ebook img

Dark matter annihilation energy output and its effects on the high-z IGM PDF

19 Pages·2014·1.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dark matter annihilation energy output and its effects on the high-z IGM

MNRAS445,850–868(2014) doi:10.1093/mnras/stu1780 Dark matter annihilation energy output and its effects on the high-z IGM Ignacio J. Araya1‹ and Nelson D. Padilla2 1DepartmentofPhysicsandAstronomy,UniversityofSouthernCalifornia,920BloomWalk,LosAngeles,California,CA90089-0484,USA 2DepartamentodeAstronom´ıayAstrof´ısica,PontificiaUniversidadCato´licadeChile,Av.Vicun˜aMackenna4860,Santiago,Chile Accepted2014August27.Received2014August24;inoriginalform2013February21 D o ABSTRACT w n Westudythecaseofdarkmatter(DM)self-annihilation,inordertoassessitsimportanceasan lo a energyinjectionmechanism,totheintergalacticmedium(IGM)ingeneral,andtothemedium de d within particular DM haloes. We consider thermal relic WIMP (weakly interacting massive fro particle) particles with masses of 10GeV and 1TeV, and we analyse in detail the clustering m h properties of DM in a (cid:2) cold dark matter cosmology, on all hierarchy levels, from haloes ttp s and their mass function, to subhaloes and the DM density profiles within them, considering ://a adiabatic contraction by the presence of a supermassive black hole. We then compute the ca d correspondingenergyoutput,concludingthatDMannihilationdoesnotconstituteanimportant em feedback mechanism. We also calculate the effects that DM annihilation has on the IGM ic.o u temperatureandionizationfraction,andwefindthatassumingmaximalenergyabsorption,at p z∼10,forthecaseofa1TeVWIMP,theionizationfractioncouldberaisedto6×10−4and .co m the temperature to 10K,and in the case of a 10GeV WIMP,the IGMtemperature could be /m n raisedto200Kandtheionizationfractionto8×10−3.WeconcludethatDMannihilations ra s cannotberegardedasanalternativereionizationscenario.Regardingthedetectabilityofthe /a WIMPthroughthemodificationstothe21cmdifferentialbrightnesstemperaturesignal(δTb), rticle we conclude that a thermal relic WIMP with mass of 1TeV is not likely to be detected -ab s from the global signal alone, except perhaps at the 1–3mK level in the frequency range tra c 30 < ν < 35MHz corresponding to 40 < z < 46. However, a 10GeV mass WIMPmay be t/4 4 detectable at the 1–3mK level in the frequency range 55 < ν < 119MHz corresponding to 5 /1 11<z<25,andatthe1–10mKlevelinthefrequencyrange30<ν<40MHzcorresponding /8 5 to35<z<46. 0/1 7 4 Keywords: cosmology:theory–darkages,reionization,firststars–darkmatter. 9 1 7 0 b y g u e 1 INTRODUCTION For example, assuming that the DM consists of particles that st o were originally in thermal equilibrium with the radiation in the n 0 The dark matter (DM) is a component of the total density of the earlyUniverse,dependingonthemassoftheparticles,thestruc- 5 A Universewhichcanbemeasuredonlythroughgravitationalinterac- tureformationscenariowillbetopdownorhierarchical.Inthetop p tionsand(likely)weakinteractions.Itbehavesasdust-likematterin down structure formation scenario, the first structures to collapse ril 2 0 thesensethatitiscollisionlessandthatitsenergydensitydecreases are large (on the mass scale that corresponds to present-day su- 1 9 asthethirdpowerofthescalefactor.Therearemanycompelling perclusters),becausealloverdensitiesatsmallerscalesareerased evidencesofitsexistence,althoughallofthemareindirect.These by free streaming. This is the case for a hot dark matter (HDM) aremainlydynamicalevidences,whichrelyonthegravitationalin- model, in which the DM particles were relativistic at the time of fluenceofDM.Someexamplesoftheseevidencesaretherotation decoupling.Inthehierarchicalstructureformationscenario,small curvesoflate-typegalaxies(Rubin&Ford1970),galaxyclusterdy- (andalsolarge)structuresstarttocollapseafterdecoupling,because namics(Zwicky1933)andstronglensing(Paczyn´ski1987),among DMparticleswerenon-relativisticatthetimeofdecoupling,andso others. The effects of DM are very important not only for deter- thefreestreamingisnegligible.Thisisthecaseforanycolddark miningthedynamicsofgalaxiesorgalaxyclusters,butalsoforthe matter(CDM)model(Blumenthaletal.1986),includingthecur- evolutionoftheUniverseasawhole,andforthegalaxyformation rentlyfavoured(cid:2)CDMmodel(seee.g.thePlanckresults;Planck processesandstructureformationscenarios. CollaborationXVI2013),whichwestudyinthiswork. ThepostulatedCDMparticlehasbeennamedaWIMP(orweakly interactingmassiveparticle),becauseitweaklycouplestonormal (cid:5)E-mail:[email protected] matter(forintroductionstothetopicofDMastrophysics,seeRaffelt (cid:3)C 2014TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety DMannihilation effectsonthehigh-zIGM 851 2008;D’Amico,Kamionkowski&Sigurdson2009).Inthestandard Ripamonti,Mapelli&Ferrara2007a;Valde´setal.2007;Chuzhoy scenario,thisparticleisconsideredtobeathermalrelic.Thismeans 2008;Natarajan&Schwarz2009;Cumberbatchetal.2010,among thatitscreationandannihilationprocessesfromtheearlyUniverse others)havestudiedtheeffectsofDMannihilation(andalsodecays, radiationfieldwereinthermalequilibriumwitheachother,andthus, indifferentDMmodels)ontheIGMtemperatureandontheglobal thepresent-dayDMnumberdensityistherelicabundanceafterthe ionization fraction. This extra heating may be detectable through freeze-outofthisprocesses,withannihilationbeingfavouredafter theglobal21cmdifferentialbrightnesstemperature,measurablein theUniversehadcooledenough(Kolb&Turner1990).Thisfact theMHzfrequencyrange.Thisdifferentialbrightnesstemperature alone allows for the computation of the interaction cross-section arisesasaresultofthecouplingoftheneutralhydrogenspintemper- for the creation–annihilation process given only the present-day ature(thataccountsforthehyperfinetransition)totheIGMkinetic abundanceofDM(itsdensityparameter(cid:6) ). temperature, thus causingadifference between thespintempera- m,0 Animportantfeatureofaself-annihilatingthermalrelicWIMPis ture and the cosmic microwave background (CMB) temperature. thattheannihilationproductsarestandardmodel(SM)particles,and Also,theenergyinputmaycontributeasanextraheatingmecha- thus,theymayinjectenergytotheintergalacticmedium(IGM)orto nismwithinhaloesthatcanadduptothestandardSNeandAGN D themediumwhereaparticularDMhaloisembedded.Globally,the feedbackmechanisms(Ascasibar2006;Natarajanetal.2008),and o w annihilationsofWIMPsareunlikelytooccurbecausetheirabun- maychangethetemperatureofthehaloenvironment. nlo dancehaslongagofrozen.However,theremayberegionswhere Regarding the observational evidence for the energy injection ad e encountersamongWIMPsaremoreprobableduetoanenhanced due to DM annihilations, no definite conclusion has been drawn d density. These regions are precisely the regions where structures yet. However, different observations of anomalous enhancements fro m form. Now, it is a direct consequence of the (cid:2)CDM model that in detected signals from high-energy phenomena in the galac- h DM is clumpy, due to the hierarchical growth of structure. Thus, tic halo and in the cosmic background suggest its presence. ttp s itispreciselyintheinnerregionsofDMhaloesandsubstructures Thesesignalscorrespondmainlytogamma-raydetections[Fermi ://a thattheannihilationsaremoreprobable.Theenergyoutputdueto (Abdo et al. 2009), H.E.S.S (Aharonian et al. 2008) and EGRET ca d annihilationswillbeproportionaltothesquareofthedensity;thus, (Sreekumaretal.1998)experiments]andtomeasurementsofcos- e m theselocaldensityenhancementsareofgreatimportance(Natara- micraypositronfractions[PAMELA(Adrianietal.2009experi- ic jan,Croton&Bertone2008). ment)].Forexample,Cline,Vincent&Xue(2010)andFinkbeiner .ou p ThefirsthierarchyindensityenhancementsaretheDMhaloes etal.