DDD-Meson Mixing in 2+1-Flavor Lattice QCD Chia Cheng Changabc , C. M. Bouchardc†, A. X. El-Khadraab, E. Freelandd, E. Gámize, ∗ A. S. Kronfeld‡bf, J. W. Laihog, E. T. Neilhi, J. N. Simoneb, and R. S. Van de Waterb aDepartmentofPhysics,UniversityofIllinois,Urbana,Illinois,61801,USA 7 bFermiNationalAcceleratorLaboratory,Batavia,Illinois,60510,USA 1 0 cPhysicsDepartment,TheCollegeofWilliamandMary,Williamsburg,Virginia,23185,USA 2 dLiberalArtsDepartment,SchooloftheArtInstituteofChicago,Chicago,Illinois,60603,USA n eCAFPEandDepartamentodeFísicaTeóricaydelCosmos,UniversidaddeGranada, a 18071Granada,Spain J fInstituteforAdvancedStudy,TechnischeUniversitätMünchen,85748Garching,Germany 0 2 gDepartmentofPhysics,SyracuseUniversity,Syracuse,NewYork13244,USA hDepartmentofPhysics,UniversityofColorado,Boulder,Colorado80309,USA ] t iRIKEN-BNLResearchCenter,BrookhavenNationalLaboratory,Upton,NewYork11973,USA a l E-mail: [email protected],[email protected] - p Fermilab Lattice and MILC Collaborations e h [ WepresentresultsforneutralD-mesonmixingin2+1-flavorlatticeQCD.Wecomputethematrix 1 elementsforallfiveoperatorsthatcontributetoDmixingatshortdistances,includingthosethat v 6 only arise beyond the Standard Model. Our results have an uncertainty similar to those of the 1 ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a 9 5 recentpublicationonBmixingandwithongoingworkonheavy-lightdecayconstantsfromthe 0 FermilabLatticeandMILCCollaborations. . 1 0 7 1 : v i X r a 34thannualInternationalSymposiumonLatticeFieldTheory 24-30July2016 UniversityofSouthampton,UK Presentaddress:LawrenceBerkeleyNationalLaboratory,Berkeley,California,94720,USA ∗ †Presentaddress:SchoolofPhysicsandAstronomy,UniversityofGlasgow,GlasgowG128QQ,UK ‡Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ D-MesonMixing A.S.Kronfeld 1. Introduction TheseproceedingscontainastatusupdateofanongoingcalculationofD0-D¯0 mixingmatrix elements [1], similar to our published work on B0-B¯0 mixing [2]. We present nearly final results for all five matrix elements, sufficient to describe D0-D¯0 mixing not only in the Standard Model, butalsoinanyhigh-energyextensionthatmodifiesonlythelocal∆C=2interaction. IntheStandardModel,neutral-mesonmixingismediatedbyone-loop,GIM-suppressedpro- cesses, shown in Fig. 1. In extensions of the Standard Model, other particles could appear in the boxes; there could even be tree-level flavor-changing neutral currents. Mixing has been observed in all four neutral-meson systems—K0, D0, B0, and B0—but the pattern of internal quark masses s andCKMfactorsexplainswhythephenomenologydifferssogreatlyfromonesystemtoanother. BecausetheW bosonsandbquarkshavemasseswellabovetheQCDscale,mixingcanbere- expressedasstemmingbothfromalocal∆C=2interactionandtwo∆C=1interactionsseparated by a distance of order 1/Λ . From degenerate perturbation theory, the off-diagonal term in the QCD mass-widthmatrixis[3] i D0 L∆C=1 n n L∆C=1 D¯0 M Γ ∝ D0 L∆C=2 D¯0 +∑(cid:104) | | (cid:105)(cid:104) | | (cid:105). (1.1) 12−2 12 (cid:104) | | (cid:105) M E +i0+ n D− n Thesecondtermisverydifficulttoestimate. ForD0 mesonsitisalsonotnegligible,unlikeforB0 andB0,wheret,c,anduquarksappearinthebox. (Forkaons,thesecondtermisimportantbutnot s dominant.) Onecanrelatethemeasuredmassandwidthdifferences, ∆M and∆Γ, to M , Γ , 12 12 | | | | and the relative phase arg(Γ /M ) [4]. In some extensions of the Standard Model, only the first 12 12 termand,thus,M isaltered[5]. 