ebook img

Damping Optimization in Simplified and Realistic Disc Brakes PDF

57 Pages·2.227 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Damping Optimization in Simplified and Realistic Disc Brakes

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY Jan-Hendrik Wehner · Dominic Jekel Rubens Sampaio · Peter Hagedorn Damping Optimization in Simplified and Realistic Disc Brakes SpringerBriefs in Applied Sciences and Technology Series editor Janusz Kacprzyk, Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50– 125 pages, the series covers a range of content from professional to academic. Typical publications can be: (cid:129) A timely report of state-of-the art methods (cid:129) Anintroductiontooramanualfortheapplicationofmathematicalorcomputer techniques (cid:129) A bridge between new research results, as published in journal articles (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study (cid:129) Apresentation ofcore conceptsthatstudents mustunderstand inordertomake independent contributions SpringerBriefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules. On the one hand, SpringerBriefs in Applied Sciences and Technology are devoted to the publication of fundamentals and applications within the different classical engineering disciplines as well as in interdisciplinary fields that recently emerged between these areas. On the other hand, as the boundary separating fundamental research and applied technology is more and more dissolving, this series isparticularlyopentotrans-disciplinary topics between fundamentalscience and engineering. Indexed by EI-Compendex and Springerlink. More information about this series at http://www.springer.com/series/8884 Jan-Hendrik Wehner Dominic Jekel (cid:129) Rubens Sampaio Peter Hagedorn (cid:129) Damping Optimization fi in Simpli ed and Realistic Disc Brakes 123 Jan-Hendrik Wehner RubensSampaio Weinheim Department ofMechanical Engineering Germany Pontifical Catholic University ofRio RiodeJaneiro Dominic Jekel Brazil Dynamics andVibrations Group Technical University of Darmstadt PeterHagedorn Darmstadt, Hessen Dynamics andVibration Group Germany Technical University of Darmstadt Darmstadt, Hessen Germany ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISBN978-3-319-62712-0 ISBN978-3-319-62713-7 (eBook) DOI 10.1007/978-3-319-62713-7 LibraryofCongressControlNumber:2017946042 ©TheAuthor(s)2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgements The support through DFG HA 1060/55-1, Ingenieurgesellschaft für technische Software mbH (INTES), and Dr.-Ing. h.c. F. Porsche AG is gratefully acknowledged. v Contents 1 Introduction.... .... .... ..... .... .... .... .... .... ..... .... 1 References.. .... .... .... ..... .... .... .... .... .... ..... .... 2 2 Theoretical Background .. ..... .... .... .... .... .... ..... .... 3 2.1 Linearization of Nonlinear Equations of Motion.. .... ..... .... 3 2.2 Time-Invariant MDGKN-Systems. .... .... .... .... ..... .... 4 2.3 First-Order Systems .. ..... .... .... .... .... .... ..... .... 5 2.4 Time-Periodic Systems and FLOQUET Theory .... .... ..... .... 5 2.5 Optimization of Damping... .... .... .... .... .... ..... .... 7 2.5.1 Time-Invariant Systems... .... .... .... .... ..... .... 7 2.5.2 Time-Periodic Systems ... .... .... .... .... ..... .... 7 2.6 Linear Damping Models.... .... .... .... .... .... ..... .... 8 2.6.1 COULOMB Damping .. .... .... .... .... .... ..... .... 9 2.6.2 Viscous Damping ... .... .... .... .... .... ..... .... 10 2.6.3 Structural Damping.. .... .... .... .... .... ..... .... 10 2.7 Modal Reduction .... ..... .... .... .... .... .... ..... .... 12 2.8 Brake Squeal ... .... ..... .... .... .... .... .... ..... .... 13 References.. .... .... .... ..... .... .... .... .... .... ..... .... 13 3 Optimization of a Minimal Model of Disc Brake ... .... ..... .... 17 3.1 Equations of Motion.. ..... .... .... .... .... .... ..... .... 17 3.2 Optimization Technique .... .... .... .... .... .... ..... .... 19 3.3 Optimization Results.. ..... .... .... .... .... .... ..... .... 20 3.3.1 Time-Invariant Model.... .... .... .... .... ..... .... 20 3.3.2 Time-Periodic Model .... .... .... .... .... ..... .... 24 3.3.3 Discussion.... ..... .... .... .... .... .... ..... .... 26 3.4 Traps and Shortcomings of CEA . .... .... .... .... ..... .... 26 References.. .... .... .... ..... .... .... .... .... .... ..... .... 30 vii viii Contents 4 Optimization of Finite Element Models of Disc Brakes .. ..... .... 31 4.1 Theoretical Background .... .... .... .... .... .... ..... .... 31 4.2 Low-Degree-of-Freedom Model.. .... .... .... .... ..... .... 36 4.2.1 Optimization Results. .... .... .... .... .... ..... .... 36 4.2.2 Discussion.... ..... .... .... .... .... .... ..... .... 