(2010)analysethedatasetsbyPAMELA,FermiandH.E.S.S., .c o thatdonotbelongtoanygravitationallyboundstructureatapar- andconcludethattheobservedsignalscouldbeaccountedforbyan m ticular redshift. Their average clustering can be characterized by ∼1TeVWIMP.Theyalsofindanenhancedinteractioncross-section /m n thehalomassfunction,whichcanbecomputedbyPress–Schecter (Sommerfeld enhancement) for the annihilation process (∼102 ra s theory (e.g. Press & Schechter 1974; Bond et al. 1991; Lacey & timesthethermalrelicWIMPvalue).Asimilarresultwasalsoob- /a Cole1993;Mo&White1996;Sheth,Mo&Tormen2001,among tainedbyElsa¨sser&Mannheim(2004)withrespecttotheEGRET rtic le others). gamma-raydata(althoughthereareotherinterpretationsofit,for -a Thesecondhierarchyindensityenhancementsarethesubstruc- exampleintermsof∼60GeVmassiveneutrinosbyBelotskyetal. bs tures embedded in a particular halo. These subhaloes will retain 2008).However,thereissomedebateregardingthecompatibilityof trac theiridentitiesevenaftercoalescing.Thus,insideeachDMhalo,it thepresenceofSommerfeldenhancementwiththenon-detectionof t/4 4 isexpectedthatthefullhierarchyofDMhaloesisnestedwithin, gamma-rayfluxfromknownDMstructures(likegalaxyclusters). 5/1 until the lowest mass haloes that formed. The number density of In this line, the study by Pinzke, Pfrommer & Bergstrom (2009) /8 5 thesesubhaloescanbemeasuredinMilkyWay(MW)sizedhalo determines that the attempts of explaining the Fermi, PAMELA 0/1 simulations, and by approximating their abundance by a power- and H.E.S.S. combined data with ∼1TeV WIMPs and cross- 74 law behaviour (Via Lactea II simulation, Diemand et al. 2008; sectionsenhancedbyfactorsof102–103,areincompatiblewiththe 91 7 Acquariusprojectsimulation,Springeletal.2008). EGRET upper limits on the gamma-ray emission from the Virgo 0 b Apart from the number density of haloes and subhaloes, it is galaxycluster.RegardingtheFermigamma-rayexcess,Hooper& y g important to quantify the form of the density distribution within Goodenough(2010)arguethatitcanbewellaccountedforbynon- u e s a particular structure, in order to compute the annihilation power exoticprocesses(decayingpions,inverseCompton,pointsources, t o output.AnexampleofsuchadistributionisgivenbytheNFWpro- etc.),exceptwithin1◦.25(≈175pc)fromthegalacticcentre,where n 0 file(Navarro,Frenk&White1997).Also,thisDMdensityprofile thegamma-rayexcessisconsistentwiththepredictionofacusped 5 A maybefurtherenhancedbythegravitationaleffectofbaryonson (ρ ∝ r−1.34) DM density profile, and annihilating WIMPs with p DMthroughadiabaticcontraction(see,forexample,Sellwood& a thermal relic cross-section (no Sommerfeld enhancement) and ril 2 McGaugh2005;Natarajanetal.2008).Thus,thetotalresultingDM massesintherangem =7.3–9.2GeV.Also,Hooper,Finkbeiner 01 χ 9 distributionintheUniversecanbecomputedataparticularredshift. &Dobler(2007)foundthattheexcessmicrowaveradiationwithin Knowing the global DM distribution, one can compute the re- 20◦fromthegalacticcentre,foundbytheWMAPexperimentand sultingenergyoutputperbaryon,whichcanbefurthercompared called the WMAP Haze, can be well explained by a cusped DM withwhatcanbeobtainedassumingaperfectlyhomogeneousDM profilewithρ ∝r−1.2 intheinnerkiloparsecs,andaWIMPwith distribution(seeMapelli,Ferrara&Pierpaoli2006;Cumberbatch, massinthe100GeVtomulti-TeVrangeandthermalreliccross- Lattanzi&Silk2010).Onecanalsocomputetheenergygenerated section.However,accordingtotherecentnullresultsinDMdirect perunittimebyaparticularhaloofagivenmassandredshift,and detectionobtainedbytheLUXCollaboration(Akeribetal.2014), onecancalculatewhatistheenergyreceivedbyaparticularhalo aWIMPwithmassesbetween∼10and∼100GeVisincreasingly duetotherestoftheUniverse. disfavoured. Also, for lower mass light dark matter (LDM) par- Thisadditionalenergyinjectionmayhaveinterestingeffectson ticle candidates (with masses in the 1–100MeV range), possible the global IGM, as well as on the environment within particu- constraints on the mass and cross-section coming from the CMB lar DM haloes. For example, several authors (for example, Pier- have been studied (see section 5 of Mapelli et al. 2006; Zhang paoli2004;Furlanetto,Oh&Pierpaoli2006;Mapellietal.2006; etal.2006).However,theeffectontheCMBbymassiveWIMPs, MNRAS445,850–868(2014) 852 I.J.ArayaandN.D.Padilla liketheonesstudiedinthiswork,wouldbecompletelynegligible. Intwowell-studiedscenarios,theWIMPparticlesaresuchthat Itcanbeseenthatnoclearconsensusexistsneitheronthesignifi- theyaretheirownantiparticle.Forexample,inthecaseofaKaluza– canceoftheresultsaspositiveindirectdetectionsofDM,noronthe Klein (KK) excited state, arising naturally in compactified extra- importanceofthesedetectionsfordiscriminatingamongdifferent dimensional models (like universal extra dimensions or UED, in WIMPscenarios.Whatcanbesaidnonethelessisthatevidenceof whichallparticlesareabletopropagateintheextradimensionpro- possiblenewexoticphysicsisaccumulating,andthatWIMPDM videdtheyhaveenoughenergy),theWIMPisthelightestneutral- annihilationrepresentsawell-motivatedoption. gaugeboson-excitedstate,correspondingtothefirstexcitedstateof Themaingoalofthisworkistocomputethisadditionalenergy theBbosonorB(1),andastheSMBboson,itisitsownantiparticle injection,bothlocallywithinhaloesandglobally,andtoassessthe (theBbosonisasuperpositionofthephotonofquantumelectrody- importance of this injection on the different processes mentioned namicsandtheZbosonoftheweakinteraction).Also,inthecase above.Allthecomputationswillbedoneconsideringacosmology oftheminimalsupersymetricstandardmodel(MSSM),consider- consistentwiththePlanck2013results(PlanckCollaborationXVI ingconservedRparity(andthusthatsuperpartnersareforbiddento 2013). In particular, we will use h = 0.6711, (cid:6) = 0.3174, decaytoSMparticles),theWIMPisthelightestneutralino(i.e.the m,0 D (cid:6) =0.6825,f ≡ (cid:6)b,0 =0.17,n =0.9624andσ =0.8344. lightestmasseigenstateofthefermionicsuperpartnersofthegauge o Th(cid:2)e,0paperisorgabnariyzeda(cid:6)sm,f0ollows.InsSection2,theth8ermalrelic bosonsandtheHiggses),anditisaMajoranafermion,andthusit wnlo WIMP,andthetwoabove-mentionedwell-motivatedparticularDM isitsownantiparticle. ad e modelswillbeexplainedingreaterdetail.InSection3,thestatis- Inboththesescenarios,theannihilationcross-sectionisdepen- d ticsoftheDMclusteringonallhierarchieswillbedevelopedand dentonlyonthepresent-dayabundanceofDM.Thisfacthasbeen fro m theNFWuniversaldensityprofile,aswellastheadiabaticcontrac- dubbedtheWIMPmiracleandisexplainedinwhatfollows. h