Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) Dark matter annihilation in the halo of the Milky Way 1 1 1 Felix Stoehr , Simon D. M. White , Volker Springel , 2 3 Giuseppe Tormen and Naoki Yoshida 1Max-Planck-Institutfu¨rAstrophysik,Karl-Schwarzschild-Str.1,85748GarchingbeiMu¨nchen,Germany 4 2DipartimentodiAstronomia,UniversitadiPadova,vicolodell’Osservatorio5,35122Padova,Italy 0 3NationalAstronomicalObservatoryJapan,Mitaka,Tokyo181-8588,Japan 0 Email:[email protected],[email protected],[email protected],[email protected],[email protected] 2 n a Accepted2003July29.Received2003July7 J 3 2 ABSTRACT IfthedarkmatterintheUniverseismadeofweaklyself-interactingparticles,theymayself- 2 annihilateandemitγ-rays.Weusehighresolutionnumericalsimulationstoestimatedirectly v the annihilation flux from the central regions of the Milky Way and from dark matter sub- 6 structuresin its halo. Althoughsuch estimates remain uncertain because of their strong de- 2 pendenceonthestructureofthedensestregions,ournumericalexperimentssuggestthatless 0 directcalculationshaveoverestimatedtheemissionbothfromthecentreandfromhalosub- 7 structure. We estimate a maximalenhancementof at most a factor of a few with respect to 0 a smooth sphericalhalo of standard Navarro-Frenk-White(NFW) structure.We discuss de- 3 tectionstrategiesforthenextgenerationofγ-raydetectorsandfindthattheannihilationflux 0 maybedetectable,regardlessofuncertaintiesaboutthedensestregions,fortheannihilation / h cross-sectionspredictedbycurrentlypopularelementaryparticlemodelsforthedarkmatter. p - Keywords: methods:N-bodysimulations–Galaxy:halo–darkmatter. o r t s a : v 1 INTRODUCTION whereNγisthenumberofphotonsproducedperannihilation,hσvi i istheaveragedproductofcross-sectionandrelativevelocity,ρDM X Thenatureof thedarkmatter(DM) intheUniverseisoneofthe istheDMdensity,V isthehalovolume,m isthemassofthe mostprominentunsolvedquestionsincosmology.Amongthebest DM r DMparticleanddthedistancefromeachpointinthehalotothe a motivatedcandidatesforDMisaweaklyinteractingmassiveparti- observer. The density squared weighting of the integrand in this cle(WIMP)inthemassrange10to104GeVc−2.Inminimalsu- equationresultsinmostofthefluxindarkDMhaloesbeingpro- persymmetricextensionsofthestandardmodelofparticlephysics, ducedbythesmallfractionoftheirmassinthedensestregions. astable,neutralparticlewiththeseproperties(usuallycalledaneu- Twospecificregions havebeen suggested asdominating the tralino)arisesnaturallyasthelightestsupersymmetricparticle. annihilation signal from haloes. A large contribution could come Inrecentyears,agrowingefforthasbeendedicatedtodetect- fromtheinnermostpartofthehalo.Foradistantsphericallysym- ingWIMPsdirectlythroughtheenergydepositedbyelasticWIMP- metricsystemequation(1)becomes nucleonscatteringinmassive,cryogenicallycooledbolometers.A differentdetectionstrategyispossibleifWIMPSareMajoranapar- N hσvi r200 ticles. In this case, pair-annihilations can occur, producing high- F = 2dγ2m2 Z ρ2DM(r)r2dr, (2) energyneutrinos,positrons, antiprotonsandγ-rays.Theresulting DM 0 γ-ray fluxesmight be detectable withcurrent- or next-generation so if the inner density profile is ∝ r−1.5 or steeper, the emitted telescopes.SofarneithertechniquehasdetectedaDMparticle. fluxdivergesatthecentre.Alowercut-offmustthenbespecified Both ground-based air-shower-Cˇerenkov telescopes (ACT) on physical grounds, for example at the point where the annihi- andspace-bornetelescopesmightbeabletodetectannihilationγ- lation timescale for the DM becomes equal to the lifetimeof the rays.SuchobservationscanbeusedtoconstrainWIMPparameters halo.Thisdivergentcasemight,perhaps,berelevant,sinceatleast –in particular, theself-annihilation cross-section and theparticle somehighresolutionnumericalsimulationshavesuggestedthatthe mass. Predictions of the expected flux require not only these pa- inner cuspsofDMhaloescould bethissteep(Mooreetal.1999; rametersbutalsoadetailedknowledgeofthestructureofregions Calcane´o-Rolda´n&Moore2000).Boththedatawepresentbelow ofhighDMdensity,i.e.ofDMhaloes.Thisisbecausetheannihi- and the study of Poweretal. (2003) suggest, however, that cold lationflux(inphotonscm−2s−1)maybewrittenas: darkmatter(CDM)haloesaresubstantiallylessconcentratedthan this. N hσvi ρ2 (x) A second contribution can come from small-scale structure F = γ DM d3x, (1) 2 m2 Z 4πd2(x) intheDMdistributioninthehalo.Itisnowwellestablishedthat DM V 2 F.Stoehret al. Figure 1. The distribution of DM in our highest-resolution simulation Figure2.CircularvelocitycurvesforthesimulationsGA0n,GA1n,GA2n GA3n.Theregiondisplayedisacubeofside270kpc,i.e.1timesr200. andGA3n.Theverticallineindicatesthelocationofthevirialradiusr200. Eachparticleisweightedbyitslocaldensitysothatthepicturerepresents Thebest-fittingNFWprofilewithconcentrationcNFW =10isplottedin animageinannihilation radiation. Themainimagehasalogarithmic in- longdashes.AfitoftheformproposedbySWTSwitha=0.17isshownin tensity scale, whereas the small image reproduces the centre ona linear dots.AtsmallradiitheslopeforGA3nisconsiderably belowthatcorre- intensityscale. spondingtoadensityprofilewithρ∝r−1.5. 5 to 10 per cent of the halo mass in (CDM) haloes is contained withanintermediateresolutiondarkmattersimulationofa‘typical’ in gravitationally self-bound substructures (Mooreetal. 1999; regionoftheUniverse(N ∼6×107,particlemass∼108M⊙)for Klypinetal.1999).Ifthecentralregionsofthesesubhaloeswere which the techniques of Springeletal. (2001a; hereafter SWTK) denseenough,theycouldproduceasubstantialfractionoftheto- havebeen used tofollow theformationof thegalaxy population. talannihilationradiationfromthehalo(Calcane´o-Rolda´n&Moore We identify a relatively isolated ‘Milky Way-like’ galaxy which 2000). had its last major merger at z > 1.5. Then we resimulate its In recent years, advances in integrator software, multi-mass haloataseriesofhigherresolutions,againusingtechniquesfrom initialconditiontechniquesandcomputerspeedhavemadeitpos- Tormenetal.