensitivity is then estimated using a simplified thefigure(solidversusdashedlines). likelihoodmethodwhichprovidesresultswithin20percentofthe (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS γ-rayfromdarkmatterannihilation indSphs 1533 sensitivityfora1-yearobservationofapoint-likesourcegivenby Fig.7showstherelativesensitivityofFermiandanFCAwithin Fermi-LATCollaboration(2010). ourframeworkasafunctionofthemassoftheannihilatingparticle, Whilstbothdetectorresponsesareapproximate,thecomparison adoptingtheannihilationspectrumgiveninequation(4),withthe isstilluseful.Ourworkincorporatesseveralkeyaspectsnotcon- severalpanelsillustratingdifferentpoints.FromFig.7(toppanel, sideredinearlierstudies,includingthestrongenergydependence the case of a point-like signal for different observation times), it oftheangularresolutionofbothground-andspace-basedinstru- isclearthattheFermi-LAThasaconsiderableadvantageforlower mentsintherelevantenergyrangeof1GeVto1TeVandhencethe massDMparticles(mχ(cid:13)1TeV)onthetime-scaleforconstruction energy-dependentimpactoftheangularsizeofthetargetregion. ofanFCA(i.e.overa5–10yrmissionlifetime)incomparisontoa deepACTobservationof200h.Furthermore,theFermi-LATisless adverselyaffectedbytheangularextentofthetargetregions(see 3.2 Relativeperformanceforgenerichaloes Fig. 7, bottom panel), due to its modest angular resolution in the UsingtheresultsfromSection2.2.2andthedetectorperformance energyrangewhereitislimitedbybackground,meaningthatthe modelsdefinedabove,wecanbegintoinvestigatethesensitivityof sourceextensioniswellmatchedtothePSFoftheinstrument.The future ACT arrays and the Fermi-LAT detector (over long obser- middle panel of this figure illustrates the impact of different ap- vationtimes)toDMannihilationindSphs.Thedetectabilityofa proachestotheanalysis.InthecasethatthereisaDMcandidate sourcedependsprimarilynotonlyonitsflux,butalsoonitsangular inferredfromthediscoveryofsupersymmetryattheLargeHadron D o extent.Theimpactofsourceextensionondetectabilityisdealtwith Collider(LHC)(quitepossibleontherelevanttime-scale),asearch wn approximately(ineachenergybinindependently)byassumingthat optimized on an assumed mass and spectral shape can be made loa theopeningangleofaconewhichincorporates80percentofthe (solidcurves).However,allinstrumentsarelesssensitivewhena ded signalisgivenby genericsearchisundertaken.Simpleanalysesusingallthephoton fro (cid:12) fluxaboveafixedenergythreshold(arbitrarilysettoreduceback- m h vθw8ah0lue=reesψgi8vψ0e82=n0f+1o.r2α65828ψ0a,6n8dis9a5spsuemrceednftocrotnhteaiFnCmAenatnfdorinthteerpLoAlTate(Fdefr(rm1o5mi)- fGgmoreaorVsuAsn.CwdFT)oorsarkrfseeoxmrea0fomf.de3pce–ltr3eiav,tTeekeleoyVenwplpyieanlrigltniiconalnetlrhsye,elwa>0thi.1v1e0e–r0le0ya.G2snekTaVreereVoppwhirnaorgntaogannelgls,epbwhuoootfrtipkosasnmrstwiu>cecll1hel ttp://mnras.o LATCollaboration2010);here,α80isthe80percentcontainment lesssensitivethanthehigherthresholdcutovertherestofthecan- xfo angleofthehaloemission.Thevalidityofthisapproximation(at didate DM particle mass range. The features of these curves are rdjo the level of a few per cent) has been tested (see Appendix E) by dictatedbytheexpectedshapeoftheannihilationspectrum.From urn convolving realistic halo profiles with a double Gaussian PSF as equation (4), the peak photon output (adopting the average spec- als