tionmechanismwillbeexplained.InSection4,theDMannihila- ttp s tion energy output, both globally (per baryon) and locally within 2.1 TheWIMPmiracle ://a aparticularDMhalowillbecomputed.Also,theclumpinessfac- ca d tor,definedastheratioofoutputbetweenthesmoothedandfully TheWIMPmiraclereferstothefactthat,giventhattheWIMPis e m clumpedcases,willbecalculated.InSection5,theintensityofthe athermalrelic,itscreation/annihilationcross-sectioncanbecom- ic radiationfieldwillbecomputed,andthepowerreceivedfromitby putedwithoutneedingextramodel-dependentinput(exceptforthe .ou p a halo will be obtained. In Section 6, the effects of the annihila- fact that the cross-section must not depend on the energy of the .c o tionenergyinjectionontheglobalIGMwillbefollowedindetail, WIMP,i.e.thes-wavecross-sectionmustbedominant).Thecross- m computing the IGM temperature, the ionization fraction and the sectionthenonlydependsonthepresent-dayDMdensityparameter /m n resulting21cmdifferentialbrightnesstemperatureinthisscenario. (cid:6)χ,0 =(1−fbary)(cid:6)m,0,andthepresent-dayvalueoftheHubble ras ThegeneralconclusionswillbepresentedinSection7. parameter h (that gives the current expansion rate). As expected, /a (cid:6) isinverselyproportionaltothecross-section(cid:8)σv(cid:9). rtic χ,0 le Obtainingthiscross-sectionisastandardderivationanditisdone -a b in,forexample,section5.2ofKolb&Turner(1990).Forthevalue s 2 WIMP MODELS AND THE THERMAL RELIC ofthecross-section,weuse trac TheWIMPisatheorizedparticlethatallowsustoaccountforthe 4×10−27 t/44 mmiasisnilnyggmraavsistaitniotnhael.UTnhivisemrseis.sTinhgemevaisdsecnacnenoofttchoimsmehisoswinegvemrafsrsomis (cid:8)σv(cid:9)= (cid:6)χ,0h2 [cm3s−1], (1) 5/1/8 5 normalbaryonicmatter,becausecurrentbigbangnucleosynthesis which for the cosmology considered in this work corresponds to 0/1 constraints,likeforexampletheprimordialHeliumabundance(sec- (cid:8)σv(cid:9)=3.37×10−26(cm3s−1),anditissimilartothevalueused 74 9 tion10.4ofRyden2003),setstringentlimitsonthenormalmatter byHooperetal.(2007). 1 7 content. Nowwewillmotivateandexplaintwoscenariosthatgiverisenat- 0 b Foracertainparticle,motivatedbysomebeyond-standardphys- urallytoathermalrelicWIMPwiththeabove-givencross-section. y g ical scenario, to be a viable WIMP candidate, it must have some u e s basicproperties.Forexample,ithastobechargeneutralanditcan 2.2 TheKKDMparticle t o interactonlyweaklywithordinarymatter.Also,ithastobemassive n 0 inordertobehaveasCDM.AnLDMparticlewillbehaveaswarm Inextra-dimensionalmodels(i.e.physicalmodelsthatarebuiltcon- 5 A orhotdarkmatterdependingonifitwasrelativisticornotatthe sideringmorethanthreespatialdimensions),theadditionalspatial p timeofdecouplingandalsodependingonitsfree-streaminglength degreesoffreedommaybeaccessibletoallorsomeoftheparticles. ril 2 0 (Angulo&White2010),andtheresultingstructureformationsce- Also,theseadditionaldimensionsmaybecompactifieddifferently 1 9 nario or minimum halo mass will be different to the CDM case. andondifferentenergyscales.IfanSMparticlecanpropagatein Also,aWIMPmustbestable,orhaveadecaytimelongerthan(or this compactified (and thus finitely extended) dimensions, it will atleastcomparableto)thepresentHubbletime. appear more massive in the four-dimensional effective theory. In Insomewell-motivatedphysicalscenarios,theWIMPisather- somecases,theseexcitedstatesofSMparticlesmayhavethedesir- malrelic.Thismeans,aswasmentionedbefore,thatitscreationand ablefeaturesoftheWIMP.Here,wewillbrieflydiscussthelightest annihilationreactionwereinthermalequilibriumwiththeradiation KKparticleWIMPcandidateandtheextra-dimensionalscenarioin background in the early Universe. Then, as the Universe cooled whichitarises.WelooselyfollowtheexcellentreviewbyHooper down,theannihilationreactionwasincreasinglyfavouredoverthe &Profumo(2007). creation reaction due to the rest-mass energy difference between The lightest KK particle in the UED framework (Appelquist, bothstates.Finally,astheexpansionrateoftheUniversebecame Cheng&Dobrescu2001)isB(1),i.e.thefirstKK-excitedstateof largerthantheannihilationreactionrate,theglobalabundanceof the B gauge boson (also called the KK photon). This particle is DM(itscomovingnumberdensity)wasfrozen,andtheprobability chargeneutral,andcanannihilatewithitself,andthusisasuitable ofoccurrenceofanannihilationeventbecamenegligible. WIMPcandidate. MNRAS445,850–868(2014) DMannihilation effectsonthehigh-zIGM 853 SomeofthewaysinwhichKKparticlescaninteractwithSM differentredshifts.Finally,inSection3.4,weexplaintheeffectthat particlesarethroughdecays,annihilationsandscatterings.Forex- thegravitationalcollapseofthebaryonicmatter[inparticular,the ample,aheavierKKparticlecandecayintoalighterKKparticle formationofasupermassiveblackhole(SMBH)]canhaveonthe emittingSMparticles,untilithascascadedintoB(1)(alsocalledγ ; DMdensityprofilethroughadiabaticcontraction. 1 seefig.4ofHooper&Profumo2007). Also,moreinterestinglyinviewofthepossibleeffectsofWIMP 3.1 Thehalomassfunction annihilationontheIGM,twoB(1)canannihilatetoleptonpairsand photons(seefig.16ofHooper&Profumo2007). We use this formalism, as presented in Mo & White (1996), but usingthemodifiedShethetal.(2001)halomassfunctionandbias factor,calibratedwiththeGIFsimulations(Kauffmannetal.1999). 2.3 Theneutralino Weconsidertheoverdensityδ(x)definedasδ(x)= ρ(x)−ρ,and ρ SupersymmetryisaparticularsymmetrypropertyoftheLagrangian theoverdensitythresholdforcollapseδ (z),definedasthedensity c ofaphysicaltheorysuchthatsaidLagrangianremainsinvariantifa contrast(inthelinearapproximation)requiredforanoverdensityin D supersymetrictransformationisperformedonthefieldsofthethe- acertainregiontoalreadyhaveformedacollapsedobject(Navarro o w ory.Thesupersymmetrictransformationissuchthatthechangein etal.1997,equationA14).Weconsideralsothemassfluctuation nlo afermionicfieldisabosonicfield,andthechangeinabosonicfield σ(R), defined as the standard deviation of the matter overdensity ad e isafermionicfiled.Asinquantumfieldtheory,thefieldsrepresent fieldwhensmoothedonascaleofsizeR.Finally,thedimensionless d differentparticlecontents(theparticlesarenothingmorethanthe massparameterisdefinedasν = δc(z) ,anditisameasurement fro σ(R(M)) m excitedstatesofthefields),asupersymmetrictheorynaturallyhas ofthemassofacollapsedregion(DMhalo)relativetothemassof h onebosonforeachfermionpresent,andvice-versa. thestructuresthathaverecentlycollapsedatredshiftz. ttp s TheparticlecontentoftheMSSMisthesameasthatoftheSM, WewillusetheShethetal.