(1997)andSWTKandtheN-body code GADGET1 sible to simulate the DM halo of the Milky Way with sufficient (Springeletal. 2001b). We have rerun the simulations of SWTS resolutiontoseethedenseregionswhichdominatetheannihilation withhigher force accuracy and have added an additional simula- signal. Inthepresent paper weuse aseriesof high resolution N- tion with even higher mass resolution. In the simulations GA0n, bodyDMsimulationstopredicttheannihilationfluxfromaCDM GA1n,GA2nandGA3ntheresimulatedhalohas14097,128276, halosimilarinmasstothehalooftheMilkyWay. 1204 411 and 10 089 396 particles, respectively within r , the 200 InthenextsectionwebrieflydescribetheN-bodysimulations radius within which the enclosed mean density is 200 times the wehavecarriedout.InSection3wemeasurecircularvelocitypro- criticalvalue. filesforour haloesanddiscusstheir implicationsforthestrength Thesimulatedhaloeswerescaled-downinvelocity,massand oftheannihilationfluxfromtheinnerGalaxy.InSection4wethen radius (but with unchanged density and time-scales) so that their analyse thefluxenhancements dueto bound substructures and to circularvelocitypeaksat220kms−1.Withthisscaling,darkmat- other density irregularities. In Section 5, we use the annihilation terparticlemassesare1.8×108,1.9×107,2.0×106and2.5×105 cross-sections currently considered plausible to evaluate whether M⊙ and Plummer equivalent softening lengths are 1.8, 1.0, 0.48 haloγ-rayproductionislikelytobedetectablewiththenextgen- and 0.24 kpc in GA0n, GA1n, GA2n and GA3n, respectively. In erationoftelescopes.Finally,Section6summarisesourresultsand all four r ≈ 270 kpc. Note that since the stars of the Milky 200 comparesthemtothoseofotherworkers. Waycontributesignificantlytoitsmeasuredrotationvelocity,our chosen scaling probably produces too largeamass for the Milky Way’shaloandthusalsoforsubstructureswithinit.WeuseSUB- 2 N-BODYSIMULATIONS FIND(SWTK)toidentifyself-boundsubstructure.Amoredetailed descriptionofthesimulationset-upcanbefoundinSWTS.Fig.1 Inthispaperweusesimulationsofthe‘MilkyWay’halostudied showstheprojected, density-weighted DMdistributioninaloga- previouslybyStoehretal.(2002;hereafterSWTS).Weworkwith rithmicrepresentationwhichcorrespondstoanimageofitsannihi- aflatΛ-dominatedCDMuniverse,withmatterdensityΩ =0.3, m lationradiation.Manysubstructuresarevisible.Arepresentationof cosmological constant Ω = 0.7, expansion rate H = 70 Λ 0 km s−1Mpc−1, index of the initial fluctuation power spectrum n=1,andpresent-dayfluctuationamplitudeσ8 =0.9.Webegin 1 www.mpa-garching.mpg.de/gadget/ Darkmatterannihilationin thehaloof theMilkyWay 3 thehalocentrewithalinearintensityscale(butonthesameangular scale)isshownintheinset. 3 SMOOTHHALOSTRUCTURE Themost crucialparameter determiningtheannihilationrateina smooth halo is the point at which the slope of its density profile passes through the critical value −1.5. Most of the annihilation radiation will come from this region. It is difficult to distinguish slopesinlogarithmicplotsofdensityagainstradius,soinFig.2we showcircularvelocityprofiles 1/2 1/2 GM(<r) G V (r)= = ρ (x)dV , (3) c (cid:20) r (cid:21) (cid:20)r Z DM (cid:21) V(r) whereV(r)istheregionwithindistancerofhalocentre.Weplot thesecurvesdowntoadistancefromthecentreequaltothesoft- eninglength,andweoverplotthebest-fittingNavarro-Frenk-White (NFW)profile(Navarroetal.1997)indashes.Wealsoindicatethe critical value for the slope, ρ(r) ∝ r−1.5, and the value for an isothermalprofileρ(r)∝r−2.WefindtheNFWprofile 3H2 δ Figure3.SubhalomassfunctionsfortheGA3n(MilkyWay)andS4(clus- ρ(r)= 0 c (4) 8πG c x(1+c x)2 ter) simulations. Subhaloes identified by SUBFINDand with ten or more NFW NFW particlesareincludedinthesedistributions. withx = r/r and c = 10 tobe a reasonably good fit to our 200 dataoutsidetheinnercoreregion.Abetterfitisaparabolicfunc- tionoftheformproposedbySWTSwithawidthparameterofa= Nusser&Sheth1999;Subramanianetal.2000;Dekeletal.2002) 0.17 (the dotted curve in the figure). This profile has a substan- butdespitesomeinterestingideasaconvincingfinalanswerisstill tiallyshallowerdensityprofileatsmallradiithantheNFWprofile. missing.Forthepurposesofthispaperthecriticalissueiswhether ThemeasuredcircularvelocityprofilesofGA2nandGA3nagree the slope of the density profile interior to the points for which it very well, but a comparison with GA1n and GA0n suggests that hassofarbeenestimatedaccuratelyfromsimulations(i.e.atradii thisapparentconvergenceisinpartafluke.Thecurvesforthetwo below1kpc)remainssignificantlyshallowerthan−1.5.Ifitdoes, lower-resolution simulations converge towithin 5 per cent of the thentheintegraloverthesmoothhalodensitydistributioniscon- high-resolutionanswerbeyondabout5timestheirrespectivesoft- vergentandcanbeestimatedreasonablyaccuratelyfromhighres- eninglengths.AssumingthistobetrueforGA2nandGA3nalso, olutionsimulations,forexamplefromGA3nwhichiscurrentlythe the inner slope of the density profileof our simulated halo ises- bestresolvedsimulationofagalaxyhaloevercarriedout. tablishedtobewellbelow−1.5.Withthiscriterion,convergence Bergstro¨m,Ullio&Buckley (1998) show that if a smooth forGA3nisachievedjustoutside1kpcoratabout0.4percentof NFW halo, similar to that of Fig. 2, is a good description r .Thisagreeswiththeexpectationfromtheconvergencestudy of the Milky halo of the Way, then for some minimal super- 200 of Poweretal. (2003) who performed a large number of simula- symmetric extensions of the Standard Model (MSSM) the γ-ray tions of several haloes using two different N-body codes as well flux may just be detectable with next generation telescopes. The asawidevarietyofcodeparameters(timestep,softening,particle flux could, however, be significantly enhanced if the density dis- number,etc.). tribution within the halo is sufficiently clumpy (Bergstro¨metal. The concentration parameter for our NFW fit to our halo is 1999; Calcane´o-Rolda´n&Moore 2000; Taylor&Silk 2003). We c = 10. Thus, δ = 4.48 × 104 and the above value of now estimate whether the clumpiness of our simulated haloes is NFW c r implies a scale radius r = 27 kpc, and a density at the enoughtoproducealargeenhancement. 