DAFTAR PUSTAKA AASHTO, 1957. AASHTO Standard Specifications for Highway Bridges. 7th penyunt. Washington, D.C.: American Association Highway and Transportation Officials (AASHTO). AASHTO, 1998. AASHTO LRFD Bridge Design Specifications. 2nd penyunt. Washington (DC): American Association of State Highway and Transportation Officials. AASHTO-LRFD, 2004. AASHTO-LRFD Bridge Design Specifications. 3rd penyunt. Washington, D.C.: American Association of State Highway and Transportation Officials (ASSHTO). ACI, 1917. Proposed Standar Buiding Regulations for the Use of Reinforced Concrete. American Concrete Institute J., 13(2), p. 416. ACI, 2011. Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, 38800 Country Club Drive, Farmington Hills. Michigan 48331: American Concrete Institute. Adekola, A., 1968. Effective Width of Composite Beams of Steel and Concrete. Structural Engineering, Issue 46(9), pp. 285-289. Adekola, A., 1973. The Dependence of Shear Lag on Partial Interaction in Composite Beams. International Journal of Solids Structures, 10(4), pp. 389-400. Allen, D. d. G., 1955. Relaxation Method. s.l.:McGraw-Hill. Allen, D. d. G. & Severn, R., 1961. Composite Action Between Beams and Slabs Under Transverse Load. The Structural Engineering, 39(5), pp. 149-154. Ansourian, O. & Roderick, J., 1976. Composite Connection to Eksternal Columns. Journal Structural Division, Proc. ASCE, Agustust.pp. 1609-1625. Ansourian, P., 1983. The Effective Width of Continuous Composite Beams. Civil Engineering Transitions, Volume 25(1), pp. 63-70. Ansourian, P., 1988. Rational Design of Composite Bridge, Proceeding of An Engineering Foundation Conference. New York, ASCE, pp. 214-225. Aref, A.J. et al., 2007. Effective Slab Width Definition for Negative Moment Regions of Composite Bridges. Journal Of Bridge Engineering, 12 (3)(June), pp.339–349. 148 AS, 1996. Australian Standard-Composite Structures Part 1: Simply Supported Beam, New South Wales: Standars Association of Australia. Batista, E. & Ghavami, K., 2005. Development and Brazillian Steel Construction. Journal of Construction Steel Research, Volume 61, pp. 1009-1024. Botzler, P. & Colvelle, J., 1979. Continous Composite Bridges Model Tests. Journal of Structural Division, ASCE, 105(9), pp. 1741-1755. Brendel, G., 1964. Strength of the Compression Slab of T-Beam Subject to Simple Bending. ACI Journal-Proceeding, Volume 61, pp. 57-76. Brozzetti, J., 2000. Design Development of Steel Concrete Composite Bridge in France. Journal of Construction Steel Research, Volume 55, pp. 229-243. BSI, 1979. Part 5 Code of Practice for Design of Composite Bridge. Dalam: BS 5400 Steel, Concrete and Composite Bridges. London: British Standards Institution. BSI, 1982. Part 3 Code of Practice for Design of Steel Bridge. Dalam: BS 5400 Steel, Concrete and Composite Bidge. London: British Standards Institution. BSN, 2005. Perencanaan Struktur Baja untuk Jembatan, RSNI T-03-2005. Jakarta: Badan Standarisasi Nasional. BSN, 2005. Standar Pembebanan untuk Jembatan: RSNI T-02-2005. Jakarta: Badan Standarisasi Nasional. BSN, 2006. Standar Perencanaan Ketahanan Gempa untuk Jembatan, SNI 03- 2833-200X. Jakarta: Badan Standarisasi Nasional. BSN, 2013. Persyaraan Beton Struktural untuk Bangunan Gedung: SNI 2847:2013. Jakarta: Badan Standarisasi Nasional. BSN, 2015. Spesifikasi untuk Gedung Baja Struktural, SNI 1729:2015. Jakarta: Badan Standarisasi Nasional (BSN). Buildings Department, 2008. Code of Practice for Structural Use of Concrete 2004. 