ebook img

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites PDF

249 Pages·2018·9.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Damage, Fracture, and Fatigue of Ceramic-Matrix Composites

Longbiao Li Damage, Fracture, and Fatigue of Ceramic-Matrix Composites Damage, Fracture, and Fatigue of Ceramic-Matrix Composites Longbiao Li Damage, Fracture, and Fatigue of Ceramic-Matrix Composites 123 Longbiao Li NanjingUniversity ofAeronautics andAstronautics Nanjing, Jiangsu,China ISBN978-981-13-1782-8 ISBN978-981-13-1783-5 (eBook) https://doi.org/10.1007/978-981-13-1783-5 LibraryofCongressControlNumber:2018952884 ©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore To Shengning Contents 1 Tensile Behavior of Ceramic-Matrix Composites . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Unidirectional Ceramic-Matrix Composites. . . . . . . . . . . . . . . . . . 2 1.2.1 Stress Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Damage Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.4 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3 Cross-Ply and 2D Woven Ceramic-Matrix Composites . . . . . . . . . 30 1.3.1 Stress Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.2 Damage Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.3.4 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 39 1.4 2.5D Woven Ceramic-Matrix Composites. . . . . . . . . . . . . . . . . . . 50 1.4.1 Theoretical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 60 1.4.3 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 69 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2 Fatigue Hysteresis Behavior of Ceramic-Matrix Composites. . . . . . . 75 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.2 Unidirectional Ceramic-Matrix Composites. . . . . . . . . . . . . . . . . . 76 2.2.1 Stress Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.2.2 Interface Debonding and Sliding. . . . . . . . . . . . . . . . . . . . 80 2.2.3 Stress–Strain Hysteresis Loops . . . . . . . . . . . . . . . . . . . . . 81 2.2.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.2.5 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 97 2.3 Cross-ply and 2D Woven Ceramic-Matrix Composites . . . . . . . . . 108 2.3.1 Stress Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.3.2 Hysteresis Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 vii viii Contents 2.3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.3.4 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 126 2.4 5D Woven Ceramic-Matrix Composites . . . . . . . . . . . . . . . . . . . . 145 2.4.1 Hysteresis Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 2.4.2 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . 149 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3 Interface Damage of Ceramic-Matrix Composites . . . . . . . . . . . . . . 155 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.2 Interface Shear Stress Estimation Approach . . . . . . . . . . . . . . . . . 156 3.2.1 Unidirectional Ceramic-Matrix Composites . . . . . . . . . . . . 157 3.2.2 Cross-Ply and 2D Woven Ceramic-Matrix Composites. . . . 158 3.2.3 2.5D Woven Ceramic-Matrix Composites . . . . . . . . . . . . . 160 3.3 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3.3.1 Unidirectional Ceramic-Matrix Composites . . . . . . . . . . . . 162 3.3.2 Cross-Ply and 2D Woven Ceramic-Matrix Composites. . . . 169 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 4 Fatigue Life Prediction of Ceramic-Matrix Composites . . . . . . . . . . 201 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.2 Fatigue Life Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . . . 202 4.2.1 Life Prediction at Room Temperature . . . . . . . . . . . . . . . . 202 4.2.2 Life Prediction at Elevated Temperature . . . . . . . . . . . . . . 204 4.3 Experimental Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 4.3.1 Unidirectional Ceramic-Matrix Composites . . . . . . . . . . . . 208 4.3.2 Cross-Ply and 2D Woven Ceramic-Matrix Composites. . . . 213 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Chapter 1 Tensile Behavior of Ceramic-Matrix Composites 1.1 Introduction Continuous fiber-reinforced ceramic-matrix composites (CMCs) possess high specificstrengthandspecificmodulus,andhightoughnessatelevatedtemperatures [1].Thenon-oxide andoxide CMCsarerecently beingincorporatedingasturbine engines for high-pressure and high-temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods,compositionsandmicrostructures,therelativelylowfracturetoughnessof the ceramic materials, still remain the challenging factors for CMCs component design, validation, life prediction, and thus broader applications [2]. Undertensileloadingoffiber-reinforcedCMCs,thefailurestrainofthematrixis less than that of the fibers. When the stress in the matrix approaches to its local strength,matrixcrackingoccurs.Withincreasingofappliedstress,matrixcrackings will deflect along the fiber/matrix interface, leading to theinterface debonding and sliding [3]. The fiber/matrix interface frictional shear stress will transfer loads between the fibers and the matrix, and the interface properties (i.e., the interface shear stress and the interface debonded energy) affect the nonlinear behavior of fiber-reinforced CMCs [4, 5]. When matrix cracking approaches to saturation, the fiber/matrix interface debonding may continue with increasing applied stress, and aftercompletelyinterfacedebonding,thematrixstresswillremainconstant[6].The additionalloadwillbecarriedbyintactfibers,andwhenthebrokenfibersapproach to the critical value, the composite fracture occurs [7]. Inthischapter,themicromechanicalapproachtopredictthetensilestress–strain curves offiber-reinforced CMCs is developed. When matrix cracking, fiber/matrix interface debonding and fibers failure occur, the shear-lag model is adopted to analyze the microstress field of the damaged fiber-reinforced CMCs, i.e., the fiber and matrix axial stress distributions. Combining the shear-lag model with damage models of matrix statistical cracking, fracture mechanics fiber/matrix interface debonding criterion and Global Load Sharing (GLS) fibers failure criterion, the ©SpringerNatureSingaporePteLtd.2018 1 L.Li,Damage,Fracture,andFatigueofCeramic-MatrixComposites, https://doi.org/10.1007/978-981-13-1783-5_1 2 1 TensileBehaviorofCeramic-MatrixComposites matrix cracking spacing, fiber/matrix interface debonding length and fibers broken fraction are determined. The tensile stress–strain curves offiber-reinforced CMCs corresponding to different damage stages are modeled. The tensile stress–strain curves of unidirectional, cross-ply, 2D, and 2.5D woven CMCs are predicted. 1.2 Unidirectional Ceramic-Matrix Composites In this section, the tensile stress–strain behavior of unidirectional fiber-reinforced CMCsatroomtemperatureisinvestigated.Anapproachtomodelthetensilestress– strain curve of unidirectional fiber-reinforced CMCs considering different damage mechanisms of matrix multicracking, fiber/matrix interface debonding, and fibers failure isdeveloped. Thetensilestress–strain curves of unidirectional SiC/Calcium Aluminosilicate(SiC/CAS),SiC/CAS-II(CAS-IIistheCorningdesignationforthe calcium aluminosilicate matrix in this composite system) and SiC/Borosilicate composites corresponding to different damage stages are predicted. 1.2.1 Stress Analysis Under tensile loading, matrix cracking and fiber/matrix interface debonding occur, leadingtothenonlinear behavioroffiber-reinforced CMCs.Whenmatrixcracking and fiber/matrix interface debonding occur, the shear-lag model is used to analyze the microstress field of the damaged composite. Cox [8] first introduced the concept of shear-lag in the micromechanical anal- ysis. The purposeof theintroductionof theshear-lag concept isthat thestressand strain fields of the composite material are not solved concretely, and the main characteristics of the material structure are considered, and the response of the material structure to the load is calculated by constructing a mathematical model. The model simplifies the mechanical analysis of composite materials and provides directional theoretical guidance for interpreting experimental data and designing material structures with better damage tolerance. However, the shear-lag model developedbyCox[8]onlyconsidersthestressdistributionaftersinglefiberfracture in the elastic matrix and does not consider the stress distribution of other adjacent fibers, so the stress concentration problem cannot be analyzed. Hedgepeth and Dyke [9] expanded the shear-lag model developed by Cox [8], investigated the stress distribution of an unidirectional fiber-reinforced composite with multiple fibers failure, and predicted the stress concentration caused by mul- tiplefibersfracture.Themainassumptionoftheshear-lagmodelisthatthefiberis one-dimensional axial stress transfer entity; the fiber is only subjected to tensile stress; the displacement is only along the longitudinal direction; the fiber is arranged at the same distance; the interface between the fiber and matrix is strong bonding; the matrix cannot transfer axial stress, and only the shear stress is 1.2 UnidirectionalCeramic-MatrixComposites 3 transferred;theinterfacialshearstrengthisconstant.Theshear-lagmodelcanbetter describe the stress concentration around fibers broken in unidirectional composite with lower matrix tensile modulus and higher fibers volume fraction. Dyke and Hedgepeth [10] investigated the effect of plastic deformation and the fiber/matrix interface debonding on the stress concentration of single fiber broken. Zweben [11] proposed an approximate analysis method to analyze the stress dis- tribution in the unidirectional fiber-reinforced composite with a long cracking perpendicular to the fiber axial under tensile loading, considering the matrix inelastic effect before the cracking. The shear-lag models mentioned above predict the stress field distribution of fiber-reinforced soft matrix composites (i.e., the fiber elasticmodulus is far greater than that of the matrix). With the appearance of high temperature-resistant com- posite, i.e., metal andceramic matrix composites,thedifference ofelastic modulus between the matrix and the fiber is small. The classical shear-lag theory cannot accurately describe the microstress field of the damaged composite. Budiansky et al. [12] considered the effect of matrix shear deformation on the matrix axial stress distribution, modified the classic shear-lag theory, and analyzed the microstress field offiber-reinforced CMCs after multiple damage. In the present analysis, the Budiansky–Hutchinson–Evans shear-lag model [12] is adopted to analyze the microstress field inside of damaged fiber-reinforced CMCs. The unit cell is extracted from the fiber-reinforced CMCs, as shown in Fig. 1.1. The unit cell contains a single fiber surrounded by a hollow cylinder of matrix. Thefiberradiusisr andthematrixradiusisR(R = r/V1/2).The lengthof f f f theunitcell ishalf ofthematrix crack spacing,i.e., l /2.The fiber/matrixinterface c debonded length is l . The unit cell can be divided into two regions, i.e., the d interface debonded region (x 2 [0, l ]) and interface bonded region (x 2 [l , l /2]). d d c On the matrix crack plane, the fibers carry all the stress (r/V), where r denotes f far-fieldappliedstress andV denotesthefibervolumefraction.IntheBudiansky– f Hutchinson–Evans shear-lag model, it is assumed that the matrix axial stress is Fig.1.1 UnitcellofBudiansky–Hutchinson–Evansshear-lagmodel.Reprintedwithpermission fromRef.[5].Copyright2009,SpringerScienceBusinessMediaNewYork

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.