(2001)probabilitydistributionf(ν). ://a but for every SM particle, there is an associated supersymmetric The mass fluctuation σ(R) is computed following Lacey & Cole ca d partner(also,theHiggsfieldisdifferentfromtheoneintheSM, (1993)andMo&White(1996),startingfromthepowerspectrum e m being two fields instead of just one). The naming scheme for the ofmatteroverdensities,P(k),atredshiftz.Thelatteriscomputed ic superpartnersistomaintaintherootofthenameoftheSMparticle, byapplyingthetransferfunctiontotheprimordialpowerspectrum. .ou p buttochangetheendofthenamewiththesuffix-inointhecase Whencalculatingthemassfunction,weadoptaprimordialpower .c offermionicsuperpartnersofSMbosonsandtoaddtheprefixs- spectrumoftheformP(k)=Akns,whereAisnormalizationand om inthecaseofbosonic(scalar)superpartnersofSMfermions.For n =0.9624(PlanckCollaborationXVI2013). /m s n example, the superpartners of the electron and the muon are the Theeffectsonthepowerspectrumduetothegravitationalcol- ra s selectronandthesmuon,andthesuperpartnersofthephotonand lapse of the DM on subhorizon scales after the radiation–matter /a theZbosonarethephotinoandtheZino.TheWIMPcandidateof equalityepochandthebaryonacousticoscillations(BAOs)areen- rtic le supersymmetry(SUSY)isthelightestneutralino,asexplainedin codedinthetransferfunction.Weadoptthefunctionalformgiven -a b thereviewbyJungman,Kamionkowski&Griest(1996). byBardeenetal.(1986,theBBKStransferfunction),whichignores s ThephenomenologiesofKKparticles(astheyariseinUED)and theBAOs. trac ofSUSYareverysimilar,andbothofthemcouldbetested,forex- t/4 4 ampleinparticlecolliders,bystudyinginteractionsaboveacertain 3.2 Thesubstructuremassfunction 5/1 energyscale.InthecaseofKK,thisenergyscalecorrespondsto /8 5 theinverseoftheradiusofcompactificationoftheextradimension, ThesecondlevelofclusteringoftheDMcorrespondstotheself- 0/1 whereasinSUSY,itcorrespondstothemassoftheneutralinosand boundedhaloesthatretaintheiridentitywithinbiggerhaloes.The 74 9 superpartners.Currentcolliderlowerlimitsonthemassscaleofthis presenceofthesesubstructuresisanaturalconsequenceofthehier- 1 7 newphysics[forexampletheLargeHadronCollider(LHC)limits] archicalstructureformationpicture,becausehaloesatallredshifts 0 b are of the order of 100GeV and increasing. This mass limit will areformedbytheaggregationofsmallerparenthaloes.AstheDMis y g motivatethevaluesthatweadoptfortheWIMPmassintherestof collisionless,DMhaloesaresignificantlylessdisruptedthanbary- u e s thiswork.WeusebothaWIMPmassof10GeVandof1TeV. onicmatterduringthemergingprocesses,andthussubhaloesmay t o surviveuptothesmallestscales(duetothenegligible,butnon-zero, n 0 freestreamingoftheWIMPs).Manyauthors(forexample,Taylor 5 3 THE DM CLUSTERING A & Babul 2004; Giocoli, Pieri & Tormen 2008b; Pieri, Bertone & p As it was mentioned, the gravitational collapse process is hier- Branchini2008;Giocolietal.2009;Kamionkowski,Koushiappas ril 2 0 archical and self-similar, and so different levels of clustering are &Kuhlen2010)haveinvestigatedtheclusteringpropertiesofthe 1 9 expected.Inthefollowingsubsections,weexplaintheprescriptions subhaloesbymeansoffittingananalyticformtothesubhalomass adoptedtoaccountfortheDMclusteringatalltheselevels,consid- functionobtainedinhigh-resolutionnumericalN-bodysimulations eringalsothedistributionofDMwithinaparticularhaloorsubhalo. andresimulations. InSection3.1,wefollowtheanalyticapproach,usingthePress– WeusethesubstructuremassfunctionproposedbyGiocolietal. Schechter formalism (Press & Schechter 1974; Bond et al. 1991; (2008a),becauseitalsoconsiderstheevolutionofthesubstructure Lacey&Cole1993;Mo&White1996;Shethetal.2001,among in time, due to the combined effects of gravitational heating and others)tocomputethenumberdensityofDMhaloesperdecadein tidalstrippinginthepotentialwellofthemainhalo.Theseeffects mass.InSection3.2,weaccountforthepresenceofsubstructure will tend to erode the subhaloes, which are the remnants of the by considering the substructure mass function given by Giocoli, haloesaccretedbythehosthalo.Aswasfoundbytheseauthors,the Tormen&vandenBosch(2008a).InSection3.3,wepresentthe mass-loss(tothesmoothcomponentofthemainhalo)ofsubhaloes universalNFWdensityprofile(Navarroetal.1997),whichgives canbeapproximatedbyanexponentialdecayofthesubhalomass the DM distribution within each gravitationally bound halo, and onacharacteristictime-scalethatisproportionaltothedynamical explainhowtocalculateitsparametersfordifferenthalomassesat timeofthemainhalo. MNRAS445,850–868(2014) 854 I.J.ArayaandN.D.Padilla Explicitly,theunevolvedsubhalomassfunction(thatconsiders 3.3 TheNFWuniversaldensityprofile allsubhaloeswiththemasstheyhadwhentheywereaccreted)is The last hierarchy corresponds to how the DM is smoothly dis- universal,andisgivenby tributedwithinaparticularhaloorsubhalo.ThisDMdistribution dN =N x−αe−6.283x3, x = mv , (2) appears to be universal, as found by Navarro et al. (1997) using dln(m /M ) 0 αM N-bodysimulations,andisgivenbytheNFWdensityprofile: v 0 0 with α = 0.8 and N0 = 0.21. These values were calibrated us- ρ(r)= ρ0 , (8) ing the GIF (Kauffmann et al. 1999) and GIF2 (Gao et al. 2004) (r/rs)(1+r/rs)2 simulations,aswellasresimulationsdonebyDolagetal.(2005). where ρ is the characteristic density and r is the scale radius. 0 s Here, mv represents the unevolved subhalo mass (the mass that Thus, the NFW profile depends on only two parameters, and for thehalohadwhenitwasaccreted)andM0 representsthepresent- obtaining them, we first have to compute the redshift at which a day host mass. As a caveat of this formula, we mention that the halowithmassM(atcurrentredshiftz)wasformed.Theimplicit GIF simulation considered DM particles of 1.4 × 1010M(cid:10)h−1, definitionofthisredshift,calledtheredshiftofcollapseanddenoted D t1h.3e×GI1F029oMf(cid:10)1.7h3−1×,an1d09thMer(cid:10)efho−re1,faonrdstmheallDerolmagasrseessim(duolwatniotnosthoef aszc⎛oll(M,z),isgivenby ⎞ own lo floreneg-esrtrheoamldi.ngmass),thefunctionalformofequation(2)mayno erfc⎝(cid:6) (cid:7)δc(zcoll(M,z))−δc(z) (cid:8)⎠=1/2. (9) aded To account for time evolution, the authors find the following 2 σ2(0.01M,z)−σ2(M,z) fro m relationbetweenthemassofasubhaloattimet(giventhatitwas Thechoiceofthemassofthesmallsubstructure(of0.01M)is h amccr(ett)e=damttimexept(cid:2)m−),tan−dtimts(cid:3)u,nevolvedmass: (3) mNaovtiavrartoedetbayl.c(o1m99p7a)r.isonstoN-bodysimulations,asmentionedin ttps://ac sb v τ(z) Then, we proceed to determine ρ0 and rs using the following ad e relation: m wheremsb istheevolvedmassandτ(z)isthecharacteristicmass- ic losstimegivenby ρ0=ρcrit(z)δ0(M,z), (10) .ou τ(z)=τ (cid:2) σ(z,M0) (cid:3)−1/2(cid:2)H(z)(cid:3)−1, (4) where ρcrit(z) is the critical density of the Universe at redshift z, p.com 0 σ(z=0,M0) H0 andδ0(M,z)isacharacteristicoverdensity(ordensitycontrast)that /m dependsonthemassandredshiftofthehalowhoseNFWprofile n whereτ =2.0Gyr. ra 0 wewanttoobtain. s Inthiswork,itwasusefultoapproximatetheaccretiontimeof /a allsubhaloesbythetimeatwhichthemainhalocollapsed,corre- Also, rtic aspcqounidriendghtaolfaorefditsshmiftaszsco(lsl,ewehSiecchtiwone3ta.3k)e.aInsttheremresdosfhtihftealotowkh-ibcahcikt rs= rcvi(rM(M,,zz)), (11) le-abstra timetoredshiftz(LBT(z)),equation(3)canbeapproximatedby wherer (M,z)isthevirialradiusofahaloofmassMatredshift c msb=mvexp(cid:2)−LBT(zcolτl)(z−)LBT(z)(cid:3). (5) zivs,ireicqaoluriazrelevsdtiprosottnrhudecintdugernetsh(iietnyrtrhaedeqicuuaisrseeadtoffwothrheitchEheinhthsateleoiantvo–eDbraeegSaeistdteeelrfn-csgoirtsaymvwiotaliotthigniyng, t/445/1/85 0 Now,therequiredsubhalomassfunctionistheonethatincludes thisdensityis200timesthemeandensityoftheUniverse).c(M,z) /1 themass-lossofsubhaloesintime,soitshouldbe dN = dN dmv. istheconcentrationparameterofthehalo. 