200 s Sun’sposition(r0=8.0kpc)ofρ0 =1.2×107 M⊙/kpc3 =0.46 GeVc−2cm−3. ForourNFWfit,halfoftheannihilationradiationispredicted 4 HALOSUBSTRUCTURE tocomefromwithin0.26r whichis7kpc.Thustheresolutionin s GA3nappearseasilysufficienttomeasurethebulkoftheemission, InGA0n,GA1n,GA2nandGA3nthetotalmassingravitationally eventhoughstillbetterresolutionwouldclearlybedesirable.Un- boundsubstructures,identifiedwithSUBFIND,is1.7,3.0,5.1and fortunately, thenumerical situationwillnot improvedramatically 4.1percent,respectively;thefluctuationsareduetotheexclusion inthenextfewyearsunlessrevolutionarynewtechniquesaredis- orinclusionofoneortwomassivesatelliteswithintheradiusr 200 covered.AsdiscussedatlengthbyPoweretal.(2003),anincrease that we consider to define the halo boundary. These percentages in halo particle number by (say) two orders of magnitude would areverysimilartothosefoundintheclustersimulationsofSWTK. provideanincreaseinlengthresolutionathalocentrebyatbesta InFig.3weshowtheabundanceofsubstructuresasafunctionof factorof10. massfractionforourhighestresolutionsimulationGA3n,aswell Many authors have tried to determine the inner slope of asforS4,thehighest-resolutionsimulationofSWTK. dark halo density profiles through physically based analytic ar- Thesetwomassfunctionsareremarkablysimilarandarevery guments (Peebles 1980; Hernquist 1990; Syer&White 1998; close to a power-law dn/dm ∝ m−1.78 as shown by the solid 4 F.Stoehret al. Figure4.Left-hand panel: Circular velocity curves fortheGA3nsubhaloes ranked 1,5,10,...40inmass(solid)together withcorresponding SWTSfits (dotted).ForcomparisonanNFWprofile(dashed)andanSWTSprofilewitha = 0.17(thevalueforthemainhalo)areoverplottedonthemostmassive subhalo.Theverticalsolidlineshowsthesofteninglength,thediagonallinetheprofileslopecorrespondingtoaconstantdensity.Right-handpanel:Valuesof aandrmax(theradiusofmaximumcircularvelocity)formatchingsubhaloesinGA2n(open)andGA3n(filled).Thehorizontallineisa=0.17,thevalue forthemainhalo. line in the figure. They are consistent with the findings of other halo substructures corresponds to density profiles shallower than authors (Mooreetal. 1999; Klypinetal. 1999; Metcalf&Madau NFW. 2001; Fontetal. 2001; Helmietal. 2002), although the range of We study this point in more detail in the left-hand panel of published values (1.75 to 1.9) suggests that the close agreement Fig.4which shows thecircular velocityprofilesfor a set of rep- between these two particular haloes islikely to be a fluke. Some resentativesubhaloesinGA3n.ThiscanbecomparedwithFig.2 variation isundoubtedly due tothefact that different authors use ofSWTSwhichgivesasimilarplotforthe9timeslowerresolu- different algorithms to define substructure, but these effects have tionsimulationGA2exceptthatweheretakeonlygravitationally notyetbeenstudiedindetail.Notethatsuchslopesarealsofound boundparticlesintoaccount.Clearly,theparabolicfittingformula at low mass for the massfunction of isolatedhaloes in aΛCDM suggestedbySWTSprovidesanexcellentcharacterisationofcir- Universe, suggesting that the fraction of mass lost depends only cularvelocitycurvesinthishigherresolutioncasealso.Asbefore, weaklyon theinitialmassof an accretedDMhalo. These slopes thecircularvelocitycurvesforthesubhaloeshavesubstantiallynar- areshallowenoughtoensurethatmostofthemassinsubstructures rowerpeaksthanthecurveforthemainhalo.Indeed,thevaluesof iscontainedinthefewmostmassiveobjects.Thuswedonotexpect thewidthparameteraforGA3nsubhaloesareverysimilartothose thetotalmassinsubstructuretoincreasesignificantlyasresolution forGA2subhaloes.Theshapeconvergenceforsubhalodensitypro- isextendedbelowourcurrentlimit. filesisdemonstratedintheright-handpanelofFig.4.Weidentify As suggested by Bergstro¨metal. (1999) and correspondingsubhaloes(i.e.subhaloeswhichformedfromthein- Calcane´o-Rolda´n&Moore (2000), if these subhaloes are fallofthesameprogenitorobjectontothemainhalo)inGA2nand sufficientlyconcentrated,theycanmakeasubstantialcontribution GA3n.Thenweplota(a,rmax)pointforeachofthetwosimula- to the total annihilation flux from the halo. Just as for the main tionsandjointhesymbolsbyaline.Theagreementofthevalues halo, the critical question regards the structure in their inner foundisquitegoodandthereisnosystematictrendineitherparam- regions–inparticular,whethertheycontainmoreorlessmassat eterasthemassresolutionisincreasedbyanorderofmagnitude. thehighestdensitiesthandoesthecoreofthemainhalo.Recently The results of Hayashietal. (2003) confirm that subhalo centres Hayashietal.