AskarA.Tuganbaev ArithmeticalRingsandEndomorphisms Also of Interest ModulesoverDiscreteValuationRings,2ndedition PiotrA.Krylov/PiotrA.Tuganbaev,2018 ISBN978-3-11-060977-6,e-ISBN(PDF)978-3-11-061114-4, e-ISBN(EPUB)978-3-11-060985-1 ApproximationsandEndomorphismAlgebrasofModules Volume1–Approximations/Volume2–Predictions RüdigerGöbel/JanTrlifaj,2012 ISBN978-3-11-021810-7,e-ISBN(PDF)978-3-11-021811-4 ProgressinCommutativeAlgebra1 CombinatoricsandHomology Ed.byFrancisco,Christopher/Klingler,LeeC./Sather-Wagstaff, Sean/Vassilev,JanetC.,2012 ISBN978-3-11-025034-3,e-ISBN(PDF)978-3-11-025040-4 ProgressinCommutativeAlgebra2 Closures,FinitenessandFactorization Ed.byFrancisco,Christopher/Klingler,LeeC./Sather-Wagstaff,Sean M./Vassilev,JanetC.,2012 ISBN978-3-11-027859-0,e-ISBN(PDF)978-3-11-027860-6 AlgebraandItsApplications ProceedingsoftheInternationalConferenceheldatAligarhMuslim University,2016 Ed.byAshraf,Mohammad/DeFilippis,Vincenzo/Rizvi,SyedTariq, 2018 ISBN978-3-11-054092-5,e-ISBN(PDF)978-3-11-054240-0, e-ISBN(EPUB)978-3-11-054098-7 Askar A. Tuganbaev Arithmetical Rings and Endomorphisms | MathematicsSubjectClassification2010 16D25,16D40,13F05,16D50,16D70,16E60,16P40,16P50,16P60,13F05 Author Prof.Dr.AskarA.Tuganbaev NationalResearchUniversityMPEI DepartmentofHigherMathematics Krasnokazarmennaya14 Moscow111250 RussianFederation [email protected] ISBN978-3-11-065889-7 e-ISBN(PDF)978-3-11-065982-5 e-ISBN(EPUB)978-3-11-065915-3 LibraryofCongressControlNumber:2019939556 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:jjaakk/DigitalVisionVectors/GettyImages Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface This monograph isa comprehensive account of not necessarily commutative arith- meticalrings,examiningstructuralandhomologicalpropertiesofmodulesoverarith- metical rings and summarizing the interplay between arithmetical rings and other rings.Moduleswithextensionpropertiesofsubmoduleendomorphismsarealsosys- tematicallystudiedinthisbook. Graduatestudentsandresearchersinterestedinringtheoryandmoduletheorywill find this book particularly valuable. Containing numerous examples, Arithmetical RingsandEndomorphismsisalargelyself-containedandaccessibleintroductionto thetopic,assumingasolidunderstandingofbasicalgebra. ThestudyissupportedbytheRussianScienceFoundation,projectno.16-11-10013. Keywords:arithmeticalring,distributivemodule,flatmodule,localizationbyamax- imalideal,Bezoutring,Hermitering,endomorphism-extendablemodule,automor- phism-extendablemodule,automorphism-invariantmodule,injectivemodule,quasi- injectivemodule,stronglysemiprimering https://doi.org/10.1515/9783110659825-201 Introduction This book consists of two parts. In Part I, “Arithmetical rings,” we systematically studynotnecessarilycommutativeringswithdistributivelatticeoftwo-sidedideals. In Part II, “Extension of automorphisms and endomorphisms,” we study modules with the extension property of automorphisms and endomorphisms from submod- ulestothewholemodule,andalsocharacteristicsubmodulesoftheirinjectivehulls. Themaincontentofthebook ThemainresultsofSection1“SaturatedIdealsandLocalizations”areTheorems1A, 1Band1C. 1ATheorem(Tuganbaev[172]). ArightinvariantringA isarithmeticalifandonlyif foritsmaximalidealM,all{A\M}-saturatedidealsoftheringAformachainwith respecttoinclusion. 1BTheorem(Jensen[98]). AcommutativeringAisarithmeticalifandonlyifforits maximalidealM,thelocalizationA isauniserialring. M 1CTheorem(Tuganbaev[157]). ArightinvariantringAisanarithmeticalsemiprime ringifandonlyifforitsmaximalidealM,therightlocalizationA existsandisaright M uniserialdomain. ThemainresultsofSection2,“FinitelyGeneratedModulesandDiagonalizability,”are Theorems2Aand2B. 2ATheorem(Golod[77]). IfAisacommutativering,thenAisarithmeticalifandonly ifB+r(X) = r(X/XB)foreveryfinitelygeneratedA-moduleXandeachidealBofthe ringA. 2BTheorem(Tuganbaev[187]). IfAisarightinvariant,diagonalizable¹ring,thenB+ r(X) = r(X/XB)foreveryfinitelygeneratedrightA-moduleXandeachidealBofthe ringA. ThemainresultsofSection3“Ringswithflatandquasiprojectiveideals”arethefol- lowingTheorems3A,3Band3C. 3ATheorem(Tuganbaev[157,161,182]). ForaninvariantsemiprimeringA,thefol- lowingconditionsareequivalent. 