74 Expressingthesubhalomassfunctionintermsofmsdbmisbnsteaddmovfdmmsbv, ThevirialradiusisgivenbyNavarroetal.(1997)as 917 odnNeo=btaNin0sx−αe−6.283x3, x = mK−1(z,Mh), (6) rvir(M,z)=1.63×10−2(cid:11)h−1MM(cid:10)(cid:12)1/3 0 by gue wdmheremmisthepresent-day(atredshifαtzM),hevolvedmassofasubhalo, ×(cid:2) (cid:6)m,0 (cid:3)−1/3(1+z)−1h−1kpc, (12) st on 0 Mhisthemassof(cid:2)thehosthaloandKisdefined(cid:3)by (cid:6)m(z) 5 A K(z,Mh)=exp −LBT(zcoll(Mτ(hz)))−LBT(z) . (7) wvihriearlera(cid:6)dmiu(sz)isisgitvheenminatpterropdeernksiptyc.parameteratredshiftz,andthe pril 20 Thecharacteristicdensityisgivenby 19 Itcanbeseenthatthebehaviourofthesubhalomassfunctionis (cid:11) (cid:12) that of a power law with an exponential cutoff, and that all mass δ =3.41×103(cid:6) (z) 1+zcoll(M,z) 3. (13) scales are displaced as a function of time since halo formation. 0 m 1+z The displacement is such that a present-day subhalo of mass m, Finally,theconcentrationparameterisimplicitlygiveninterms correspondedtoasubhaloofgreatermass(byafactorK),andsoits ofthecharacteristicdensitycontrastbytherelation abundanceisdecreasedbecauseitistheabundancecorresponding tothegreatermassatthetimeofhaloformation. δ (M,z)= 200(cid:13) c3(M,z) (cid:14). (14) Theselasttwoequationsgivethenumberofsubhaloespresentin 0 3 ln(1+c(M,z))− c(M,z) ahaloofmassMatredshiftz,whichhaveamassbetweenmand (1+c(M,z)) m+dm,andsocorrespondtothesubhalomassfunctionthatwe Thus, the density profile of a particular halo or subhalo is, on need.Inthenextsection,weexplorethesmoothdensityprofileof average,completelyspecifiedbyitsmassandredshift. aparticularhalo,inordertoaccountforthelastleveloftheDM Inthenextsection,weproceedtostudytheconsequencesofthe clusteringhierarchy. collapse of the baryons on the density profile of the DM haloes, MNRAS445,850–868(2014) DMannihilation effectsonthehigh-zIGM 855 andobtainamodifieddensityprofileforthelatterconsideringthe t , the time elapsed since the spike was formed, we use spike growthofacentralSMBH,aprocessthatappearstobeubiquitous t =LBT(z )−LBT(z),i.e.thelook-backtimetotheredshift spike coll ingalaxyformation. at which the halo collapsed (defined in Section 3.3) as measured fromthecurrentredshift. ForthegravitationalinfluenceradiusoftheBH,weuse 3.4 Adiabaticcontraction GM WeconsiderthemodificationintheNFWDMdensityprofilere- rBH=0.2 σ2BH, (17) sultingfromthegravitationalcollapseofbaryons.Baryonsbehave sph dynamicallydifferentlyfromDMintheircollapseprocessbecause whereMBH istheBHmass,andσsph isthevelocitydispersionof they can heat and radiate away their energy, as they are not col- thespheroidcomponent(thebulgeinthecaseofhaloestypicalof lisionlessandhavenon-zerointernalpressure.However,baryonic late-typegalaxies). cooling will only take place in DM haloes with masses above a For σsph, we use the observational relation between spheroid certaincriticalmassMcrit.Afirstestimateofthiscriticalmassisthe velocitydispersionandBHmass,aspresentedinMurray,Quataert D Jeansmasssuchthatthebaryonsinhaloeswithsmallermassesare &Thompson(2005): ow (cid:11) (cid:12) n pcrrietsesruiareassusupmpoerstetdha(steteheBaDrMkanpae&rtuLrboaetbio2n00fr1o)m.Hwowhiecvhert,htehehaJeloaniss M =1.5×108 σsph 4 M(cid:10). (18) load fvoirrimaleidzeidsshtaillloiens,thaenldintehaerrerefogrime,eT,ewghmicahrkisentoatl.th(e19c9as7e)fcoornaslirdeeardya BTHhemassoftheBH20d0e[pkemnds−s,1]onaverage,onlyonthemassofthe ed from csloilglhaptlsyedpirfofecreesnst.FMincraitllcyr,itoenrieocnotuhladtwacocroryunthtsatfothrethperedseetnacielsooffDthMe hreolsattihoanlobaentwdeoennthbeoftahctmthaasstethseishogsitviesnabmyai(nLhagaloos,orCaosruab&haPloa.dTilhlea https itselfmayalterMcrit,butasshownbyRipamonti,Mapelli&Ferrara 2008) ://a (cid:11) (cid:12) (cid:11) (cid:12) c (2007b),althoughtheJeansmassisaltered,M asconsideredby a crit M M d Tegmark changes by an O(1) factor only (and this is considering log BH =0.84log halo −2.1 (19) em M(cid:10) M(cid:10) LDM,becauseforthecaseofthemassiveWIMPsunderstudy,it ic .o wouldbeessentiallyunchanged).Therefore,inthiswork,wewill forthecaseofamainhalo,and u considerthatonlythosehaloes(mainandsubstructure)thatattaina (cid:11) (cid:12) (cid:11) (cid:12) p.c M M o massgreaterthanM ,asgiveninfig.6ofTegmarketal.(1997),are log BH =0.84log halo −2.9 (20) m crit M(cid:10) M(cid:10) /m abletoundergoadiabaticcontraction.Forhaloesofsmallermass, n wewillsimplyconsiderthemtobeofpureNFWform.(However, forthecaseofasubhalo. ras Tmaantaioknao&fiLnite2rm01e4didaitsec-musasssaBprHosceastszth∼at3c0o,uwldhicahllocwouflodrgtehneerfaotre- sityPuptrtoinfiglealolfthaehpaileocheasstofoguetrhdeirf,ftehreenatdrieagbiamticeas,llayncdoimspgrivesesnebdyden- /article adiabaticcontraction,butonlyforveryrarehaloes.) -a ρ (r)=ρ (r),r >r , (21) b Incomputingtheadiabaticallycompresseddensityprofile,differ- DM NFW BH stra entauthorshaveconsidereddifferentalgorithms(e.g.Young1980; c Btohnleulymprfeeonsrtchtrhaipelteiaotdnaila.gb1iav9tei8cn6;cboSyneNtlrlawactoatioroadnja&nduMeetctaGol.ath(u2eg0hf0o28r0)m,0aw5t)ih.oiWncheofaccoacnopsuoidninetsrt ρDM(r)=ρNFW(rBH)(cid:11)rBrH(cid:12)−γspike, rplateau <r <rBH, (22) t/445/1/85 0 mass(i.e.anSMBH)inthecentreofthepotentialwell. /1 This algorithm assumes that the density profile is of the initial ρ (r)= mχ , 3r <r <r , (23) 74 NFWformuptotheradiusofgravitationalinfluenceoftheSMBH DM tspike(cid:8)σv(cid:9) s plateau 917 0 (definedastheradiusuptowhichitisthemaincontributortothe b y containedmass),andthatwithinthisradius,thedensityprofileis ρDM(r)=0, r <3rs, (24) gu describedbyapowerlawwithadifferent(steeper)exponent.Italso e assumes(liketheBlumenthalalgorithm)thattheoriginalorbitsof whererplateau istheradiusatwhichthedensityofthespikeequals st o DMparticlesintheNFWprofilewerecircular. themaximumattainableDMdensity,rsistheSchwarzschildradius n 0 AccordingtoNatarajanetal.(2008),thevalueoftheexponent oftheBHandtheinnerlimitof3rs correspondstothelaststable 5 A ofthedensityprofileintheinnerregionisgivenby ocorbmitproefssaednodne-nrosittaytinpgroBfilHe.oIfnaFDigM. 1,hawloeoshfomwasthse5a×dia1b0a1t3icMal(cid:10)ly pril 2 γspike=2+ 4−1γ, (15) actleraerdlyshdifitstzin=gui1sh(atybpleic.aTlhoefoQuSteOrssylospteemcso)r.rTeshpeofnodusrtroegthimeeNsFaWre 019 whereγ istheexponentintheinnerregionoftheuncompressed γ =1andtheinnerslopecorrespondstoγspike = 73. DMdensityprofile(γ =1inthecaseoftheNFWprofile). The derivation of the value of the exponent can be found in 4 DM ANNIHILATION ENERGY OUTPUT Quinlan,Hernquist&Sigurdsson(1995). Finally,weneedthemaximumdensityandtheradiusofgravita- HavingconsideredtheclusteringpropertiesoftheDMatallscales tionalinfluenceoftheBHtohavethecompletedensityprofile.For and hierarchy levels, and having explained two particular DM themaximumdensity,weuse WIMPcandidates,motivatingtheirexpectedmassesandannihila- tioncross-sections,wecanproceedtocomputetheexpectedenergy m ρmax= χ , (16) outputofannihilationsinlocalstructures(haloes)andasanaverage DM t (cid:8)σv(cid:9) spike forthewholeIGM.Inthissection,weobtaintheluminositydueto where m is the mass of the WIMP particle, and (cid:8)σv(cid:9) is the annihilations of individual DM haloes, considering the clustering χ thermal