(2003)carriedouthigh-resolutionsimulationsofthe aresignificantlylesscuspyeitherthantheobjectsfromwhichthey tidal stripping of satellites to assess how their internal structure formedorthanisolatedhaloesofsimilarmass.Theirsubhalocir- is affected by the removal of the outer material. Their results cularvelocitycurvesareverywellfitbyourparabolicformulaand show clearly that the stripping process reduces the density of requiresimilarvaluesofa.Thisagreementfortwodifferentsimu- an accreted object at all radii, not just in its outer regions. Thus lationtechniquesandoveraresolutionrangeofanorderofmagni- tidal effects progressively lower the annihilation luminosity of tudesuggeststhatthereducedconcentrationofsimulatedsatellites an accreted system. If its γ-ray flux was convergent in the inner isunlikelytobeaneffectofnumericalrelaxation,butmorelikely regionswhileitwasanindependentsystem,thenitconvergeseven reflectstheinfluenceoftidalshockingontheinnerregionsofsatel- more rapidly once it has become a partially stripped ‘satellite’. litesubhaloes. Both the individual satellite simulations of Hayashietal. (2003) Wenowproceedtoestimatetheannihilationluminosityofour andtheresultsplottedinSWTS,suggestthattheinnerstructureof simulations directly in order to evaluate how much of the flux is Darkmatterannihilationin thehaloof theMilkyWay 5 contributedbythevariousdifferentpartsofthesystem.Todothis weevaluatethe‘astrophysical’partofequation(1)intheform N200 J = ρ2 dV = ρ m , (5) DM i i Z V Xi=1 where ρ is an estimate of the DM density at the position of the i ithparticle,m isitsmass,andN isthetotalnumberofparti- i 200 cles withinr . Withthisrepresentation of the fluxit iseasy to 200 evaluatethecontributionfromanysub-elementofthehalosimply by restricting the sum to the relevant particles. We will consider howtheseJsshouldbeconvertedintoγ-raydetectabilitylimitsfor variousWIMPparametersinSection5. The quality of our estimate of J will obviously depend strongly on the quality of our estimates of DM density. For a given simulation we would like these estimates to have the max- imumpossibleresolution.Wehaveelectedtodeterminetheρ by i Voronoi-tessellation.Thisprocedureuniquelydividesthreedimen- sionalspaceintoconvexpolyhedralcells,onecentredoneachpar- ticle.Acellisdefinedtocontainallpointsclosertoitsparticlethan toanyother.Thedensityestimateforeachparticleisthenitsmass dividedbythevolumeofitscell.Wehaveusedthepubliclyavail- ablepackage QHULL2tomaketheseestimates.Onemajoradvan- Figure5.ThesumJ,whichisproportional totheexpected annihilation tageofthisschemeincomparison,say,todensityestimationwith luminosity,isplottedasafunctionofsubhalomassforallsubhaloeswith anSPHkernel isthatitisparameter-freeandhasveryhighreso- morethan50particlesinGA0n(circles),GA1n(crosses),GA2n(dots)and lution;thedensityestimateforeachparticleisdeterminedbythe GA3n(triangles).ThevalueofJforthemainhaloasawholeisindicated positionofitsfewnearestneighbours.Anotheristhatitisunbiased bythelargertriangle.SubhaloeswiththesameJ/MastheGA3nmainhalo andthatthesum N200m /ρ recoversthefullvolume. wouldlieonthesolidline.Thedashedlinecorrespondstoa4timeslarger i i i AdirectnumPericalevaluationofJ usingequation5willdif- valueofJ/M.Verticallinesindicatesubhalomassescorrespondingto200 ferfromthevalueobtainedbycarryingouttheappropriateintegral particles ineachofthefoursimulations. Abovetheselimitssubhaloes in overthecircularvelocitycurvesofFig.2.Thisisbecauseanydevi- allfoursimulationshavesimilarvaluesofJ/Mwithnoobvioustrendwith subhalomass. ationfromstrictsphericalsymmetryresultsinthesumofρ m over i i asphericalshellbeinglargerthantheproductofitstotalmassand itsmeandensity.Thusflux‘enhancements’willresultfrombound subhaloes,fromunboundstreams,fromtheoverallflatteningofthe tidallimitisreduced byasubstantiallygreater factor thanthatin haloandfromnoiseinthedensityestimatesduetodiscretenessef- theregionsnearthepeakofitscircularvelocitycurve.Thiseffect fects.Thelastcontributioniseasilyestimated.Inanyregionwhere increases the luminosity per unit mass of a substructure relative themeanparticleseparationissmallcomparedtothelength-scale tothemainhalointeriortoitsposition. Highervaluesmight also for density variations, our Voronoi scheme will give 22 per cent beexpectedbecausesubhaloeshadlowermassprogenitorsathigh morefluxthanwouldbeobtainedusingtheaveragedensity.Foran redshiftthandidthemainhalo,andsobeganlifewithhighercon- ellipsoidalNFWhalowithaxialratios1:1.2:1.8,similartowhatwe centration(see Navarroetal. (1997) and Bullocketal.(2001) for measureintheinnerregionsofoursimulatedhaloes,theenhance- estimates).Ontheotherhand,wehavearguedabovethattidalef- mentduetotheflatteningisabout 15percent.Theenhancement fectsalsoreducetheconcentrationoftheinnercoreofsubhaloes, duetoboundstructuresisestimatedexplicitlybelow. thusreducingtheirannihilationluminosities.TheJ/M valuesfor Ifsubhaloesweresimplyscaleddowncopiesofthemainhalo substructuresreflectthecombinationofalltheseeffects. withr ∝ M1/3,thentheirfractionalcontributiontotheannihila- Fig.5showsthesumsJ –whichareproportionaltoannihila- tionluminositywouldbethesameastheirfractionalcontribution tionluminosity–asafunctionofsubhalomassforallfourofour tothemass,i.e.roughly5percent.However,thealgorithm SUB- simulations and for subhaloes containing at least 50 particles. A FINDboundssubstructuresatthepointwheretheirdensityequals pointisalsoplottedforthemainhaloasawhole.Ifsubhaloeswere thelocaldensityofmaterialwithinthemainhalo.Asaresult,the similartothemainhalo,theywouldliealongthesolidlineofcon- internalstructureofasubhalocannotbesimilartothemainhaloas stantJ/M.Clearly,J/M islargerforthesubhaloes.Verticallines awhole,butmightbesimilartothatpartofitwhichliesinteriorto intheplotindicatesubhalomassescorrespondingto200particles thepositionofthesubhalo(scaleddowninsizebythecuberootof foreachofthefour simulations.Abovetheselimitsthevaluesof theratioofthesubstructure’smasstothetotalhalomasswithina J forsubhaloesinGA0n,GA1nandGA2nappeartoconvergeap- spherepassingthroughit).Ifsuchself-similaritywereactuallyto proximatelytothosefoundinGA3n.ThissuggeststhattheGA3n holdthentheannihilationluminosityperunitmass(i.e.thequan- resultsmayalsobereliableforsubhaloeswithmorethan200par- tityJ/M)wouldbethesameforthesubhaloasforthemainhalo