12 The effective Lagrangian L∆C=2 (at energies below the b-quark mass) is built out of the fol- lowingoperators(andtheirWilsoncoefficients)[6,7,8]: O =c¯γµLuc¯γ Lu, O˜ =c¯γµRuc¯γ Ru, (1.2) 1 µ 1 µ O =c¯Luc¯Lu, O˜ =c¯Ruc¯Ru, (1.3) 2 2 O =c¯αLuβc¯βLuα, O˜ =c¯αRuβc¯βRuα, (1.4) 3 3 O =c¯Luc¯Ru, (1.5) 4 O =c¯αLuβc¯βRuα, (1.6) 5 where L (R) denotes a left-(right-)handed projector on the Dirac indices, and α and β are color indices. By parity conservation in QCD, D0 O˜ D¯0 = D0 O D¯0 , i = 1, 2, 3. Thus, the five i i (cid:104) | | (cid:105) (cid:104) | | (cid:105) matrix elements D0 O D¯0 , i=1,...5, suffice to describe the short-distance part of all ∆C =2 i (cid:104) | | (cid:105) processes,whethertheiroriginisW-bboxorsomethingelse. Intheseproceedings,wereportona calculationofallfivematrixelementsusinglatticeQCDwith2+1flavorsofseaquarks. W∓ d,s,b u c u c d¯,s¯,¯b W W d,s,b ± ∓ c¯ W u¯ c¯ d¯,s¯,¯b u¯ ± Figure1: BoxdiagramsmediatingD0-D¯0mixingintheStandardModel. 1 D-MesonMixing A.S.Kronfeld 2. Lattice-QCDcalculation Our D-meson calculations have much in common with our published B-meson work [2]. We use the same ensembles (generated by the MILC collaboration) with 2+1 flavors of sea quark [9]. The light quarks (valence and sea) are based on the staggered asqtad action; the heavy c (or b) quark on the Fermilab interpretation of the clover action. The lattice spacings for the ensembles satisfya 0.045fm, 0.06fm, 0.09fm,and 0.12fm. Thesea-quarkmassesyieldpionswith ≈ ≈ ≈ ≈ 177MeV(cid:46) M (cid:46)555MeV, (2.1) π 257MeV(cid:46) Mrms (cid:46)670MeV, (2.2) π Theensemblescontain600–2200gauge-fieldconfigurations,andweuse4or8sources/config. Tocarryoutthechiral-continuumextrapolation,wetakeintoaccountthesubtlewayinwhich spin emerges for staggered fermions with staggered-Wilson four-fermion lattice operators. The three-point correlation function, it turns out, contains contributions not only from the continuum- limitoperatorofdesiredspin,butalsosomeofthewrongspin[10]. Becauseonlythefiveoperators in Eqs. (1.2)–(1.6) can arise, we automatically have the information needed to disentangle this effect. Weusetheone-loopchiral-perturbation-theoryformulasofRef.[10]toremovethewrong- spincontributioninthecourseofourchiral-continuumfit. The operators in Eqs. (1.2)–(1.6) require renormalization for any ultraviolet regulator. We carry out the renormalization of the lattice operators corresponding to Eqs. (1.2)–(1.6) together withmatchingtoMSschemesincontinuumQCD.Weuseamostlynonperturbativemethodtohan- dle the largest lattice-to-continuum matching corrections [11, 12], supplemented with a one-loop calculation of the remaining, small renormalization parts [13, 2]. We choose the renormalization scaleforD-mesonmatrixelementstobe3GeV,whilewechosem forB mesons. b (s) ThemaindifferencebetweenourworkonDvs.B mesonsistheanalysisofthecorrelation (s) functions. The signal-to-noise ratio is much better for D-meson correlators. For the two-point correlators, the optimal time ranget (cid:46)t (cid:46)t differs: t 0.7(0.2) fm,t 3.0(2.4) fm min max min max ≈ ≈ forD(B )mesons. Thedifferenceforthethree-pointcorrelatorsismorestriking. Wefixthefour- (s) quark operators att =0 andthe mesoncreation (annihilation) operator attimet <0 (t >0). As x y 0 30 5 25 10 20 15 or] tyty 15err ty 20 % 10[ 25 30 5 35 0 0 5 10 15 20 25 30 35 |t | |t|t|| x xx Figure2: Fittingrangesforthree-pointcorrelators: triangular(green)and-orfan-shaped(magenta)regions for B mixing (left); two-strip diagonal region (green) for D mixing (right). Background color shows the signal-to-noiseratiofromgood(blue)tobad(red). 