2nd penyunt. Kowloon: The Government of the Hong Kong Special Administrative Region. Burdette, E. & Goodpasture, D., 1973. Tests of Four Highway Bridges to Failure. Journal of Structural Division, ASCE, 99(3), pp. 335-348. Carrera, E., Giunta, G., Nali, P. & Petrolo, M., 2010. Refined Beam Element with Arbritary Cross-Section Geometries. Comput. Struc., 88(5-6), pp. 283-293. 149 Carrera, E., Pagani, A. & Petrolo, M., 2013. Classical, Refined, and Component Wise Analysis of Reinforced-Shell Wing Structure. AIAA J., 51(5), pp. 1255-1268. Castro, J., Elghazouli, A. & Izzuddin, B., 2007. Assesment of Effective Width in Composite Beams. J. Constr. Steel Research, 63(10), pp. 1317-1327. Chapman, J., 1964. Composite Construction in Steel and Concrete-the Behavior of COmposite Beams. The Structural Engineer, 42(2), pp. 115-125. Chen., S., 2005a. Experimantal Studyof Prestressed Steel-Concrete Composite Beams with External Tendons for Negative Moments. Journal of Constructional Steel Research, Volume 61, pp. 1613-1630. Cheung, M. & Chang, M., 1978. Finite Strip Evaluations of Effective Flange Width of Bridge Girder. Can. J. Civ. Eng., Volume 5, pp. 174-185. Chen, S. & Zhang, Z., 2006. Effective width of a concrete slab in steel-concrete composite beams prestressed with external tendons. Journal of Constructional Steel Research, 62(5), pp.493–500. Chen, S.S. et al., 2007. Proposed Effective Width Criteria for Composite Bridge Girders. Journal of Bridge Engineering, 12(3), pp.325–338. Chiewanichakorn, M. et al., 2004. Effective Flange Width Definition of Steel- Concrete Composite Bridge Girder. Journal of Structural Engineering, 130(December), pp.2016–2031. Chiewanichakorn, M., 2004. Instrinsic Method of Effective Flange Width Evaluation for Steel-Concrete Composite Bridges, New York: Dissertation, The State University of New York at Buffalo. Clough, R., 1960. The Finite Element in Plane Stress Analysis. Dalam: Proc. 2nd ASCE Conference on Electronis Computation. Pittsburgh: s.n. Collin, P. & Lundmark, T., 2002. Competitive Swedish Composite Bridge. Melbourne, IABSE Symposium Melbourne. Combault, J. & Teyssandier, J., 2005. The Rion-Antirion Bridge Concept. Design and Construction. Committee on Reinforced Concrete Bridges and Culverts, 1916. Preliniary Report. American Concrete Institute J., Volume 12, p. 419. Cook, R. D., 1994. Finite Element Modelling For Stress Analysis. New York(New York): John Wiley & Sons, Inc.. Corrado, J. & Yen, B., 1973. Failure Tests of Rectangular Model Steel Box Girder. Journal of Structural Division, 99(7), pp. 1432-1455. 150 CSA, 2000. Canadian Highway Bridge Design Code (CAN/CSA-S6-00). s.l.:CSA International. CSA, 2001. Commentary on CAN/CSA-S6-00. Dalam: Canadian Highway Bridge Design Code. s.l.:CSA International. CSA, 2004. Design of Concrete Structures: A23.3-04. Ontario: Canadian Standards Association. Daniel, J. & Fisher, J., 1966. Fatigue Behavior of Continuous Composite Beams. Dalam: Fritz Engineering Laboratory Report no. 324.1. s.l.:Departement of Civil Engineering, Lehigh University. Daniel, J. & Fisher, J., 1967. Static Behavior of Continuous Composite Beams. Dalam: Fritz Enginering Laboratory Report no. 324.2. s.l.:Departement of Civil Engineering, Lehigh University. Daniels, J. & Fisher, J., 1966. Shear Connector Design for Highway Bridges: Static Behavior