relic annihilation cross-section (see Section 2.1). For analysedpreviously,andwealsocomputetheannihilationenergy MNRAS445,850–868(2014) 856 I.J.ArayaandN.D.Padilla wheren isthepresent-dayDMnumberdensity,andiscalculated χ,0 as ρ n =(cid:6) c,0, (29) χ,0 χ,0m χ where(cid:6) =(1−f )(cid:6) isthepresent-dayDMdensitypa- χ,0 bary m,0 rameter,ρ isthepresent-daycriticaldensityoftheUniverseand c,0 m istheWIMPmass.Also,n isthepresent-daybaryondensity, χ b,0 andiscalculatedas ρ n =(cid:6) c,0 , (30) b,0 b,0μm H where (cid:6) is the present-day baryonic density parameter (equal b,0 tof (cid:6) ),m isthehydrogenmassandμisthemeanatomic bary m,0 H D weight of the baryon content. The mean atomic weight, consid- o w ering a universe with only hydrogen and helium (a good approx- nlo Figure1. Theadiabaticallycompresseddensityprofileofahalowithmass imation, particularly before star formation), can be computed as ad 5×1013M(cid:10),atredshiftz=1. fμra=ctifoHn+of4hfHelei,uwmhberyenfHumisbethr.eAfrsascutmioinngofahvyadlruoegoefnXan=df0H.e74isatnhde ed fro m Y=0.26(thehydrogenandheliumfractionsbymass,respectively) h rateinjectedtotheIGM,perbaryon,intheUniverseasawhole. givesfH=0.92andfHe=0.08.Thus,μ=1.24willbeusedinthis ttps Wealsomentiontheobservationalevidenceofthisannihilationen- work. ://a ergyinjectionprocessinsatellitehaloesandintheMW.Finally,we Knowing the absorption fraction of the energy fabs(z), we can ca d assesstheimportanceoftheDMclumpinessintheenergyoutput, readilycomputetheenergyinjectedtotheIGMperbaryonthrough em comparingthecaseofaperfectlysmoothuniversewiththeonewith DM annihilations. Different authors use various prescriptions for ic clusteredDM. fabs(z). Natarajan & Schwarz (2009) consider that only the pho- .ou p First,letusconsiderthegenericenergyoutput.Thereactionrate tonsresultingassecondaryannihilationproductscaninjectenergy .c o oftheannihilationprocessisgivenby to the IGM, and calculate the photon energy spectrum for differ- m entneutralinomodelsexplicitly.Theyconsiderthatasthephotons /m n (cid:13)=nχ(cid:8)σv(cid:9), (25) propagate,theyloseenergy,andcomputetheprobabilitythatthey ras scatterofftheIGMatoms.Theyfindthatf (z)isintherangeof /a and thus, the variation of the number density of WIMPs can be 0.1–0.2forz<50(theydonotconsiderhigahbserredshifts). rtic calculatedas le Cumberbatchetal.(2010)computefabs(z)fortheneutralino(see -a b dn 1 alsoRipamontietal.2007a),calculatingfirstthenumberofphotons s dt = 2n2χ(cid:8)σv(cid:9). (26) andelectronsproducedperneutralinoannihilationevent,andthey trac obtain f (z) in the range of 0.01–0.1, being higher for higher z t/4 conAssidienrththeaatnanllihtihlaetiirornesptromcaesssstihseaWvaiIlMabPlesaarsepdaersttroofytehde,weneecrgayn (anOdthcoernabsasiduethrionrgs,relidksehiMftsapueplltioezt=al.15(20000).6), simply assume that 45/1/8 output (actually, only a fraction of this energy will be available f (z) = 1, and compute the maximal effects that their WIMP 50 for affecting the environment, depending on the mechanism that abs /1 candidates can have on the IGM. We will consider that f is a 7 couples the annihilation products and the IGM or halo medium). abs 49 constant that does not depend on redshift, and we will use the 1 Thenthepowerdensityoftheenergyoutputcanbewrittenas valuesf =0.01,0.1and1,inordertoobtainresultscomparable 70 abs b (cid:14)χ = 21mχc2n2χ(cid:8)σv(cid:9). (27) toIthneFdiigf.fe2r,enwteausthhoowrs.the results obtained for the smooth energy y gue s Thisequationiscompletelygeneral,andsoitappliesforhaloes i1n0jeGcetiVon),apserexbpalrayionned, fionrthtwecoadpitfiofenr.eWnteWonIlMyPcomnsaisdseersth(1emTeaVximanadl t on andalsoforthediffuseIGM.Letusnowconsiderthepoweroutput absorptionfraction(f =1),becauseforothervalues,theresulting 05 inthedifferentsituations(wewillcallthemlocalandglobal). abs A curves should simply be rescaled by f . It can be seen that the p effectofalowerWIMPmassis,asexpabescted,toboosttheenergy ril 2 injectionratebyafactor∝m−1. 01 χ 9 4.1 ThesmoothDMannihilationenergyinjection rateperbaryon 4.2 TheDMannihilationluminosityofahalo First,weconsidertheglobalcase,assumingaperfectlysmoothDM Having considered the global case of the energy injection to the density.Thiscaseistreated,forexample,byMapellietal.(2006), IGM,wenowconsidertheenergyoutputperunittime(orluminos- Ripamonti et al. (2007a) and Cumberbatch et al. (2010). As the ity)ofaparticularhaloofmassMatredshiftz.FollowingNatarajan Universemaybeinfiniteinspatialextent(aswouldbethecasefor etal.(2008),fromthegeneralformula,theenergyoutputintegrated flat,i.e.(cid:2)CDMandEinstein–DeSitter,andopencosmologies),the onthevolumeofthehaloisgivenby relevantquantityistheenergyinjectedtotheIGMperbaryon.In (cid:15) termsofthepresent-dayWIMPnumberdensity,thisiscalculated L = (cid:8)σv(cid:9)c2 ρ2 (x,t)d3x, (31) as χ 2mχ V DM 1 m whereρ isthecompleteDMdensityprofileofthehalo,account- E˙smooth= χ c2n2 (1+z)3(cid:8)σv(cid:9)f (z), (28) DM χ 2n χ,0 abs ing for the smooth main halo, the substructure and the adiabatic b,0 MNRAS445,850–868(2014) DMannihilation effectsonthehigh-zIGM 857 D o w n lo a d e d Figure3. Theluminositytomass(Lχ/M)ratiooftheinternalDMannihila- from tionluminosityofindividualhaloes,asafunctionofhalomass(intherange h FWthiegIMudraPeshm2e.adsTcseuhsre.vsTemhtoeooadtohWtteeInMdecrPguyrmviaensjcseocortrfieo1sn0proGantedeVsp.teorabaWryIoMnPE˙mχa(zss),offo1rdTiefVferaenndt dstforhiofozfmre=tr-1ed1n0a0t−s,hr4etehtddoesc1htru0iifr1ptv7sle;eMs-idnc(cid:10)ooptr)–ar.rdeTtasichpsuheolendaddirf,cfttouehrrzeevne=dtsoct5tout,erztdvh=eecsud5irno0vtet–ahsndecdafosothrhureeerdslpopclnouognrtsv-ddectasoosrchrzoeers=drpecos0upn,rodvtnhetodes ttps://acad toz=100.Thedifferentplotscorrespondtodifferentclusteringscenarios em cdoencotrmacptoiosnedininbtoothth(esemeaSiencthioanlos3lu.2m–i3n.o4s)i.tyThainsdlutmheinsousbitsytrcuacntubree awnidthWsuIbMstPrumctausrseesa;ndinapdaiartbicautilcarc,otnhteratcotpio-lne,ftwpitlhotacoWrrIeMspPonmdassstootfh1eTceaVse; ic.ou p luminositysuchthat thetop-rightplotcorrespondstothecasewithsubstructureand1TeVWIMP .c o mass,butwithnoadiabaticcontraction;thebottom-leftplotcorrespondsto m Lχ =Lχ,main+Lχ,subs, (32) thecasewithaWIMPmassof1TeVandneitheradiabaticcontractionnor /m n where substructureandthebottom-rightplotcorrespondstothecasewithadiabatic ras contractionandsubstructure,butaWIMPmassof10GeV.Inalltheplots, /a Lχ,main =Lχ(Mma(cid:15)in,z) cwoerraelsspooinndcilnugdelinthee-sνty=les1. massvaluesforthethreelowestredshiftsinthe rticle (cid:8)σv(cid:9)c2 -a = 2mχ V ρD2M(r,Mmain,z)dV, (33) Itcanbeseenthat,forthesamehalomass,theluminosityofthe bstrac and haloincreaseswithredshift.Thisisaresultofthestructureforma- t/4 (cid:15) Mmain dN tionprocess,becauseaDMhalothatformedearlierwillbemore 45/1 Lχ,subs =Lχ,subs(Mmain,z)= dmLχ(m,z)dm. (34) concentratedandhaveahighercharacteristicdensity.Thus,itsan- /85 mfree nihilationrate,andinconsequenceitsluminosity,willbeincreased. 