2 D-MesonMixing A.S.Kronfeld showninFig.2,weuseatriangularand-orfan-shapedregioninthe t -t planeforB mesons[2], x y (s) | | whileweusealongdiagonalofwidth2forDmixing, t =t t =t +1 . Thelongdiagonal x y x y {| | }∪{| | } makesiteasiertodisentanglethelowest-lying state, ifthesignalpersiststhatfar. Asimultaneous fittotwo-andthree-pointfunctionsisusedtoextractthematrixelements O D0 O D¯0 . i i (cid:104) (cid:105)≡(cid:104) | | (cid:105) 3. Chiral-continuumextrapolation Tocarryoutthechiral-continuumextrapolation,wedevelopafitfunctionbasedonchiralper- turbationtheory(χPT),Symanzikeffectivefieldtheory,andheavy-quarkeffectivetheory(HQET). Ittakestheform F =Flogs+Fanalytic+FHQdisc+Fαsa2 gen+Frenorm+Fκ, (3.1) i i i i i i i whereFlogsdenotesthenext-to-leadingorderdescriptionfromheavy-mesonrootedstaggeredχPT, i withnonanalytictermsincludingthosethatdisentanglethewrong-spincontributions[10];Fanalytic i is a polynomial of various terms that arise in χPT at next-to-leading or higher order; FHQdisc i describesheavy-quarkdiscretizationeffectsusingHQETasatheoryofcutoffeffects[12];Fαsa2 gen i parametrizesgenericcutoffeffectsoflightquarksandgluons,àlaSymanzik;andFrenormallowsthe i fittobesensitivetohigherordersinα formatchingandrenormalization. Finally,Fκ incorporates s i acorrectionfortuningthecharm-quarkhoppingparameterκ,basedonextrarunsata 0.12fm. ≈ Figure 3: Stability of the chiral-continuum extrapolation for several variants of the fit function F: i O (left),minimizedχ2 /dof(right). Stabilityplotsfortheother O looksimilar. (cid:104) 1(cid:105) aug (cid:104) i(cid:105) 3 D-MesonMixing A.S.Kronfeld BBGLN[16] O /M (cid:0)GeV3(cid:1) f2 B (cid:0)GeV2(cid:1) (cid:104) i(cid:105) D Bq Bq q=d q=s O 0.0432(29)(9) 0.0342(29)(7) 0.0498(30)(10) 1 O 0.0833(38)(17) 0.0303(27)(6) 0.0449(29)(9) 2 − O 0.0248(16)(5) 0.0399(77)(8) 0.0571(77)(11) 3 O 0.1469(69)(30) 0.0390(28)(8) 0.0534(30)(11) 4 O 0.0554(38)(11) 0.0361(35)(7) 0.0493(36)(10) 5 µ 3GeV m m b b Table1: ResultsforD[thiswork]andB[2]mixingintherenormalizationschemeofRef.[16]. Both the renormalization and wrong-spin effects mix operators 1, 2, and 3 with each other, and also 4 and 5 with each other. It is thus natural to fit the matrix elements in each sector si- multaneously. Some ingredients in Flogs are common for all i, such as masses, f , light-meson i π χPT constants [14], and the D -D-π coupling. We introduce these external inputs with Gaussian ∗ priors, for example g =0.53 0.8. Because of these common ingredients, we choose to fit D Dπ ∗ ± allfivematrixelementssimultaneously. Weforma χ2 functionfromF O¯ andthesampleco- i i −(cid:104) (cid:105) variancematrixofthe O¯ ,whereO¯ denotestherenormalizedlatticeoperators(whichdifferfrom i i (cid:104) (cid:105) the continuum O by discretization effects and higher-order matching effects). We then augment i this χ2 withGaussianpriorsforthefitparametersimpliedinEq.(3.1),choosingacentralvalueof 0 and width of 1 in natural units for χPT and HQET [15] and minimize the resulting χ2 . We aug ± reconstitutethefitfunctionatzerolatticespacingandphysicalquarkmassestoobtainourestimate ofthe O andtheiruncertainty. i (cid:104) (cid:105) We have 510 data points for O¯ , ranging over the ensembles, valence-quark masses, and i (cid:104) (cid:105) five operators. In our base version of F, there are 127 parameters. To check whether the final i results are robust, we repeat the procedure with several variants of F, as illustrated in Fig. 3. i We express the χPT with f instead of f ; we choose different orders of α in Frenorm and even K π s i replacethemostlynonperturbative(mNPR)matchingwithafullyperturbative(PT)one;wecheck various alternatives for the polynomial Fanalytic (NLO, NNLO, N3LO); we check what happens i when the χPT prior widths in Fanalytic are doubled; we check alternatives for the heavy-quark i discretization errors; we