of Continous Composite Bridge Testing, s.l.: Fritz Engineering Laboratory Rep. No. 324.2 Lehigh University. Pa, Bethle-hem. Davies, C., 1975. Steel-Concrete Composite Beams for Buildings. New York: Halsted Press Book, John Wiley & Sons. Deng, L. & Ghosn, M., 2000. Nonlinier Analysis of Composite Steel Girder Bridges. Engineering Journal, AISC, 37(4), pp. 140-156. Dong, S., Alpdogan, C. & Taciroglu, E., 2010. Much Ado About Shear Correction Factors in TImoshenko Beams Theory. Int. J. Solids Struct., 47(13), pp. 1651-1665. DS Simulia Corp., 2010. Getting Started with Abaqus (Interactive Edition). Providence: s.n. Ebeido, T. & Kennedy, J., 1996. Girder Moments in Continuous Skew Composite Bridges. Journal of Bridge Engineering, ASCE, 1(1), pp. 37-45. Elhebaway, M., Fu, C., Sahin, M. & Schelling, D., 1999. Determination of Slab Participation from Weigh-in-Motion Bridge Testing. Journal Bridge Engineering, Issue 12(2), pp. 324-333. Eurocode 4, 1992. Design of Composite Steel and Concrete Structures . Dalam: Part 1.1-General rules and rules for building (ENV 1994-1-1:1992). s.l.:Europan Committee for Standardisation. Eurocode 4, 1997. Design of Composite Steel and Concrete Structures. Dalam: Part 2-Composite bridges (ENV 1994-2:1997). s.l.:European Committee for Standardisation. 151 Evans, H. & Taherian, A., 1977. The Prediction of the Shear Lag Effect in Box Girder. Proc. Inst. Civ. Eng., 63(1), pp. 69-92. Evans, H. & Taherian, A., 1980. A Design Aid for Shear Lag Calculation. Proc. Ins. Civ. Eng., 69(2), pp. 403-424. Finlayson, B., 1972. The Method of Weighted Residuals and Variational Principles. s.l.:Academic Press. Galambos, T., 2000. Recent Research and Design Development in Steel and Composite Steel-Concrete Structure in USA. Journal of Construction Steel Research, Volume 55, pp. 289-303. Ghoneim, M. A. & El-Mihilmy, M. T., 2008. Design of Reinforced Concrete Structures Volume 1. 2nd penyunt. Cairo: s.n. Gjelsvik, A., 1991. Analog Beam Method for Determining Shear Lag Effect. Journal of Engineering Mechanics, ASCE, 117(7), pp. 1575-1594. Goldbeck, A. & Smith, E., 1916. Test of Large Reinforced Concrete Slab. ACI J., 12(2), pp. 324-333. Guo, J., Fang, Z. & Luo, X., 1983. Analysis of Shear Lag Effect in Box Girder Bridges. China Civ. Eng., 16(1), pp. 1-13. Haensel, J., 1998. Composite Bridge Design: The Reanimation of Steel Bridge Construction. Journal of Construction Steel Research, 54(1-3), pp. 54-55. Hamada, S. & Longworth, J., 1976. Ultimate Strength of Composite Beams. Journal of Structural Engineering, ASCE, 102(7), pp. 2163-2179. Hangood, T., Gurthrie, L. & Hoadley, P., 1968. An Investigationof the Effective Concrete Slab Width for Composite Construction. Engineering Journal, AISC, 5(1), pp. 20-25. Hayward, A., 1988. Cheaper Composite Bridge, Proceeding of an Engineering Foundation Conference. New York, ASCE, pp. 194-206. Hearman, R., 1961. An Introduction to Applied Anisotropic Elasticity. London: Oxford University Press. Heins, C., 1980. LFD Criteria for Composite Steel I-beam Bridges. Journal of Structural Division, ASCE, 106(11), pp. 2297-2312. Heins, C. & Fan, H., 1976. Effective Composite Beam with at Ultimate Load. Journal of Structural Division, 102(11), pp. 2163-2179. IS, 2000. Indian Standard Plain and Reinforced Concrete Code of Practice: IS 456- 2000. 4th penyunt. New Delhi: Bereau of Indian Standards . 