0/1 Note that in the above equations, Lχ(M, z) is the DM annihi- Also,itcanbeseenforthecasesthatincludeadiabaticcontraction 74 9 lation luminosity of a smooth, adiabatically compressed halo or that for each redshift there is a discontinuity in luminosity at the 1 7 subahlo,theonlydifferenceamongthemisthatforthehaloorthe masscorrespondingtoM (thecriticalmassforbaryoncooling, 0 crit b subhalo, the mass of the SMBH depends differently on the mass asdiscussedinSection3.4).Also,itcanbeseenthatthegreatest y g ofthehalo.Itisimportanttomentionthatinordertoaccountfor effectontheluminositycomesfromtheWIMPmass.Inaccordance u e s thesubstructureluminosity,anintegrationofthesubstructuremass withwhatwasfoundforthesmoothcase,Lχ/Misalmostinversely t o function multiplied by the luminosity of an individual subhalo in proportionaltomχ.Therearevariationstothisproportionalityin n 0 all the substructure mass range must be performed. This integra- the cases with substructure and adiabatic contraction, for masses 5 A tionshouldbedonebetweenm ,thefree-streamingmassofthe greater than M , because the maximum attainable mass of the p WIMP (the minimum mass thaftreea virialized DM halo can have), compressedspikcreitisalsodependentonmχ.Itcanbealsoseenthat ril 20 and M , the mass of the main halo (no substructure can be as thesecondgreatesteffectontheluminositycomesfromthepres- 1 main 9 massive as the main halo). The free-streaming mass will depend enceofadiabaticcontraction,andthatthepresenceofsubstructure naturallyontheWIMPmass,asm ∝m−3.Basedontheanaly- contributesatmostwithanorder∼1factor(atredshifts5and10) free χ sisoftheeffectsofthefree-streaminglengthonthematterpower totheluminositywhenadiabaticcontractionisabsent,andthusit spectrumbyAngulo&White(2010),weconsiderafree-streaming istheleastsignificantcontributor. mass of m = 10−10M(cid:10) for a WIMP mass of m = 1TeV, and InordertoassesstheimportanceofDMannihilationasapossible χ χ a free-streaming mass of m = 10−4M(cid:10) for a WIMP mass of feedbackmechanisminhaloes,wecomparetheobtainedlight-to- χ m =10GeV. massratiosfortheannihilationluminositywiththetypicalmass-to- χ We explicitly compute the luminosity of DM haloes, in the lightratiosinhaloesatdifferentmassscales.Forhaloeswithmasses (cid:2)CDM cosmology, considering two different WIMP masses inthe108–1015M(cid:10)range,thelogarithmofthemass-to-lightratio (10GeV and 1TeV) and the presence or absence of substructure (log (ϒ))atredshiftzero(nearUniverse)variesbetween1.5and 10 andadiabaticcontraction.InFig.3,weshowtheresultsintheform 3,asshownbyEkeetal.(2004)andalsobyMarinoni&Hudson ofthelight-to-massratio(L /M)fortheannihilationluminosity,as (2002).Also,ϒ hasaminimumforhalomassesaround1012M(cid:10), χ afunctionofhalomass. and it increases for lower masses due to SNe feedback and for MNRAS445,850–868(2014) 858 I.J.ArayaandN.D.Padilla highermassesduetoAGNfeedback(seeLagosetal.2008andalso Mutch,Croton&Poole2013).Thus,wenotethatthecorresponding light-to-massratiosforthehaloes(ϒ−1)aremuchhigherthanthe L /M curves that we obtain for redshift zero. Furthermore, the χ minimuminϒ occursformasseswheretheadiabaticcontraction isalreadypresent,andthereforetheL /Mismaximum,andthus χ bothmass-to-lightratioscorrelatepositivelyinsteadofnegatively as it would be expected in the case of star-formation-quenching feedback.Therefore,wecanconcludethattheDMannihilationis irrelevantasafeedbackmechanism.(However,seeAscasibar2006.) Itshouldberememberedthat,althoughweplothaloluminositiesup tohaloesofmassof1017,themostmassivegravitationallybound haloestoday(atz =0)havemassesoftheorderof1015M(cid:10),so D more massive haloes are virtually non-existent; and furthermore, o w themassesofthehaloesthathaveaparticularnumberdensityata nlo certainredshift(givenbythecharacteristicdimensionlessmassν) ad e fallsrapidlywithredshift.Thisisthereasonwhyeventhoughthe d computedLχ/MratioofhaloeswithM>Mcritatz=50and100is from comparabletothenearUniverseϒ−1,saidhaloesare,forpractical h purposes,negligible.Forclarity,wealsoincludeinFig.3thelines Figure4. Theclumpedenergyinjectionrateperbaryon(E˙χ(z))asafunc- ttps correspondingtoν=1atdifferentredshifts. tionofredshift,fordifferentscenarios,inthicklines.Thedottedcurvecor- ://a respondstothecasewithsubstructureandadiabaticcontractionforaWIMP ca massof1TeV,thelong-dashedcurvecorrespondstothecasewith1TeV de 4.3 Theglobal,clumped,DMannihilationluminosity m WIMPmassandsubstructurebutnoadiabaticcontraction,thedot–dashed perbaryon curvecorrespondstothecaseof1TeVWIMPwithneitheradiabaticcon- ic.o u tractionnorsubstructureandtheshort-dashedcurvecorrespondstoaWIMP p Having computed the DM annihilation luminosity of a particular .c massof10GeVwithsubstructureandadiabaticcontraction.Alsoincluded o halo of mass M at redshift z, we now return to the problem of m computingtheglobalenergyinjectionratetotheIGMperbaryon, asthinlinesarethepreviouscurvesofFig.2,correspondingtothesmooth /m cases,fora1TeVWIMP(dotted)anda10GeVWIMP(short-dashed). n butconsideringtheclumpinessoftheDMonallclusteringscales. ra s To do this, we simply consider that, knowing the luminosity of /a aparticularhalo(thatalreadyincludessubstructureandadiabatic duetoDMhaloeswillbedecliningrapidlywithincreasingredshift rtic le contraction) and knowing the halo mass function (calculated in after the truncation of low-mass haloes due to the free-streaming -a b Section3.1),theenergyoutputratedensity(orluminositydensity) limitbecomingimportant,weuseastheclumpedDMinjectionrate s duetoDMannihilationsisgivensimplyby thegreatervalueamongtheonecalculatedinequation(46),andthe trac (cid:15) ∞ dn onecalculatedinSection4.1. t/44 (cid:14)χclumped(z)=(1+z)3 Lχ(M,z)dM(M,z)dM, (35) The results obtained for the clumped energy injection rate 5/1 mfree per baryon, considering different clustering scenarios and WIMP /8 5 wheremfreeisthefree-streamingmass,Lχ isthetotalDMannihila- masses,areshowninFig.4.Weonlyconsiderthemaximalabsorp- 0/1 tionluminosity(mainhaloplussubstructure)ofaDMhaloofmass tionfraction(fabs=1),becauseforothervalues,theresultingcurves 74 Matredshiftz, ddMn isthepreviouslycalculatedhalomassfunction shouldsimplyberescaledbyfabs. 917 (incomovingcoordinates)andthefactor(1+z)3istoconvertthe It can be seen that the case considering a WIMP with mass of 0 b comovingdensitytoaproperdensity.Weconsidermmax=1017M(cid:10) 10GeVistheonethatgivesthehigherinjectionrate,inagreement y g sincethenumberdensityofcollapsedDMhaloeswithmassabove with what was discussed above. However, the curve for this case u e thislimitingmassisnegligible. hasacutoffatz∼50insteadofatz∼80likeforthecasescon- st o Finally,theenergyinjectionratetotheIGMperbaryoncanbe sideringa1TeVWIMP.Thiscanbeunderstoodasaconsequence n 0 directlycomputedas ofthehigherfree-streamingmass(andthus,higherminimummass 5 A thathaloescanhave),andthefactthatthemassofthehaloesthat p E˙clumped(z)= (cid:14)χclumped(z), (36) haveacharacteristicν =1(thehaloesthathavejustrecentlycol- ril 2 χ n (z) 0 b lapsed)decreaseswithincreasingredshiftsuchthatwithahigher 1 9 wheren (z)isthepropernumberdensityofbaryonsatredshiftz free-streamingmass,lesshaloesareallowedtoformathigherred- b (equalto(1+z)3n intermsofthepresent-daybaryonnumber shifts.Wecanseethatthepresenceofadiabaticcontractionisalso b,0 