ticles. Such GA3n subhaloes have J/M values typically 4 times interiortoitsposition.Infact,however,thestudyofHayashietal. largerthanthemainhaloasawholeandtwiceaslargeasthepartof (2003)showsthatthedensityofasatelliteatradiiapproachingits themainhalointeriortotheirposition.Theothereffectsdiscussed abovepresumablyaccountfortheremainingfactor.Notethatthere isnoindicationthatJ/M dependsonsubhalomassforsubhaloes 2 www.geom.umn.edu/software/qhull/ withmorethan200particles.Thisimpliesthatthetotalluminosity 6 F.Stoehret al. from subhaloes, like the total subhalo mass, is dominated by the These issues are clarified in the right-hand panel of Fig. 6, largestobjects. whereweplotcumulativeradialdistributionsfortotalmassandto- Theleft-handpanel ofFig.6showsthecontributionsofdif- talannihilationluminosityexclusiveofsubstructure,aswellasfor ferentcomponentstothetotalestimatedannihilationluminosityof thenumber,massandannihilationluminosityofsubhaloes.While our simulatedhaloes. Thesmoothhalo component isshown bya thediffuseluminosityismuchmorestronglyconcentratedtowards dashedline.Thiswascalculatedfromthecircularvelocitycurves the Galactic Centre than the mass, all properties of the substruc- of Fig. 2 and was corrected up by 15 per cent to account for the turearemore weaklyconcentrated. Inaddition, since J/M isin- factthatthemainhaloisellipsoidalrather thanspherical, andby dependentofsubhalomass,whichinturnisalmostindependentof 22percenttoaccountfordiscretenessnoiseinourVoronoidensity distancefromtheGalacticCentre,thedistributionsofsubstructure estimates.Thetotalluminosityfromboundsubhaloesisindicated number,massandluminosityareallrathersimilar.Thelattertwo byadottedline.Theremainderofthetotalhaloluminosityisthen aremuchnoisierthanthefirstbecausemostofthemassandmost assumed to come from unbound substructure and is indicated by oftheluminositycomefromthefewmostmassivesubhaloes.At8 adot-dashedline.Allvaluesaregiveninunitsofthecorrespond- kpc,theSun’sgalactocentricradiusliesintheregionwheremost ing smooth halo luminosities. The values of the latter, relativeto ofthediffuseannihilationradiationoriginates,butwellinsideany GA3n,areindicatedbyboxesinthefigure.Thecloseagreementof oftheresolvedsubhaloes inGA3n(thefirstisatR = 17.2kpc) thecircularvelocitycurvesforGA3nandGA2nresultsinidentical andevenfurtherinsideanyofthemoremassivesubhaloes(thefirst predictions for the smooth halo luminosity. The values predicted isatR=70kpc). for GA1n and GA0n are only smaller by 20 and 35 per cent re- WhereasFig.6wasconstructeddirectlyfromGA3n,basedon spectively,suggestingthatconvergenceisapproximatelyachieved ourVoronoi estimateofJ/M foreachparticle,weobtainalmost in the inner regions even for relatively low mass resolution. The identical results if we instead use our SWTS model fits to main reasonissimplythatthesimulationspredictthehalf-lightradiiof haloandsubhalocircularvelocitycurvesandassumethatJ/M is haloestoberelativelylarge(8.6kpcinGA3n)incomparisonwith 4timesthevalueforthemainhaloforallsubhaloeswhicharetoo thenominalresolution. smallforcircularvelocitycurvestobeestimated.Again,thissug- InGA3n,thetotalluminosityisafactorof1.7–the‘clumpi- geststhatGA3nhashighenoughresolutiontogetreliableresults nessfactor’–timesthevalueforasmoothsphericalhalowiththe fortheproblemathand. samecircular velocity curve. Of this70 per cent increase, 25per centisduetoboundsubstructureswith10ormoreparticles,22per centtoPoissondiscretenessnoise,15percenttotheflatteningof 5 DETECTABILITY equidensity surfaces in the inner halo and 8 per cent to unbound fluctuations. Although the fraction of the annihilation luminosity ForourhighestresolutionsimulationGA3nwecanmakeartificial contributedbysubstructureisverysimilarinGA2nandGA3n,it skymapsoftheannihilationradiationbychoosingappropriatepo- isclearthatthisdoesnotindicateabsoluteconvergence.Thetotal sitionsfortheSunwithinthemodel.Fig.7showstheresultofthis massinsubstructuresinGA2nis1.2timeslargerthaninGA3n(a exercisebasedonsixpossiblesolarpositions.Eventhoughweaver- consequenceofthechanceinclusionofacoupleofsubstructuresin agethepredictedsurfacebrightnessaroundcirclesoffixedGalac- GA2nwhichliejustoutsider200inGA3n).Ontheotherhand,the tocentric angle, there is significant variation among the resulting luminosityperunitmassofsubstructuresisafactorof1.11larger profiles.Thisisprimarilyaconsequenceoftheprolatestructureof inGA3nthaninGA2n.Inaddition,theluminosityoftheinner10 theinnerregions,clearlyvisibleinFig.1.Theprofilesflattenout per cent of r200 (which dominates the luminosity of the smooth withinabout10◦,quitepossiblyasaconsequenceofpoornumer- halo)is5percentlargerinGA3nthaninGA2n. icalresolution. Primafaciethisseemsplausiblesincetheangular Inordertogetanideaofanupperlimitoftheadditionallumi- scalecorrespondingtooursofteninglength(theverticallinesinthe nositywhichmightbefoundathigherresolutionitisinstructiveto plots)isonly4or5timessmallerthantheradiuswheretheprofiles extrapolatethevariationbetweenGA1nandGA2ndowntoamass bend.Someindicationofthestrengthofthiseffectisgivenbythe resolutionofonesolarmass.