substitute infinite-volume one-loop integrals for the finite-volume sums in one-loop χPT; we omit the data from the coarsest or finest lattice spacing; we fit each matrix element separately, thereby ignoring data constraints on wrong-spin contributions. As one can see from Fig. 3, the results for the O are very stable, so we take these variations in the fit as 1 (cid:104) (cid:105) crosschecks. Thesameappliestotheother O . Thelargestdeviationsare 1σ andcomefrom i (cid:104) (cid:105) ∼ fits that omit important information. Our nearly final results for D mixing are given in Table 1, together with published results for B mixing from Ref. [2]. These matrix elements (as noted (s) above) depend on the renormalization scheme; the tabulated results are in the MS scheme with naive (fully commuting) γ5 and the evanescent-operator basis used by Beneke, Buchalla, Greub, Lenz,andNierste(BBGLN)[16]. The MILC asqtad ensembles omit the charmed-quark sea. As in Ref. [2], we assign an ad- ditional 2% uncertainty to account for this omission. This uncertainty is given separately, in the secondsetofparentheses,inTable1. 4 D-MesonMixing A.S.Kronfeld 4. Outlook Ourresultsagreewellwithandhavesimilaruncertaintyaspreviouslattice-QCDresultsfrom theETMcollaboration,with2[17]or2+1+1[18]flavorsinthesea. Thecomparisonoftheseresults testsnotonlytheflavor-dependenceofthematrixelementsbutalsothesensitivitytolatticefermion formulation: ETM employs twisted-mass Wilson fermions, while we employ staggered fermions. Allthesecalculationsuseseverallatticespacingsandtakethecontinuumlimit. References[17,18] report the so-called “bag factors” often used in phenomenology [7]; a detailed comparison would require choices of quark masses and decay constants (and their uncertainties) that would obscure the error budget of one or the other set of results. We have a set of calculations underway [19] tocomputetheD-andB -mesondecayconstantsonthesameensemblesandwillreportthebag (s) factorsthen. EstimatesofthecontributiontoM ofthesecondterminEq.(1.1)rangeover(10 3–10 2)Γ 12 − − [20], where Γ is the total width of the neutral D meson. It turns out, however, that all Standard- Model phases appearing in Eq. (1.1) are small. Thus, in a TeV-scale model that might produce a large phase in M , the results for the O can be used to constrain the model’s parameters. Fur- 12 i (cid:104) (cid:105) thermore,untilamethodisdevelopedtotamethesecondterminEq.(1.1),theaccuracyachieved inthisworkandRefs.[17,18]shouldsufficeforthispurpose. Acknowledgments We thank our collaborators in the Fermilab Lattice and MILC Collaborations. Computations forthisworkwerecarriedoutwithresourcesprovidedbytheUSQCDCollaboration,theNational Energy Research Scientific Computing Center, and the Argonne Leadership Computing Facility, which are funded by the Office of Science of the U.S. Department of Energy; and with resources providedbytheNationalInstituteforComputationalScienceandtheTexasAdvancedComputing Center, which are funded through the National Science Foundation’s Teragrid/XSEDE Program. This work was supported in part by the U.S. Department of Energy under grants No. DE-FG02- 13ER42001(C.C.C.,A.X.K.),No.DE-SC0015655(A.X.K.),No.DE-SC0010005(E.T.N.);bythe U.S.NationalScienceFoundationundergrantPHY14-17805(J.L.);bytheFermilabFellowshipin Theoretical Physics (C.M.B., C.C.C.); by the URA Visiting Scholars’ program (C.M.B., C.C.C., A.X.K.); by the MICINN (Spain) under grant FPA2010-16696 (E.G.); by the Junta de Andalucía (Spain) under Grants No. FQM-101 and No. FQM-6552 (E.G.); by the European Commission (EC)underGrantNo.PCIG10-GA-2011-303781(E.G.); bytheGermanExcellenceInitiativeand the European Union Seventh Framework Program under grant agreement No. 291763 as well as the European Union’s Marie Curie COFUND program (A.S.K.). Fermilab is operated by Fermi ResearchAlliance,LLC,underContractNo.DE-AC02-07CH11359withtheUnitedStatesDepart- mentofEnergy. BrookhavenNationalLaboratoryissupportedbytheUnitedStatesDepartmentof EnergyundercontractNo.DE-SC0012704. References [1] C.C.Changetal.