foundfortheHESS(Horns2005).An80percentintegrationcircle trum for DM annihilation) occurs at an energy which is an order .org is close to optimum for a Gaussian source on a flat background ofmagnitudebelowtheparticlemass–effectivedetectionrequires a/ (in the background-limited regime). Fig. 6 shows the 80 per cent that this peak occurs within (or close to) the energy range of the t L e containmentradiusoftheannihilationfluxofgenerichaloesasa instrumentconcerned. ice functionoftheinnerslopeγ.Thisresultcanbeparametrizedas ThetotalannihilationfluxfromadSphincreasesatsmallerdis- ste (cid:10) r (cid:11)(cid:10) d (cid:11)−1 tancesas1/d2forfixedhalomass,makingnearbydSphsattractive r Un α80=0◦.8(1−0.48γ −0.137γ2) 1kspc 100kpc . (16) flaorrsDizMe odfetseuccthionn.eaHrboywesvoeurr,caessFraiigs.e7s tshheowresq,utihreedindcerteeacsteiodnanflguux-. iversity Itisclearthatforabroadrangeofd,γ andr ,thecharacteristic Fig.8illustratesthereductionofanFCAsensitivityasafunction L angularsizeoftheemissionregionislargerthasntheangularreso- of the distance of a generic dSph. Inner slopes γ = 0 and γ = ibra lutionoftheinstrumentsunderconsideration.Itisthereforecritical 1havebeenconsideredandrs isfixedto1kpc.Thesensitivityis ry o toassesstheperformanceasafunctionoftheangularsizeofthe expressedrelativetothatobtained usingthefullannihilationsig- n N dSphaswellasthemassoftheannihilatingparticle. nalinthepoint-likeapproximation.Evenforγ =1,thepoint-like ov e approximationleadstoanorderofmagnitudeoverestimateofthe m b detectionsensitivityfornearby(∼20kpc)dSphs.Afurthercompli- er 1 cfraotimonthisehroewsidtouaelstnaobnli-sγh-rthayelbeavceklgorfobuancdk.gAroucnodmemmoinssimonetahroidsining 1, 20 1 ground-basedγ-rayastronomyistoestimatethisbackgroundfrom 5 anannulusaroundthetargetsource(seee.g.Berge,Funk&Hinton 2007).ThedashedlinesinFig.8showtheimpactofestimatingthe backgroundusinganannulusbetween3◦.5and4◦.0fromthetarget. Thisapproachhasamodestimpactonsensitivityandisignoredin thefollowingdiscussionsasitreducesboththedetectablefluxand θ andleadstoasmallimprovementinsomecasesonly. 80 4 JEANS/MCMC ANALYSIS OF DSPH KINEMATICS Figure6. Theconeangleencompassing80percentoftheannihilationflux 4.1 dSphkinematicswiththesphericalJeansequation asafunctionoftheinnerslopeγ.Severaldifferentvaluesofrsanddistance dareshownforeachγ,allscaledby1kpc/rsand100kpc/d.Thebest-fitting Extensive kinematic surveys of the stellar components of dSphs curveisalsoshown,correspondingtoequation(16). have shown that these systems have negligible rotational support (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS 1534 A.Charbonnieretal. 3-1] sm10-20 FCA HESS J=1012 M2 kpc-5 c v> [ 20 h σ 10-21 < 20 h 200 h 10-22 200 h 10-23 1 yr Fermi 10-24 10 yr 10-25 D 10-2 10-1 1 10 mχ [TeV] Figure 8. Relative DM annihilation detection sensitivity for a 100-hour ow FCAobservation,asafunctionofdSphdistancefordifferentinnerslopes n 3-1]m s10-20 FCA J=1012 M2 kpc-5 γθ80anidsgwivitehnrrsefilaxtievdettoo1thkepcs.enTshiteivsietynstiotivaitpyofionrt-laikreeasloisutricceapwpirthoatchheussaimnge loaded σ v> [c<10-21 >1 GeV flmbyuinxei.qmLuuaamrtigoendre(vt4ea)clutwaebsitlhceomflrruχexs=)p.oT3n0dh0etoGaspesoVuo.mrTeerhdipssepsreefoncrtsrmiatilavnsitchyeapr(aleatiriogsedaregvpaaeinlnudeasssoognfivtthhenee http from 1100--2232 >100 GeV Likelihood