(NotethatGA3nlieswellbelowthis twocurves.TheseindicatepredictionsbasedonSWTS(solid)and extrapolation.) Even at such high resolution, the total luminosity NFW (dashed) fits to the circular velocity profile of GA3n, cor- ispredictedtobeonlyabout 3.0timesthatofthesmoothhaloin rectedupbyaclumpinessfactorof1.7.Bothinwardextrapolations GA3n. predictsubstantiallymorefluxwithinafewdegreesthanthedirect Lake (1990) and Bergstro¨metal. (1999) suggested that if a numericalestimates. dark matter substructure happens to be close to the observer, it Itisimportanttonote,however,thattheareapotentiallyavail- mightbemoreeasilydetectedthantheGalacticCentreitself.This ableforameasurementatdistanceθ fromtheGalacticCentrein- possibility was judged plausible by Tasitsiomi&Olinto (2002; creases as θ (for θ ≪ π/2). As a result, the counts available to hereafter TO) who assumed subhaloes to be distributed through detectasignalvaryasθ2timestheprofilesshownintheleftpanel the Galactic halo like the DM itself and tried various models for ofFig.7while,forauniformbackground,thenoiseagainstwhich theirinternalstructure.Fortheinternalstructurepredictedbyour the signal must be detected grows only as θ. Thus the potential simulations,however,itisveryunlikelythatanysubstructurewill signal-to-noise for a detection, shown in the right-hand panel, is outshinetheGalacticCentre.Themostmassiveandmostluminous givenbyθtimestheprofile.Thisfunctionisquiteflatoutto20◦, substructuresarerareandtendtoavoidtheinnerGalaxy.Theypre- bothforthedirectlymeasuredprofilesandforourtwoalternative sumablycorrespondtotheknownsatellitesoftheMilkyWay(see fittingformulae.Thishastwoconsequences:(i)sinceformanyob- SWTS),thenearestofwhichisSagittarius,24kpcfromtheSun. servationsthebackgroundishigherinthedirectionoftheGalactic Thegreaterabundance predictedfor lessmassivesubstructures is Centre,itmaybeadvantageous toobserveatlargeθ ifonehasa insufficienttocompensatefortheirlowerpredictedluminosities– detectorwithsufficientfieldofview;and(ii)theestimatesofde- thechancethatthereceivedfluxisdominatedbyanunexpectedly tectabilitywhichwegivebelowfordetectorswithawidefieldof nearbylow-masssubstructureispredictedtobeverylow. viewarenotgreatlyaffectedbytheresolutionofoursimulation. Darkmatterannihilationin thehaloof theMilkyWay 7 Figure6.Left-handpanel:Theluminositiesofdifferenthalocomponentsasafunctionofmassresolution.Thevaluesforeachsimulationarescaledsothat theluminosityofitssmoothhaloisunityaftercorrectionforPoissondiscretenessandflattening.Thelargesquaresshowtheluminositiesofthesesmoothhalo componentsinunitsofthevaluefoundinGA3n.Right-handpanel:Cumulativeluminosity(dashed)andmass(solid)fortheGA3nmainhalo(thick)andfor thesubhaloeswithmorethan50particles(thin)asafunctionofradius. Figure7.MeanpredictedsurfacebrightnessofannihilationradiationasafunctionofangulardistancefromtheGalacticCentre.Thehatchedregionsenclose profilesestimateddirectlyfromsixdifferent‘solar’positions8kpcfromthecentreofGA3n,whilethetwocurvesgivesresultsbasedonSWTS(solid)and NFW(dashed)fitstothecircularvelocitycurve,togetherwithanenhancementfactorof1.7.Intheleft-handpanelthesurfacebrightnessprofilesareplotted directly,whereasontherighttheyaremultipliedbyonepoweroftheangleθtorepresentthesignal-to-noiseexpectedinanobservationoffixeddurationofa regionwhosesizeincreasesinproportiontoθ,(specifically[θ,1.01θ]).Verticaldashedlinesindicatetheanglesubtendedbythegravitationalsofteninglength atthedistanceoftheGalacticCentre. 8 F.Stoehret al. Usingtheseresults, wecancheck iftheinner regionsof the Table1.Simplifiedtelescopespecifications Milky Way or a substructure halo close to the Sun might be de- tectablewithnext generation γ-raytelescopes. Weuse theexcel- lentpackage DARKSUSY3tocomputethecross-sectionshσviand A[me2f]f [GeEVtch−2] [σ◦θ] θm[◦a]x neutralinomassesm foraMonte Carlosamplingof theMSSM χ parameterspace.TheresultsareshowninFig.8.Fromroughlytwo VERITAS 104 50 0.1 1.75 GLAST 0.8 0.02 0.1 53 millionmodelsrandomlypickedoutoftheparameterspace,19421 didnotviolatecurrent acceleratorbounds. Ofthese,825resultin relicdensitiesofcosmologicalinterest,i.e.0.17 < Ω <0.43, DM the95percentconfidenceintervalquotedbySpergeletal.(2003). dentofnumericaluncertaintiesintheinnermoststructureofCDM ForsamplingtheMSSMparameterspacewefollowedthechoices haloes. ofTO.Forgiventelescopeandobservationparameters–i.e.theef- Theseresultsareshown inFig.8. Thesolidcurvegives our fectiveareaAeff,theintegrationtimet,theangularresolutionσθ, estimatedlowerlimitonthecross-sectionfora3-σdetectionofthe theradiusofthefieldofviewθmax,theeffectivebackgroundcount Galactic Centre in a 0.1◦ beam for a 250-h observation with the rate and the significance required for detection Ms – the small- plannedACTVERITAS.Thisparticularcalculationextrapolatesto estdetectablecross-sectionhσvicanbecomputedasafunctionof smallradiiusingtheNFWmodelofFig.7andthesignal-to-noiseis theneutralino mass mχ (Bergstro¨metal. 1998; Baltzetal.2000, thenmaximisedforthesmallestresolveddetectioncell.Theshort- TO).Incomputing theexpected signal,thevolumeof integration dashedcurveisthecorrespondinglimitforinwardextrapolationus- inequation(1)hastobetakenasthevolumeofthehalocontained ingtheSWTSmodel.Inthiscasethesignal-to-noiseismaximised withinthechosen detectioncell which willbethe resolutionele- usingadetectioncellofradius1.75◦,correspondingtothefullfield mentofthetelescopeforhighlyconcentratedsourcesbutmaybe ofviewofVERITAS.Thecorrespondinglowerlimitfordetection muchlarger fordiffusesources suchastheemissionpredictedin ofthebrightest substructure inour sixartificialskies, againfora Fig. 7. We concentrate on estimating the γ-ray continuum signal 1.75◦ beam, is shown by the long dashed curve. We assume the whichiseasiertodetectthanthelinesignal(Baltzetal.2000,TO). inner density structure of this object tobe correctly described by Averaged over a gaussian beam of width σθ=0.1◦, the reso- ourSWTSmodelfit.A250-hobservationmayjustbeenoughde- lutionelementforthetelescopeslistedinTable1,theline-of-sight tecttheGalacticCentre,atleastforafewoftheplausibleMSSM integralofthesquareofthemassdensity(equationA3)inthedirec- models.Detectionofsubstructureappearsoutofreachunlessour tionoftheGalacticCentretakesvalues5.2×1025 and1.8×1024 simulationshavegrosslyunderestimatedthecentralconcentration GeV2c−4cm−5forinwardextrapolationsofourNFWandSWTS