39 4.3 High-Dimensional Industrial Model ... .... .... .... ..... .... 40 4.3.1 Optimization Results. .... .... .... .... .... ..... .... 42 4.3.2 Discussion.... ..... .... .... .... .... .... ..... .... 47 References.. .... .... .... ..... .... .... .... .... .... ..... .... 47 5 Conclusion. .... .... .... ..... .... .... .... .... .... ..... .... 49 Chapter 1 Introduction Inmechanicalengineering,self-excitedvibrationsareusuallyunwantedandsome- timesdangerous.Afamousexampleisthesquealingnoiseofautomotivediscbrake systems.Thephysicaloriginofthisphenomenonisduetofrictionforcesinthecon- tactinterfacebetweenthebrakepadsandtherotatingbrakediscforcingthesystemto barelyvisiblebutaudiblehighfrequencyvibrations[1].However,maybecontraryto thepublicopinion,brakesquealisnoindicatorofafaultybrake.Evenifthesquealing noise is a nuisance, the brake system may be in a perfect technical condition with thebrakingperformanceensured[2].Nevertheless,theautomotiveindustryaimsto avoid the occurrence of high-frequency vibrations for comfort reasons. Therefore, finiteelement(FE)modelsareusedtostudybrakesunderdifferentaspectsincluding the influence of damping on squeal noise [3, 4]. These models may have several hundred thousand or even millions of degrees of freedom (DOF) and are about to reflecttherealityinareasonablemanner. It is well known that the structure of the damping matrix plays an important role in self-excited mechanical systems [5, 6]. Since the physics of damping is the most unknown part in large finite element models, damping is often assumed to be Rayleigh damping, i.e. D = αM + βK. Although this type of modeling the damping matrix is not done on physical grounds but keeps the eigenvectors of the MDK-system real, experimental tests identify parameters α and β describing thedampingaccordingtodifferentsituations.However,sincearealisticautomotive brakesystemcontainsvariouscomponentsanddampingorigins,Rayleighdamping isinsufficienttoidentifytheeffectsofdampingforeachcomponentindividuallyand stabilityanalysescarriedoutwiththisapproacharequestionable[7]. In this paper, a simple minimal model of disc brake with two DOF is used to gaininsightintothedifferentphysicaloriginsofdamping.Furthermore,FEmodels ofsimplifiedandrealisticdiscbrakesderivedbythecommercialsoftwarepackage Permasareinvestigatedaimingtooptimizethedampingpropertieswithregardto anequilibriumpositionwhichisasstableaspossiblesubjecttosensibleconstraints. ©TheAuthors2018 1 J.-H.Wehneretal.,DampingOptimizationinSimplifiedandRealistic DiscBrakes,SpringerBriefsinAppliedSciencesandTechnology, DOI10.1007/978-3-319-62713-7_1 2 1 Introduction InPermas,dampingcanbemodeledbydifferenttypesoflineardampingandeach component can be treated individually. This, for example, enables assessing the efficiencyofanti-squealshims,whichareoftenappliedinautomotivebrakes[8, 9]. Inaddition,itispossibletoidentifythosecomponentsbeingmoreorlessworthwhile to be damped in order to avoid brake squeal. Even components where reducing damping has a stabilizing effect may be found, which sometimes can be observed inexperimentaltests[10].Consequently,itisnotalwayspurposefultoadddamping butinsomecasesitmustbereducedtooptimizethestabilitybehavior,whichmay becounterintuitivefromanengineer’sperspective. References 1. Kinkaid,N.M.,O’Reilly,O.M.,Papadopoulos,P.:Automotivediscbrakesqueal.J.SoundVib. 267(1),105–166(2003) 2. Breuer,B.,Bill,K.H.(eds.):Bremsenhandbuch:Grundlagen,Komponenten,Systeme,Fahr- dynamik.ATZ/MTZ-Fachbuch,4thedn.SpringerVieweg,Wiesbaden(2013) 3. Fritz,G.,Sinou,J.-J.,Duffal,J.-M.,Jézéquel,L.:Effectsofdampingonbrakesquealcoales- cencepatterns—applicationonafiniteelementmodel.Mech.Res.Commun.34(2),181–190 (2007) 4. Fritz,G.,Sinou,J.-J.,Duffal,J.-M.,Jézéquel,L.:Investigationoftherelationshipbetween dampingandmode-couplingpatternsincaseofbrakesqueal.J.SoundVib.307(3–5),591–609 (2007) 5. Hagedorn, P., Heffel, E., Lancaster, P., Müller, P.C., Kapuria, S.: Some recent results on MDGKN-systems.Z.Angew.Math.Mech.95(7),695–702(2015) 6. Jekel,D.,Hagedorn,P.:StabilityofweaklydampedMDGKN-systems:theroleofvelocity proportionalterms.Z.Angew.Math.Mech.(1–8)(2017) 7. Hagedorn,P.,Eckstein,M.,Heffel,E.,Wagner,A.:Self-excitedvibrationsanddampingin circulatorysystems.J.Appl.Mech.81(10),101009–1–9(2014) 8. Festjens,H.,Gaël,C.,Franck,R.,Jean-Luc,D.,Remy,L.:Effectivenessofmultilayervis- coelasticinsulatorstopreventoccurrencesofbrakesqueal:anumericalstudy.Appl.Acoust. 73(11),1121–1128(2012) 9. Kang,J.:Finiteelementmodellingfortheinvestigationofin-planemodesanddampingshims indiscbrakesqueal.J.SoundVib.331(9),2190–2202(2012) 10. Massi,F.,Giannini,O.:Effectofdampingonthepropensityofsquealinstability:anexperi- mentalinvestigation.J.Acoust.Soc.Am.123(4),2017–2023(2008)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.