[FermilabLatticeandMILC],Updateonashort-distanceD0-mesonmixing calculationwithN =2+1flavors,PoS(LATTICE2014)384(2014)[arXiv:1411.6086[hep-lat]]. f 5 D-MesonMixing A.S.Kronfeld [2] A.Bazavovetal.[FermilabLatticeandMILC],B0 -mixingmatrixelementsfromlatticeQCDforthe (s) StandardModelandbeyond,Phys.Rev.D93(2016)113016[arXiv:1602.03560[hep-lat]]. [3] Forareview,seeM.Artuso,B.Meadows,andA.A.Petrov,Charmmesondecays,Annu.Rev.Nucl. Part.Sci.58(2008)249[arXiv:0802.2934[hep-ph]]. [4] A.J.Buras,W.Słominski,andH.Steger,B0-B¯0mixing,CPviolation,andtheBmesondecay,Nucl. Phys.B245(1984)369. [5] E.Golowich,J.Hewett,S.Pakvasa,andA.A.Petrov,RelatingD0-D¯0mixingandD0 l+l with − → newphysics,Phys.Rev.D79(2009)114030[arXiv:0903.2830[hep-ph]]. [6] J.S.Hagelin,S.Kelley,andT.Tanaka,Supersymmetricflavorchangingneutralcurrents: Exact amplitudesandphenomenologicalanalysis,Nucl.Phys.B415(1994)293. [7] F.Gabbiani,E.Gabrielli,A.Masiero,andL.Silvestrini,AcompleteanalysisofFCNCandCP constraintsingeneralSUSYextensionsofthestandardmodel,Nucl.Phys.B477(1996)321 [hep-ph/9604387]. [8] J.A.Bagger,K.T.Matchev,andR.J.Zhang,QCDcorrectionstoflavorchangingneutralcurrentsin thesupersymmetricstandardmodel,Phys.Lett.B412(1997)77[hep-ph/9707225]. [9] A.Bazavovetal.,NonperturbativeQCDsimulationswith2+1flavorsofimprovedstaggeredquarks, Rev.Mod.Phys.82(2010)1349[arXiv:0903.3598[hep-lat]]. [10] C.Bernard,NeutralBmixinginstaggeredchiralperturbationtheory,Phys.Rev.D87(2013)114503 [arXiv:1303.0435[hep-lat]]. [11] A.X.El-Khadra,A.S.Kronfeld,P.B.Mackenzie,S.M.Ryan,andJ.N.Simone,Semileptonic decaysB πlν andD πlν fromlatticeQCD,Phys.Rev.D64(2001)014502[hep-ph/0101023]. → → [12] J.Harada,S.Hashimoto,K.I.Ishikawa,A.S.Kronfeld,T.Onogi,andN.Yamada,Applicationof heavyquarkeffectivetheorytolatticeQCD2: Radiativecorrectionstoheavylightcurrents,Phys. Rev.D65(2002)094513[(E)71(2005)019903][hep-lat/0112044]. [13] R.T.Evans,E.Gámiz,A.X.El-Khadra,andA.S.Kronfeld[FermilabLattice],B-B¯mixingand matchingwithFermilabheavyquarks,PoS(LAT2009)245(2009)[arXiv:0911.5432[hep-lat]]. [14] C.Aubinetal.[MILC],Lightpseudoscalardecayconstants,quarkmasses,andlowenergyconstants fromthree-flavorlatticeQCD,Phys.Rev.D70(2004)114501[hep-lat/0407028]. [15] A.Bazavovetal.[FermilabLatticeandMILC],B-andD-mesondecayconstantsfromthree-flavor latticeQCD,Phys.Rev.D85(2012)114506[arXiv:1112.3051[hep-lat]]. [16] M.Beneke,G.Buchalla,C.Greub,A.Lenz,andU.Nierste,Next-to-leadingorderQCDcorrections tothelifetimedifferenceofB mesons,Phys.Lett.B459(1999)631[hep-ph/9808385]. s [17] N.Carrascoetal.[ETM],D0-D¯0mixingintheStandardModelandbeyondfromN =2twisted- f massQCD,Phys.Rev.D90(2014)014502[arXiv:1403.7302[hep-lat]]. [18] N.Carrasco,P.Dimopoulos,R.Frezzotti,V.Lubicz,G.CRossi,S.Simula,andC.Tarantino[ETM], ∆S=2and∆C=2bagparametersintheStandardModelandbeyondfromN =2+1+1twisted- f masslatticeQCD,Phys.Rev.D92(2015)034516[arXiv:1505.06639[hep-lat]]. [19] E.T.Neiletal.[FermilabLatticeandMILCCollaborations],LeptonicB-andD-mesondecay constantswith2+1flavorsofasqtadfermions,PoS(LATTICE2014)383(2015) [arXiv:1501.01991[hep-lat]]. [20] A.F.Falk,Y.Grossman,Z.Ligeti,Y.Nir,andA.A.Petrov,TheD0-D¯0massdifferencefroma dispersionrelation,Phys.Rev.D69(2004)114021[hep-ph/0402204]. 6