ofsubhaloes. fitstothemainhalocircularvelocitycurve.Thelargedifferencere- Fig.8alsoshowscross-sectionlimitsfora1-yrexposurewith flectsthefactthatthisestimateissensitivetodensityvaluesfarin- thesatellitetelescopeGLAST.Thestraightlong-dashedlineisthe sidetheregionresolvedbyoursimulations.Fig.2suggeststhatthe limitfordetectingthebrightestsatellite,assumingthistobeoutside lowervalueobtainedfromtheSWTSextrapolationismorelikely theregionwithstrongdiffuseGalacticemissionandusingadetec- correct.Toestimatethemaximum plausiblebrightness forasub- tioncellofradius5◦correspondingtothethepeaksignal-to-noise halo,weexaminedthesixartificialskiesusedtomakeFig.7and angle.Thestraightsolidlinegivesthelimitfordetectingannihila- identifiedthebrightestsubhaloineachafterconvolutionwitha0.1◦ tionradiationinanannulusbetween25◦and35◦fromtheGalactic beam.Thebeam-averagedline-of-sightintegralofdensitysquared Centrebutexcludingtheregionwithin10◦ oftheGalacticPlane. forthe(apparently)brightestsubstructureinthesesixrealisations We assume that the total diffuse Galactic emission in this region is4.9×1023GeV2c−4cm−5. iszero.Theresultsherearequiteencouraging. TheinnerGalaxy To estimate detectability, we have to specify the appropri- shouldbedetectableformostallowableMSSMparameters,while atebackground levels.Weaccountfortheelectron-induced back- thebrightestsubstructureisalsodetectableformanyofthem(for groundinACTobservations,andfortheextragalacticbackground TO’simplicitlyadoptedpriorontheMSSMparameterspace). emission in space-based observations. We neglect any hadronic WhereasthefieldofviewofGLASTcoversalmostafifthof background. All observations at low latitudes and in the general thefullsky,thesmallerfieldofviewofVERITASallowsobserva- directionoftheGalacticCentreareinadditionaffectedbythedif- tionofonlyoneobjectatatime.Inaddition,ACTscanonlyoperate fuse Galactic γ-ray emission. Although this contribution can be about6hpernight.Forthesereasonsweconsiderexposuretimes neglectedforACTobservations,itisthedominantbackgroundin of1yrforGLASTand250hforVERITAStobelargebutfeasible. thesedirectionsforspaceexperimentslikeGLAST.Incombination withtheresultsofFig.7,thisimpliesthatthebestsignal-to-noise isexpectedforanobservationofabroadbrokenannuluswhichex- 6 DISCUSSION cludes the Galactic Center and the Galactic Plane. If we assume thatthediffusegalacticcomponentdropstotheleveloftheextra- Wehavedirectlyestimatedtheγ-rayemissivityofthehaloofthe galacticbackgroundbeyond30◦ fromthecentreand10◦ fromthe MilkyWayusinghighresolutionsimulationsofitsformationina plane, a signal-to-noise ratio can be achieved which is about 12 standard ΛCDM universe. A series of resimulations of the same timesbetterthanthatfora0.1◦beaminthedirectionoftheGalac- DMhaloatdifferentmassresolutionallowsustocheckexplicitly ticCentre(foranassumedNFWprofile).Thisresultisspectacular: fornumericalconvergence inour results.Wefindthattheresolu- thedensity profileof theDMhalo inthese regionsiswell estab- tionlimitofourlargestsimulationisalmostanorderofmagnitude lished from the simulations and the prediction becomes indepen- smallerthanthehalf-lightradiusfortheannihilationradiation,and thatourestimatesofthetotalfluxarealmostconverged.Weargue thattheannihilationradiationfromsubstructurewithintheGalactic haloisdominatedbythemostmassivesubhaloes,isconcentratedin 3 www.physto.se/∼edjso/darksusy/ theouterhalo,andislessintotalthantheradiationfromthesmooth Darkmatterannihilationin thehaloof theMilkyWay 9 theycanbereliablyestimatedinoursimulations.Clearly,thisin- troducessubstantialuncertainty.Ourresultssuggestthatthecentral regionsoftheGalaxywillbeintrinsicallymoreluminousthanthe brightestsubstructurebyafactorofatleast10,andapparentlymore luminousbyafactorapproachingonethousand.Theangularscale associatedwiththecentralemissionwillbeseveraltensofdegrees whilethatassociated withthesubstructure willbeafewdegrees. This suggests that it may be worthwhile to investigate detection strategieswhicharesensitivetolarge-scalediffuseemission.No- ticethatsinceourresultsimplythatthemostapparentlyluminous subhaloes will also be among the most massive, it is likely that thebrightestsubstructuresourcewillbeidentifiedwithoneofthe knownsatellitesoftheMilkyWay.TheclosestoftheseistheSagit- tariusdwarfatadistanceof24kpc,butitmaywellbeoutshoneby theLMCatadistanceof45kpc.Botharesufficientlyfarthatthey will be much fainter (and smaller in angular size) than the main halosourcewhichiscentredonly8kpcaway. Following TO, and using DARKSUSY, we checked for de- tectabilityoftheinnerMilkyWaywithVERITASandGLAST,ex- amplesofground-andspace-basednext-generationtelescopes,re- spectively.Ifweextrapolateoursimulateddensityprofilesinwards usinganNFWfit,VERITAScanprobeintotheparameterrangesin whichaminimalsupersymmetricextensionoftheStandardModel Figure8.MSSMmodelsofcosmologicalinterest(dots)and3-σdetection could provide a DarkMatter candidate withthe observed cosmic limitsforVERITASandGLAST.ForVERITASthelimitsareshownfora pointingatthecentreoftheMilkyWay,assuminganNFWprofile(solid) density.Unfortunately,extrapolatinginwardsusingourSWTSfit, andanSWTSprofile(shortdashes).Thelowersolidlinegivesestimated which appears to provide a better description of our simulations, limitsforGLASTforalargerareaobservationoftheinnerGalaxywhich resultsinlowerpredictedfluxes,undetectableforVERITAS. avoids regions ofhighcontamination bydiffuse Galactic emission. Lim- Bysearchingforextendedemissionoutsidethecentralregion itsforapointingatthebrightesthighlatitudesubhaloareshownforboth where diffuse Galactic γ-ray emission is dominant GLAST can telescopesusinglongdashes.Thebrightestsubhalowaschosenfromthe6 probealargeregionofpossibleMSSMmodels.Thisresultisbased