152 Johnson, J. & Lewis, A., 1966. Structural Behavior in a Gypsum Roof Deck System. Journal of Structural Division, 92(2), pp. 283-296. Johnson, R., 1970. Research on Steel-Concrete Composite Beams. Journal of Structural Division, ASCE, 96(3), pp. 445-459. Johnson, R., 1996. "Some Research on Composite Structures in the UK 1960-1985", Composite Construction in Steel and Concrete III. Irsee, Germany , Proceeding of an Engineering Foundation, ASCE. Jonhson, R., 1975. Composite Structures of Steel and Concrete, Vol. 1-Beams, Columns, Frames, and Application in Buildings, Constrado Monographs. New York: Halsted Press, John Wiley & Sons. JRA, 1996. Design Specifications for Highway Bridges (Part II-Steel Bridges), s.l.: Japan Road Association. Kathol, S., Azizinamini, A. & Luedke, J., 1995. Strength Capacity of Steel Girder Bridges. Dalam: Final Report no. RES1(0099) R469. Lincoln: Nebraska University. KCI, 1999. Korean Code fr Design of COncrete Structures, New Building, The Korean Science and Technology Center, Yeoksam-don 635-4. Gangnam- gu, Seoul: Korean Concrete Institute. KEMENPU, 2014. Buku Informasi Statistik Infrastruktur Pekerjaan Umum (BISI- PU) 2014. Jakarta: Sekretariat Jenderal Pusat Pengelolaan Data Kementrian Pekerjaan Umum. KEMENPU, 2015. Perpustakaan Kementrian Pekerjaan Umum. [Online] Available at: http://pustaka.pu.go.id/new/istilah-bidang-detail.asp?id=274 [Diakses 20 Agustus 2015]. Kennedy, J. & Soliman, M., 1992. Ultimate Loads of Continuous Composite Bridges. Journal of Structural Engineering, ASCE, 118(9), pp. 2610-2623. Knowles, P., 1973. Composite Steel and Concrete Construction. s.l.:Halstead Press Book, John Wiley & Sons. Kŕístec, V., 1979. Folded Plate Approach to Analysis of Shear Wall Systems and Frame Structures. Proc. Inst. Civ. Eng., 67(4), pp. 1065-1075. Kŕístec, V., Studnićka, J. & Skaloud, M., 1981. Shear Lag in Wide Flanges of Steel Bridge. ACTA Tech. CSAV, 26(4), pp. 64-88. Labia, Y., Saiidi, M. & Douglas, B., 1997. Full Scalled Testing and Analysis of 20- year-old Pretensioned Concrete Box Girder. ACI Structural Journal, 94(5), pp. 471-482. 153 Lawson, R., J, L., S.J, H. & Simms, W., 2005. Design of Composite Asymmetric Cellular Beams and Beamswith Large Openings. Journal of Construction Steel Research, Volume 62, pp. 614-629. Lee, J., 1962. Effective Widths of Tee-Beams. The Structural Engineer, 40(1), pp. 21-27. Lee, S., Yoo, C. & Yoon, D., 2002. Analysis of Shear Lag Anomaly in Box Girder. Journal Structural Engineering, pp. 1379-1386. Lee, S., Yoo, C. & Yoon, D., 2002. Analysis of Shear Lag Anomaly in Box Girders. J. Struc. Eng., 107(9), pp. 1379-1386. Lekhnitskii, S., 1968. Anisotropic Plates (translation from Russian, 2nd Ed., by S,W, Tsai and T. Cheron). Dalam: Gordon & Breach, penyunt. New York: s.n. Lertsima, C., Chaisomphob, T. & Yamaguchi, E., 2004. Stress Concentration due to Shear Lag in Simply Supported Box Girder. Eng. Struc., 33(10), pp. 1093-1101. Lin, Z. & Zhao, J., 2011. Least Work Solution of Flange Normal Stresses in Thin- Walled Flexural Member with High-Order Polynomial. Eng. Struct., 33(10), pp. 2754-2761. Lin, Z. & Zhao, J., 2012. Modelling Inelastic Shear Lag in Steel Box Beam. Eng. Structural, 41(4), pp. 90-97. Little, R., 1969. Semi-infinite Strip Problem with Built-in Edges. J. Appl. Mech., 36(2), pp. 320-323. Liu, C. & Taciroglu, E., 2008. A Semi_analytic Mesh free Method for Alamansi- Michell Problem of Piezoelectric Cylinders. Int. J. Solids Struct., 45(9), pp. 2379-2398. Luo, Q., Tang, J. & Li, Q., 2002. Finite Segment Method for Shear Lag Analysis of Cable Stayed Bridge. Journal Stuctural Engineering, pp. 1617-1622. Mackey, S. & Wong, F., 1961. The Effective Width of Composite Tee-Beam Flange. The Structural Engineer, 39(N0. 