ttfsdhhrtaoreesamhbtdeeaSgtdchpykehlgiundcrsoeSeesunpdnthsrdht.eoocawoesnsattthirbmoealacirmtkeeggptriahoocenutnlboideafsccukocsgoninrmtrogopulalnerndetegallineyovnoneuu.llTtuasshitdebtehestetohwleidedSreelpngihni3oe◦.pna5ososasfiunteimdomne4i.s◦s.s0Ttihohoaneft ://mnras.oxford 10-24 Fermi (withthepossibleexceptionoftheSculptordSph,seeBattagliaetal. journ a 2008).IfweassumethatthedSphsareinvirialequilibrium,then ls .o 10-25 theirinternalgravitationalpotentialsbalancetherandommotions rg 10-2 10-1 1 10 mχ [TeV] oftheirstars.InordertoestimatedSphmasses,weconsiderhere at L/ 3-1] sm10-20 FCA J=1012 M2 kpc-5 tdhiestabnecheavfrioomurthoefddSSpphhcsetneltlraer(avnealolocgitoyudsitsopreortsaiotinonascuarvfeusnocftisopniroafl eiceste > [c gMaalatexoie&s).OSplsezceiwficsaklily(,2w00e9ucs)efothrethsteelClaarriknian,eFmoartnicaxd,aStacuolfpWtoarlkanerd, r Un σ v<10-21 1o StheextLaenosIdSdpShpsh,,tahnedddaatataoffroMmatMeoa,tOeolsezteawl.sk(iin&prWepaalkraetrio(2n0)0fo8r)tfhoer iversity 10-22 0.1o Draco,LeoIIandUrsaMinordSphs.W09havecalculatedveloc- Lib itydispersionprofilesfromthesesamedataundertheassumption rary 10-23 thatl.o.s.velocitydistributionsareGaussian.Herewere-calculate o n Point-like theseprofileswithoutadoptinganyparticularformforthevelocity N o 10-24 Fermi distributions.Specifically,foragivendSph,wedividethevelocity vem sampleintocircularbinscontainingapproximatelyequalnumbers b e 10-25 of member stars,7 and within each bin, we estimate the second r 11 10-2 10-1 1 10 mχ [TeV] velocitymoment(squaredvelocitydispersion)as , 20 1 (cid:2)N 15 (Fbilgaucrkeli7n.esA)papnrdotxhiemFaCteAsednessictirvibiteiedsaobfovthee(rFeedrmlini-eLs)AtToa(bglueenelriincehs)a,loHwESitSh (cid:6)Vˆ2(cid:7)= N−1 [(Vi−(cid:6)Vˆ(cid:7))2−σi2], (17) J =1012M2(cid:12)kpc−5,asafunctionofthemassoftheannihilatingparticle where N is the in=u1mber of member stars in the bin. We hold (cid:6)V(cid:7) andfortheannihilationspectrumofequation(4).Toppanel:theimpact fixed for all bins at the median velocity over the entire sample. ofobservationtimeisillustrated:dashedlinesgivethe1-yearand20-hour sensitivities for Fermi and the FCA/HESS, respectively, while the solid Foreachbin,weuseastandardbootstrapre-samplingtoestimate lines refer to 10-year (200-hour) observations. Middle panel: the impact theassociatederrordistributionfor(cid:6)Vˆ2(cid:7),whichisapproximately ofanalysismethodsisconsideredfor5-year(100-hour)observationsusing Gaussian.Fig.9displaystheresultingvelocitydispersionprofiles, Fermi(FCA).Thesolidlinesshowlikelihoodanalysesinwhichthemass (cid:6)Vˆ2(cid:7)1/2(R),whicharesimilartopreviouslypublishedprofiles. andspectrumoftheannihilatingparticleareknowninadvance,whilethe In order to relate these velocity dispersion profiles to dSph dashedanddottedlinesshowsimpleintegralfluxmeasurementsabovefixed masses,wefollowW09inassumingthatthedatasampleineach thresholdsof1and100GeV,respectively.Notethatthe1-GeVcutimplies acceptingalleventsfortheFCA(wherethetriggerthresholdis≈20GeV). Bottom panel: the impact of the angular extension of target sources, as 7KinematicsamplesareoftencontaminatedbyinterlopersfromtheMilky givenbythehaloprofileinFig.6,isillustrated.Thesolidlinesreproduce Wayforeground.FollowingW09,wediscardallstarsforwhichthealgo- thelikelihoodcasefromthemiddlepanelforapoint-likesource,withthe rithmdescribedbyWalkeretal.