artificialskiesusedinmakingFig.7. ontheDMdistributioninregionswherethesimulationshavereli- ably converged, and so should be robust. It isindependent of the exactstructureoftheDMintheinnermostregions. innerhalo.Forthemostmassivesubhaloesourconvergencestudy Our simulations suggest that the flux from the inner Galaxy indicatessufficientresolutioninourbestsimulationstogetrobust will outshine the brightest substructure by a large factor. Never- estimatesoftheirinternalstructure.Animportantresultisthatsub- theless,forcertainMSSMmodelssomeofthemostmassivesub- halocoresarelessconcentratedboththanthatofthemainhaloand structurehaloesmightbedetectablewithGLAST.Clearlythemost thanthoseoftheirprogenitorhaloes.Thisconfirmsearlierresults massiveandnearestknownsatellitegalaxiesaretheprimarytargets bySWTSandHayashietal(2003)andapparentlyreflectsthein- forobservation. fluenceoftidalshockingonsubhalostructure. We find that 15 per cent of the total flux in our highest- resolution simulation is coming from gravitationally bound sub- haloesandthatnomorethanabout 5percent canbeassignedto ACKNOWLEDGMENTS othersmall-scaledensityfluctuations.Someofourresultsdorely We thank Eric Nuss, Karsten Jedamzik, Argyro Tasitsiomi, strongly on the density behaviour we infer from our simulations Pasquale Blasi, Paolo Gondolo and Torsten Enßlin for many en- for the innermost regions both of the main halo and of the sub- lighteningdiscussions. haloes.Thissubjectisstillcontroversial,althoughthemostdetailed convergence study to date agrees quite well with our results for thecentreofthemainhalo(Poweretal.2003).Asalreadynoted, oursubhalostructureagreeswellwiththatfoundbyHayashietal REFERENCES (2003). Thedisagreement between our resultsand other theoreti- cal work on annihilation luminosities(Calcaneo-Rodan &Moore BaltzE.A.,BriotC.,SalatiC.,TailletR.,SilkJ.,2000,Physical 2000,Tasitsiomi&Olinto2002,Taylor&Silk2003)canbetraced Review,61 tothefactthatthedensityprofilesadoptedinthesepapersarein- Bergstro¨mL.,Edsjo¨ J.,GondoloP.,UllioP.,1999, PhysicalRe- compatiblewiththosewemeasureinoursimulations,particularly view,59 forsubhaloes.Itmayberelevantthatobservationaldataondwarf Bergstro¨mL.,UllioP.,BuckleyJ.H.,1998,AstroparticlePhysics, galaxiesalso speak infavour of dark matter density profileswith 9,137 low concentrations or cores (deBloketal. 2001) although again BullockJ.S.,KolattT.S.,SigadY.,etal.,2001, MNRAS,321, thesituationiscontroversialhere. 559 Toestimatethefluxesexpectedfordeepintegrationswithup- Calcane´o-Rolda´nC.,MooreB.,2000,PhysicalReview,62 comingexperiments,itisnecessarytoextrapolatedensityprofiles de Blok W. J. G., McGaugh S. S., Rubin V. C., 2001, AJ, 122, down toscalesat least an order of magnitude below those where 2396 10 F.Stoehret al. Dekel A., Arad I., Devor J., Birnboim Y., 2002, in tectionM isgivenbythenumber ofdetectedphotonsfromDM s astro-ph/0205448 annihilationsoverthesquarerootofthebackground: FontA.S.,NavarroJ.F.,StadelJ.,QuinnT.,2001,ApJL,563,L1 N HayashiE.,NavarroJ.F.,TaylorJ.E.,StadelJ.,QuinnT.,2003, Ms ≤ annihilation . (A5) N ApJ,584,541 background Helmi A.,WhiteS. D., Springel V., 2002, Physical Review, 66, This allpows us to compute the minimal detectable cross-section 63502 hσvi asafunctionofthemassoftheneutralinom via: min χ HernquistL.,1990,ApJ,356,359 Klypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 2Msm2χ Nbackground hσvi = (A6) 52,82 min N A pt ∆Ω G cont eff 4π los,∆Ω LakeG.,1990,Nature,346,39+ MetcalfR.B.,MadauP.,2001,ApJ,563,9 The detectability scales with Ms, t−1/2 and A−ef1f/2. The back- MooreB.,GhignaS.,GovernatoF.,etal.,1999,ApJL,524,L19 ground counts (hadronic, electron-induced, diffuse-galactic (for NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1997,ApJ,490,493+ the centre of the galaxy) and extra-galactic) are taken from NusserA.,ShethR.K.,1999,MNRAS,303,685 Bergstro¨metal.(1998)andBaltzetal.(2000): PeeblesP.J.E.,1980,TheLarge-ScaleStructureoftheUniverse, dN E −1.7 Princeton h =6.1×10−3 th cm−2s−1sr−1 (A7) PowerC.,NavarroJ.F.,JenkinsA.,etal.,2003,MNRAS,338,14 dtdAdΩ (cid:16)1GeV/c2(cid:17) SpergelD.N.,VerdeL.,PeirisH.V.,etal.,2003, ArXivAstro- dNe =3.0×10−2 Eth −2.3cm−2s−1sr−1 (A8) physicse-prints,2209–+ dtdAdΩ (cid:16)1GeV/c2(cid:17) Springel V., WhiteS.D.M., TormenG.,Kauffmann G.,2001a, dN E −1.7 MNRAS,328,726 d =5.1×10−5 th cm−2s−1sr−1 (A9) dtdAdΩ (cid:16)1GeV/c2(cid:17) SpringelV.,YoshidaN.,WhiteS.D.M.,2001b,NewAstronomy, 6,79 dNeg =1.2×10−6 Eth −1.1cm−2s−1sr−1(A10) StoehrF.,WhiteS.D.M.,TormenG.,SpringelV.,2002,MNRAS, dtdAdΩ (cid:16)1GeV/c2(cid:17) 335,L84 SubramanianK.,CenR.,OstrikerJ.P.,2000,ApJ,538,528 SyerD.,WhiteS.D.M.,1998,MNRAS,293,337+ TasitsiomiA.,OlintoA.V.,2002,PhysicalReview,66,83006 TaylorJ.E.,SilkJ.,2003,MNRAS,339,505 TormenG.,BouchetF.R.,WhiteS.D.M.,1997,MNRAS,286, 865 UllioP.,Bergstro¨mL.,Edsjo¨J.,LaceyC.,2002,PhysicalReview, 66,123502 APPENDIXA: DETECTABILITYCOMPUTATION We summarise briefly how the detectability lines of Fig. 8 were computed following Bergstro¨metal. (1998), Baltzetal. (2000), Ullioetal. (2002) and TO. The solid angle corresponding to the angularresolutionσ ofthetelescopemaybewrittenas: θ ∆Ω=2π[1−cos(σ )], (A1) θ whilethenumberofcontinuumphotonsarrivingonthetelescope is N hσvi ∆Ω N =A t cont G . (A2) annihilation eff 2 m2 4π los,∆Ω χ Here,G standsfortheline-of-sightintegraloftheDMdis- los,∆Ω tributionaveragedoverthesolidangle∆Ω: 1 G = dΩ ρ2 (l)dl. (A3) los,∆Ω ∆Ω Z Z DM ∆Ω los Values for G are given in Section 5. TO give an approxi- los,∆Ω mateformulatocomputethenumbercontinuumphotonsfromone annihilation: 5 10 5 10 N (E >E )= x3/2− x+5x1/2+ x−1/2− (A4) cont γ th 6 3 6 3 Herex = E /m isthequotient oftheenergythresholdofthe th χ telescopeandtheneutralinomass.Finally,thesignificanceofade-