densitycomputedinSection4.1). veryimportantforboostingtheannihilationenergyinjection.We ItisimportanttomentionthattheenergyinjectionratetotheIGM alsonotethatthecurvesconsideringadiabaticcontractionhavea perbaryoncomputedinthiswayconsidersonlythecontributionof secondarybroadpeakatlowerredshift,besidesthepeakadjacent theDMhaloesandnotofthesmoothcomponent.Inthecaseofa tothecutoff.Thissecondarypeakispresentduetotheexistenceof zerofree-streamingmass,alltheDMwouldbeinhaloessincethere M ,becauseforhigherredshifts,thefractionofhaloesthathave crit would be no minimum mass scale for the formation of collapsed M>M decreasesduetotheredshiftdependenceofthehalomass crit structures.However,duetothenon-zerofree-streamingmass,all function,andsodoestheenergyoutputinDMannihilations.The haloeswithmasseslessthanthatvalue,thatshouldexistaccording curve for the case considering substructure but no adiabatic con- tothehalomassfunction,aresimplynotallowedtoform.Asthe tractionisalmostthesameasthatforthecaseconsideringonlythe clumpedenergyinjectionshouldbealwaysgreaterthanthesmooth NFW profile of the main halo, with neither adiabatic contraction energyinjection(computedinSection4.1),andasthecontribution norsubstructure.Theonlyslightdifferenceoccursforintermediate MNRAS445,850–868(2014) DMannihilation effectsonthehigh-zIGM 859 redshiftsanditamountstoanorder∼0.1factor.Thereasonforthis atredshiftzero,E˙smooth(z)ishigheraswell,andsotheclumpiness χ isthat,asdiscussedinSection4.2(withrespecttotheinterpretation C(z) is not. It can also be seen that in agreement with what was ofFig.3),thecontributiontotheluminositybythesubstructure,in discussedbefore,theadiabaticcontractionmechanismisimportant theabsenceofadiabaticcontraction,isofatmostanorder∼1factor forlowredshifts,andthepresenceofsubstructureisirrelevantfor fortheseredshifts,whileatthesametime,lessmassivehaloeswith increasingtheclumpinessprovidedthattheadiabaticcontractionis lesssubstructurearethemostabundant. present(forhaloesandsubhaloeswithM>M ),asdiscussedin crit Inthenextsection,weobtaintheclumpinessfactor,C(z),implied theprevioussections. byourenergyinjectioncalculations,andcompareourresultswith We show also the clumpiness factors C(z) obtained by thoseobtainedbyCumberbatchetal.(2010). Cumberbatch et al. (2010), in Fig. 5, using different line-styles. Thetwosetsofcurvescanbereadilycomparedasthedefinitionsof theclumpinessfactorsarethesame.Thereare,however,differences 4.4 Theclumpinessfactor inthemethodsforcomputingthem.Inparticular,Cumberbatchetal. The clumpiness factor is a useful tool when accounting for DM (2010)computethehalomassfunctionusingthePress-Schechter D clusteringinglobalDMannihilationenergyinjectioncomputations, (P-S)theory,startingfromananalyticfittoσ(M,z),andthencon- ow n liketheonesrequiredforcalculatingtheheatingandionizationof siderthatsubstructureandsubsubstructurefollowapurepower-law lo theIGMduetoDM(seeSections6.1and6.2).Itsimplyrelatesthe massfunctionwithexponent−2.Ingeneral,itcanbeseenthatwe ad e clumpedenergyinjectiontothesmoothoneby patrehdiigchtlreesdsschliufmt.pTinheessloawtelorwclruemdsphinifets,sbuptrecdoimctpeadrawbliethclruemsppeicntestos d fro E˙clumped(z) m C(z)= χ . (37) Cumberbatch et al. (2010) at low redshift can be understood be- h E˙χsmooth(z) causetheyalsoincludesubsubstructure(subsubhaloeswithinsub- ttps WeshowthevaluesobtainedfortheclumpinessfactorC(z)in haloes),whichsignificantlyenhancestheannihilationoutputofthe ://a mostmassivehaloesoncetheyarealreadyformed.Also,atinterme- ca Fig.5.Themeaningsofthecurvesareexplainedinthecaption. d diateredshift,ourinclusionofadiabaticcontractionincreasesour e In general, it can be seen that for all the cases considered, the m clumpinesssignal,compensatingforthelackofsubsubstructure.At ic clumpinessisadecreasingfunctionofredshift.Thisisreasonable, .o higher redshift, the contributions from both the substructure (and u becauseastheredshiftincreases,theuniversewilltendtobemore p subsubstructure) and the adiabatic contraction are expected to be .c homogeneousanduniform,becausethegravitationalcollapseand o negligible,andtherefore,anyremainingdifferencewouldonlybe m formationofstructureswouldhavehadlessandlesstimetooccur. /m Also,forallthecasesconsidered,theuniversewillbepractically duetotheuseofslightlydifferentprescriptionsforcomputingthe n completelyhomogeneousbyredshift(z∼80),exceptforthecase halomassfunction. ras WedonotincludeSommerfeldenhancementinourcalculations, /a wneiothus1a0tGreedVshDifMtzW∼I5M0.P,Niontewthhiacthinthtehiusnciavseer,sealbtheocuogmheEs˙hcloummpeodg(ze-) because it is highly dependent on unknown physics (the mass of rticle χ the new force carrier and the resulting potential, as well as the -a ishigherthanfortheothercasesbyalmostanorderofmagnitude b pithsyesfifceacltsicsentoardioirseicntlywhmicohditfhyis(cid:8)σnevw(cid:9) bfoyrcaeccoonusltdanatrifsaec)t;ohr.oAwsevwere, strac alreadymentionedintheIntroduction,thepresenceofSommerfeld t/4 4 5 enhancementiscontroversialandnotsupportedbyallobservational /1 evidence. /8 5 0 Having computed the DM annihilation luminosity generated /1 within a DM halo for different scenarios, in the next section we 74 9 studytheluminosityreceivedbyaDMhaloduetotherestofthe 1 7 Universe. 0 b y g u e s 5 EXTERNAL DM ANNIHILATION ENERGY t o n INJECTION ON A HALO 0 5 A Inprevioussections,wehaveconsideredparticularWIMPmodels, p calculatedtheDMclusteringonallscalesexplicitlyandcomputed ril 2 0 theDMannihilationluminositygeneratedwithinaparticularDM 1 9 halo,andtheenergyinjectionperbaryonontheIGM.Inthissection, wecalculatetheintensity(Js−1m−2sr−1)oftheaverageradiation field due to DM annihilations at different redshifts, considering ourdifferentclusteringscenarios,andfromthisweobtainanup- Figure5. TheclumpinessfactorC(z)asafunctionofredshift.Thethick perboundonthepowerreceivedbyahaloperunitofhalomass curves correspond to our results. The line-styles of the thick curves are (L(cid:10)/M(cid:10)), which can be compared with the luminosity-to-mass givenasinFig.4.Forcomparison,wealsoincludethecurvesobtainedby ratiosduetoannihilationsinsidethehalothatwerecomputedinthe Cumberbatchetal.(2010)forthecaseofanNFWprofile,takenfromthe previoussection.Forthis,wewillusetheannihilationluminosity upperpaneloftheirfig.3,asthincurves.Theline-stylesofthethincurves correspondtodifferentvaluesof(Mmin/M(cid:10),Mcut/M(cid:10)).Thesolidline ofahalothatwasobtainedinSection4.2,togetherwiththecos- correspondsto(106,106),thedottedlinecorrespondsto(10−4,106),thelong- mologicalradiativetransferformalismaspresentedinsection2.1 dashedlinecorrespondsto(10−4,10−4),theshort-dashedlinecorresponds ofHaardt&Madau(1996).Thepowerreceivedfromtheradiation to(10−12,106)andthedot–dashedlinecorrespondsto(10−12,10−12).We fieldbyanyhalowilldependonitseffectivecross-section.Forthis referthereadertothepaperoftheauthorsforfurtherdetails. cross-section,wesimplyconsiderthenumberofelectronspresent MNRAS445,850–868(2014)

Description:
We study the case of dark matter (DM) self-annihilation, in order to assess its Tecnologıas Afines – Chile) PFB-06, and Fondecyt #1110328. Part.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.