1 Thedefinitionofadiagonalizableringisgivenin2.2.1. https://doi.org/10.1515/9783110659825-202 VIII | Introduction 1)Aisanarithmeticalring. 2)EverysubmoduleofanyflatA-moduleisaflatmodule. 3)EveryfinitelygeneratedidealoftheringAisaquasiprojectiverightA-module. 3BTheorem(Jensen[98]). AcommutativeringAisanarithmeticalsemiprimeringif andonlyifeverysubmoduleofanyflatA-moduleisaflatmodule. 3CTheorem(Tuganbaev[182]). IfAisaninvariantring,thenAisanarithmeticalring ifandonlyifeveryoneofitsfinitelygeneratedidealsisaquasiprojectiverightA-mod- ulesuchthatallendomorphismscanbeextendedtoendomorphismsofthemodule A . A ThemainresultsofSection4“HermiteringsandPiercestalks”areTheorems4Aand 4B. 4ATheorem(Tuganbaev[183]). IfAisarightPPBezoutringwithoutnoncentralidem- potents,thenAisaHermitering. 4BTheorem(Tuganbaev[183]). IfAisaBezoutringsuchthateveryPiercestalkisa serialring,thenAisadiagonalizablering. ThemainresultsofSection5“BezoutRings,Krulldimension”areTheorems5A,5B and5C. 5A Theorem (Tuganbaev [183]). If A is a Bezout exchange ring without noncentral idempotents,thenAisadiagonalizablering. 5BTheorem(Tuganbaev[187]). IfAisarightinvariant,arightBezout,exchangering, thenB+r(X)= r(X/XB)foreveryfinitelygeneratedrightA-moduleXandeachideal BoftheringA. 5CTheorem(Tuganbaev[188]). If A isacommutativearithmeticalring,then A has theKrulldimensionifandonlyifeveryfactorringoftheringAisfinite-dimensional anddoesnothaveidempotentproperessentialideals. ThemainresultsofSection6“Semi-ArtinianandNonsingularModules”areTheorems 6A,6Band6C. 6ATheorem(Tuganbaev[184]). IfM isasemi-Artinian²module,thenM isanauto- morphism-extendablemoduleifandonlyifMisanautomorphism-invariantmodule. 6BTheorem(Tuganbaev[174]). IfMisamoduleoveranArtinianserialring,thenM isanautomorphism-extendablemoduleifandonlyifMisaquasi-injectivemodule. 2 AmoduleMissaidtobesemi-Artinianifeachofitsnonzerofactormoduleshasasimplesubmodule. Introduction | IX 6C Theorem(Tuganbaev [176]). Let M = T ⊕ U, where T isaninjectivemodule, U isanonsingular module,andHom(T,U) = 0foranysubmodule T ofthemodule T.ThemoduleMisautomorphism-extendableifandonlyifU isanautomorphism- extendablemodule. ThemainresultsofSection7“ModulesoverStronglyPrimeandStronglySemiprime Rings”areTheorems7Aand7B. 7ATheorem(Tuganbaev[179]). IfAisarightstronglyprimering,thenarightA-mod- uleMisautomorphism-invariantifandonlyifeitherMisasingularautomorphism- invariantmoduleorMisaninjectivemodule. 7B Theorem(Tuganbaev [176]). If M isa right module over an invarianthereditary domainA,thenthefollowingconditionsareequivalent. 1)Misanautomorphism-extendable(stronglyautomorphism-extendable)module. 2)Misanendomorphism-extendable(stronglyendomorphism-extendable)module. 3)EitherMisaquasi-injectivesingularmoduleorMisaninjectivemodulethatisnot singular,orM = X⊕Y,whereXisaninjectivesingularmoduleandthemoduleY is isomorphictoanonzerosubmoduleinQ ,whereQisadivisionringoffractionsof A thedomainA. The mainresults of Section 8 “Endomorphism-extendable Modules and Rings” are Theorems8Aand8B. 8ATheorem(Tuganbaev[167]). AringA isarightendomorphism-extendable,right nonsingularringifandonlyifA=B×C,whereBisarightinjectiveregularring,Cisa leftinvariant,reducedBaerringandCisarightcompletelyintegrallyclosedsubring ofitsmaximalrightringsoffractionsQ. 8BTheorem(Tuganbaev[162]). AringAisaright(left)Noetherianringsuchthatall cyclicright(left)modulesareendomorphism-extendableifandonlyifA =A ×⋅⋅⋅×A , 1 n whereA iseitherasimpleArtinianringorauniserialArtinianring,oraninvariant i hereditaryNoetheriandomain,i=1,...,n. ThemainresultsofSection9“Automorphism-invariantnonsingularmodulesandthe rings”areTheorems9A,9B,9C,9D. 9ATheorem(Tuganbaev[185]). LetAbearightstronglysemiprimering.IfXisaright A-moduleandthereexistsanessentialrightidealBoftheringAsuchthatXisinjec- tivewithrespecttothemoduleB ,thenXisaninjectivemodule. A 9BTheorem(Tuganbaev[189]). IfAisaringwithrightGoldieradicalG,thenthefol- lowingconditionsareequivalent.