9, September), pp. 277-285. Macorini, L. et al., 2006. Long-term analysis of steel-concrete composite beams: FE modelling for effective width evaluation. Engineering Structures, 28(8), Manual, B., 2000. Manual No. SP/M/014, Welington: Transit New Zealand. Moffat, K. & Dowling, P., 1975. Shear Lag in Steel Box Girder Bridge. Journal Structural Engineering, 53(10), pp. 439-448. 154 Moffat, K. & Dowling, P., 1978. British Shear Lag Rules for Composite Girder. Journal Structures Div. ASCE, Issue 104(7), pp. 1123-1130. Mohammed, K., Xavier, C. & Mathieu, A., 2013. A Higher Order Beam Finite Element with Warping Eigenmodes. Eng. Struct., 46(10), pp. 748-762. Mohsen, M. H. & Mohammed, S. N., 2014. The Effective Width in Composite Steel Concrete Beams at Ultimate Loads. Journal of Engineering, 20(8), pp. 1- 17. Moore, M. & Viest, I., 1993. American Iron and Steel Institute Federal Highway Administration Model Bridge Test. Transportation Research Board, Volume 1380, pp. 9-18. Moses., J. P., Harries., K. A., Earl, C. J. & Yulismana, W., 2006. Evaluation of Effective Width and Distribution Factors for GFRP Bridge Supported on Steel Girde. Journal of Bridge Engineering, Volume 11, pp. 401-409. Nakamura, S. I., 1998. Design Strategy to Make Steel Bridge More Economical. Journal of Construction Steel Research, Volume 46 (Nos. 1-3), p. paper no. 48. Nakamura, S., Momiyama, Y., Hosaka, T. & Homma, K., 2002. New Technologies of Steel Concrete Composite Bridge. Journal of Construction Steel Research, Volume 58, pp. 99-130. Nawy, E. G., 2003. Prestressed Concrete: A Fundamental Approach. 4nd penyunt. New Jersey: Prentice-Hall, Inc.. Newmark, N., Siess, C. & Penman, R., 1946. Studies of Slab and Beam Highway Bridges: Part I Tests of Simple-span Right I-beam Bridges. Dalam: Bulletin No.363. s.l.:University of Illinois Enginering Experiment Station. Ni, Y., 1986. Shear Lag Problem in Wide Channel Beams. China Civ. Eng., 19(4), pp. 32-41. NZS, 2006. NZS 3101-2-2006 : Concrete structures standard - Commentary 1st ed., New Zealand: Authority of Development Sponsored By the Earthquake Commission (EQC) and Department of Building and Housing (DBH). NZS, 1995. Code of Practice for the Design of Concrete Structures, NZS 3101:1995, Wellington: Standards Association of New Zealand. NZS, 1997. Steel Structures Standard, NZS 3404:1997, Wellington: Standards Association of New Zealand. Oehlers, D. & Coughlan, C., 1986. The Shear Stiffness of Stud Shear Connections in Composite Beams. Journal of Constructional Steel Research, Volume 6, pp. 273-284. 155 Okui, Y. & Nagai, M., 2007. Block FEM for Time-dependent Shear-lag Behavior in Two I-Girder Composite Bridge. Journal Bridge Engineering, pp. 72- 79. Porter, M. & Eksberg, C., 1976. Design Recommendation for Steel Deck Floor Slabs. Journal of Structural Division, ASCE, November.pp. 2121-2136. Porter, M., Eksberg, C., Jr & Greimann, L., 1976. Shear-Bond Analysis of Steel- Deck-Reinforced Slab. Journal of Structural Division, Proc. ASCE, December.pp. 2255-2268. Qin, X. & Liu, H., 2010. Effective Flange Width of Simply Supported Box Girder Under Uniform Load. Acta Mech. Solida Sin., 23(1), pp. 57-65. Qin, X.X. et al., 2014. Symplectic Analysis of the Shear Lag Phenomenon in a T- Beam. Journal of Engineering Mechanics, pp.1–15. Rao, S. S., 2011. The Finite Element Method In Engineering. 