(2009b)returnsamembershipprobability valuesofα80of0◦.1(dashed)and1◦alsoshown. lessthan0.95. (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS γ-rayfromdarkmatterannihilation indSphs 1535 D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ Figure9. VelocitydispersionprofiledatafortheeightclassicaldSphs,obtainedasdescribedinthetext(theimpactofthebinningchoiceisdiscussedin t L AppendixH1).Thesolidlinescorrespondtothebest-fittingmodelsfortheinnerslopewhenγ isleftfree(dark),γ isfixedto1(blue)andγ isfixedto0 e ic (red).Becauseofthelargedegeneraciesamongthehaloparameters(seeSection5.1foralist),wedonotlistthecorrespondingbest-fittingparameters.The es motivationforshowingtheseprofilesistoillustratethatourhalomodeliscapableofdescribingthekinematicdata,andthattheinnerprofileisnotconstrained ter U bythedata. n iv e rs dSphasingle,pressure-supportedstellarpopulationthatisindy- Note that while we observe the projected velocity dispersion and ity namicalequilibriumandtracesanunderlyinggravitationalpotential stellar density profiles directly, the l.o.s. velocity dispersion pro- L ib dtioomnsinoaftsetdelblayrbDiMna.ryImsypsltiecmitsiscothnetraibsusutemnpetgiolingitbhlaytttohethoermbietaalsumreod- wfileesrepqrouviriedeannoaisnsfuomrmptaitoinonaabboouuttβthaneisoa;nihseorter,opwye,βaasnsisuom.Tehβeraneifsoor=e, rary o n velocitydispersions.8 Furthermore,assumingsphericalsymmetry, constant,allowingfornon-zeroanisotropyinthesimplestway.For N o themassprofile,M(r),oftheDMhalorelatesto(momentsof)the constantanisotropy,theJeansequationhasthesolution(e.g.Mamon v e stellardistributionfunctionviatheJeansequation: &Łokas2005) m b e ν1ddr(νv¯r2)+2β(rr)v¯r2 =−GMr2(r), (18) νv¯r2=Gr−2βaniso(cid:3) ∞s2βaniso−2ν(s)M(s)ds. (20) r 11, 20 where ν(r), v¯2(r) andβ ≡ β(r) ≡ 1−v¯2/v¯2 describe the r 15 r aniso θ r three-dimensional density, radial velocity dispersion and orbital WeshalladoptparametricmodelsforI(R)andM(r)andthenfind anisotropy,respectively,ofthestellarcomponent.Projectingalong valuesoftheparametersofM(r)that,viaequations(19)and(20), the l.o.s., the mass profile relates to observable profiles, the pro- bestreproducetheobservedvelocitydispersionprofiles. jectedstellardensityI(R)andvelocitydispersionσ (R),according p to(Binney&Tremaine2008,hereinafterBT08) (cid:4) (cid:5) (cid:3) 2 ∞ R2 νv¯2r σ2(R)= 1−β √ r dr. (19) p I(R) R anisor2 r2−R2 4.1.1 Stellardensity StellarsurfacedensitiesofdSphsaretypicallyfittedbyPlummer (1911), King (1962) and/or Se´rsic (1968) profiles (e.g. Irwin & 8Olszewski,Pryor&Armandroff(1996)andHargreaves,Gilmore&Annan Hatzidimitriou1995).Forsimplicity,weadoptherethePlummer (1996)concludethatthisassumptionisvalidfortheclassicaldSphsstud- iedhere,whichhavemeasuredvelocitydispersionsof∼10kms−1.This profile: conclusion does not necessarily apply to recently discovered ‘ultrafaint’ M∼i3lkkymWs−a1y(sMatceClliotensn,awchhiiech&hCavoˆete´m2e0a1s0u)r.edvelocitydispersionsassmallas I(R)= πLr2(1+R12/r2)2, (21) h h (cid:4)C 2011TheAuthors,MNRAS418,1526–1556 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:4)C 2011RAS

Description:
Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are promising targets for the SS acknowledges sup- port by the EU Research & Training Network 'Unification in the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.