5th penyunt. Chennai: Butterworth-Heinemann. Razaqpur, A. & Noval, M., 1990. Analytical Modelling of Nonlinier Behavior of Composite Bridges. Journal of Structural Engineering, ASCE, 116(6), pp. 1715-1733. Reddy, J., Wang, C. & Lee, K., 1997. Relationships Between Bending Solutions of Classical and Shear Deformation Beam Theories. Journal of Solid Structures, 34(26), pp. 3373-3384. Reis, A. & Pedro, J., 2004. The Europe Bridge in Portugal: Concept and Structural Design. Journal of Constructional Steel Research, Volume 60, pp. 363- 372. Reissner, E., 1941. Least Work Solutions of Shear Lag Problems. J. Aeronaut. Sci., 8(7), pp. 284-291. Reissner, E., 1946. Analysis Shear Lag in Box Girder Beams by the Princple of Minimum Potential Energy. Q. Appl. Math., 5(3), pp. 268-278. Roover, C. et al., 2002. Modelling of an IPC-Concrete Modular Pedestrian Bridge. Journal of Computers Structures, Volume 80, pp. 2133-2144. Roschke, P. & Pruski, K., 2000. Overload and Ultimate Load Beahavior of Post- tension Slab Bridge. Journal of Bridge Engineering, ASCE, 5(2), pp. 148- 155. Sabrin, G. M., 1979. Handbook of Composite Construction Engineering. New York: Van Nostrand Reinhold Ltd.. 156 Salmon, C. & Johnson, J., 1996. Steel Structures: Design and Behavior. 4th penyunt. s.l.:Harper Collins College Publisher. Saul, R., 1998. Cost and Time Efficient Design and Construction of Steel and Steel Composite Bridge. Journal of Constructional Steel Research, 46(Nos. 1- 3), p. 43. Schade, H., 1951. The Effective Breadth of Stiffened Plating Under Bending Load. Trans. SNAME, Volume 59. Schuster, R., 1976. Composite Steel-Deck Concrete Floor Systems. Journal of the Structural Division, Proc. ASCE, May.pp. 899-917. Sedleck, G. & Bild, S., 1993. A Simplified Method for the Determination of the Effective Width Due to Shear Lag Effects. J. Construct. Steel Research, Volume 24, pp. 155-182. Shushkewich, K., 2006. Transverse Analysis of Strutted Box Girder Bridge. Journal Bridge Engineering, pp. 33-47. Siess, C., 1949. Composite Construction for I-Beam Bridges. ASCE Transaction, Volume 114, pp. 1023-1045. Siess, C., 1949. Composite Construction for I-Beam Bridges. Transaction ASCE, Volume 114, pp. 1023-1045. Siess, C. & Viest, I., 1953. Studies of Slab and Beam Highway Bridges: Part V Tests of Continuous RIght I-beam bridges. Dalam: Bulletin No.416. s.l.:University of Illnois Engineering Experiment Station. Singhal, H., 2009. Finite Element Modelling Of Retrofitted RC Beams, Patiala: Thapar University. Slutter, R. & Driscoll, G., 1965. Flexural Strength of Steel-Concrete Composite Beams. Journal of Structural Division, ASCE, 91(2), pp. 71-99. Southwell, R., 1946. Relaxation Method in Theorical Physics. s.l.:Clarendon Press. Special Committe on Concrete and Reinforced Concrete, 1916. Final Report. Proc. Am. Soc. Civ. Eng., 42(10), pp. 1657-1708. Suhendro, B., 2000. Metode Elemen Hingga dan Aplikasinya. 1st penyunt. Yogyakarta: Jurusan Teknik Sipil dan Lingkungan Universitas Gadjah Mada. Tahan, N., Pavlovic, M. & Kotsovos, M., 1997. Shear-lag Revisited: The Use of Single Fourier Series for Determining the Effective Breadth in Plates Structures. Comput. Struct., 63(4), pp. 759-767. 157
Description: