ebook img

Cyclic Modules and the Structure of Rings (Oxford Mathematical Monographs) PDF

177 Pages·2012·1.432 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cyclic Modules and the Structure of Rings (Oxford Mathematical Monographs)

AskarA.Tuganbaev ArithmeticalRingsandEndomorphisms Also of Interest ModulesoverDiscreteValuationRings,2ndedition PiotrA.Krylov/PiotrA.Tuganbaev,2018 ISBN978-3-11-060977-6,e-ISBN(PDF)978-3-11-061114-4, e-ISBN(EPUB)978-3-11-060985-1 ApproximationsandEndomorphismAlgebrasofModules Volume1–Approximations/Volume2–Predictions RüdigerGöbel/JanTrlifaj,2012 ISBN978-3-11-021810-7,e-ISBN(PDF)978-3-11-021811-4 ProgressinCommutativeAlgebra1 CombinatoricsandHomology Ed.byFrancisco,Christopher/Klingler,LeeC./Sather-Wagstaff, Sean/Vassilev,JanetC.,2012 ISBN978-3-11-025034-3,e-ISBN(PDF)978-3-11-025040-4 ProgressinCommutativeAlgebra2 Closures,FinitenessandFactorization Ed.byFrancisco,Christopher/Klingler,LeeC./Sather-Wagstaff,Sean M./Vassilev,JanetC.,2012 ISBN978-3-11-027859-0,e-ISBN(PDF)978-3-11-027860-6 AlgebraandItsApplications ProceedingsoftheInternationalConferenceheldatAligarhMuslim University,2016 Ed.byAshraf,Mohammad/DeFilippis,Vincenzo/Rizvi,SyedTariq, 2018 ISBN978-3-11-054092-5,e-ISBN(PDF)978-3-11-054240-0, e-ISBN(EPUB)978-3-11-054098-7 Askar A. Tuganbaev Arithmetical Rings and Endomorphisms | MathematicsSubjectClassification2010 16D25,16D40,13F05,16D50,16D70,16E60,16P40,16P50,16P60,13F05 Author Prof.Dr.AskarA.Tuganbaev NationalResearchUniversityMPEI DepartmentofHigherMathematics Krasnokazarmennaya14 Moscow111250 RussianFederation [email protected] ISBN978-3-11-065889-7 e-ISBN(PDF)978-3-11-065982-5 e-ISBN(EPUB)978-3-11-065915-3 LibraryofCongressControlNumber:2019939556 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:jjaakk/DigitalVisionVectors/GettyImages Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface This monograph isa comprehensive account of not necessarily commutative arith- meticalrings,examiningstructuralandhomologicalpropertiesofmodulesoverarith- metical rings and summarizing the interplay between arithmetical rings and other rings.Moduleswithextensionpropertiesofsubmoduleendomorphismsarealsosys- tematicallystudiedinthisbook. Graduatestudentsandresearchersinterestedinringtheoryandmoduletheorywill find this book particularly valuable. Containing numerous examples, Arithmetical RingsandEndomorphismsisalargelyself-containedandaccessibleintroductionto thetopic,assumingasolidunderstandingofbasicalgebra. ThestudyissupportedbytheRussianScienceFoundation,projectno.16-11-10013. Keywords:arithmeticalring,distributivemodule,flatmodule,localizationbyamax- imalideal,Bezoutring,Hermitering,endomorphism-extendablemodule,automor- phism-extendablemodule,automorphism-invariantmodule,injectivemodule,quasi- injectivemodule,stronglysemiprimering https://doi.org/10.1515/9783110659825-201 Introduction This book consists of two parts. In Part I, “Arithmetical rings,” we systematically studynotnecessarilycommutativeringswithdistributivelatticeoftwo-sidedideals. In Part II, “Extension of automorphisms and endomorphisms,” we study modules with the extension property of automorphisms and endomorphisms from submod- ulestothewholemodule,andalsocharacteristicsubmodulesoftheirinjectivehulls. Themaincontentofthebook ThemainresultsofSection1“SaturatedIdealsandLocalizations”areTheorems1A, 1Band1C. 1ATheorem(Tuganbaev[172]). ArightinvariantringA isarithmeticalifandonlyif foritsmaximalidealM,all{A\M}-saturatedidealsoftheringAformachainwith respecttoinclusion. 1BTheorem(Jensen[98]). AcommutativeringAisarithmeticalifandonlyifforits maximalidealM,thelocalizationA isauniserialring. M 1CTheorem(Tuganbaev[157]). ArightinvariantringAisanarithmeticalsemiprime ringifandonlyifforitsmaximalidealM,therightlocalizationA existsandisaright M uniserialdomain. ThemainresultsofSection2,“FinitelyGeneratedModulesandDiagonalizability,”are Theorems2Aand2B. 2ATheorem(Golod[77]). IfAisacommutativering,thenAisarithmeticalifandonly ifB+r(X) = r(X/XB)foreveryfinitelygeneratedA-moduleXandeachidealBofthe ringA. 2BTheorem(Tuganbaev[187]). IfAisarightinvariant,diagonalizable¹ring,thenB+ r(X) = r(X/XB)foreveryfinitelygeneratedrightA-moduleXandeachidealBofthe ringA. ThemainresultsofSection3“Ringswithflatandquasiprojectiveideals”arethefol- lowingTheorems3A,3Band3C. 3ATheorem(Tuganbaev[157,161,182]). ForaninvariantsemiprimeringA,thefol- lowingconditionsareequivalent. 1 Thedefinitionofadiagonalizableringisgivenin2.2.1. https://doi.org/10.1515/9783110659825-202 VIII | Introduction 1)Aisanarithmeticalring. 2)EverysubmoduleofanyflatA-moduleisaflatmodule. 3)EveryfinitelygeneratedidealoftheringAisaquasiprojectiverightA-module. 3BTheorem(Jensen[98]). AcommutativeringAisanarithmeticalsemiprimeringif andonlyifeverysubmoduleofanyflatA-moduleisaflatmodule. 3CTheorem(Tuganbaev[182]). IfAisaninvariantring,thenAisanarithmeticalring ifandonlyifeveryoneofitsfinitelygeneratedidealsisaquasiprojectiverightA-mod- ulesuchthatallendomorphismscanbeextendedtoendomorphismsofthemodule A . A ThemainresultsofSection4“HermiteringsandPiercestalks”areTheorems4Aand 4B. 4ATheorem(Tuganbaev[183]). IfAisarightPPBezoutringwithoutnoncentralidem- potents,thenAisaHermitering. 4BTheorem(Tuganbaev[183]). IfAisaBezoutringsuchthateveryPiercestalkisa serialring,thenAisadiagonalizablering. ThemainresultsofSection5“BezoutRings,Krulldimension”areTheorems5A,5B and5C. 5A Theorem (Tuganbaev [183]). If A is a Bezout exchange ring without noncentral idempotents,thenAisadiagonalizablering. 5BTheorem(Tuganbaev[187]). IfAisarightinvariant,arightBezout,exchangering, thenB+r(X)= r(X/XB)foreveryfinitelygeneratedrightA-moduleXandeachideal BoftheringA. 5CTheorem(Tuganbaev[188]). If A isacommutativearithmeticalring,then A has theKrulldimensionifandonlyifeveryfactorringoftheringAisfinite-dimensional anddoesnothaveidempotentproperessentialideals. ThemainresultsofSection6“Semi-ArtinianandNonsingularModules”areTheorems 6A,6Band6C. 6ATheorem(Tuganbaev[184]). IfM isasemi-Artinian²module,thenM isanauto- morphism-extendablemoduleifandonlyifMisanautomorphism-invariantmodule. 6BTheorem(Tuganbaev[174]). IfMisamoduleoveranArtinianserialring,thenM isanautomorphism-extendablemoduleifandonlyifMisaquasi-injectivemodule. 2 AmoduleMissaidtobesemi-Artinianifeachofitsnonzerofactormoduleshasasimplesubmodule. Introduction | IX 6C Theorem(Tuganbaev [176]). Let M = T ⊕ U, where T isaninjectivemodule, U isanonsingular module,andHom(T󸀠,U) = 0foranysubmodule T󸀠 ofthemodule T.ThemoduleMisautomorphism-extendableifandonlyifU isanautomorphism- extendablemodule. ThemainresultsofSection7“ModulesoverStronglyPrimeandStronglySemiprime Rings”areTheorems7Aand7B. 7ATheorem(Tuganbaev[179]). IfAisarightstronglyprimering,thenarightA-mod- uleMisautomorphism-invariantifandonlyifeitherMisasingularautomorphism- invariantmoduleorMisaninjectivemodule. 7B Theorem(Tuganbaev [176]). If M isa right module over an invarianthereditary domainA,thenthefollowingconditionsareequivalent. 1)Misanautomorphism-extendable(stronglyautomorphism-extendable)module. 2)Misanendomorphism-extendable(stronglyendomorphism-extendable)module. 3)EitherMisaquasi-injectivesingularmoduleorMisaninjectivemodulethatisnot singular,orM = X⊕Y,whereXisaninjectivesingularmoduleandthemoduleY is isomorphictoanonzerosubmoduleinQ ,whereQisadivisionringoffractionsof A thedomainA. The mainresults of Section 8 “Endomorphism-extendable Modules and Rings” are Theorems8Aand8B. 8ATheorem(Tuganbaev[167]). AringA isarightendomorphism-extendable,right nonsingularringifandonlyifA=B×C,whereBisarightinjectiveregularring,Cisa leftinvariant,reducedBaerringandCisarightcompletelyintegrallyclosedsubring ofitsmaximalrightringsoffractionsQ. 8BTheorem(Tuganbaev[162]). AringAisaright(left)Noetherianringsuchthatall cyclicright(left)modulesareendomorphism-extendableifandonlyifA =A ×⋅⋅⋅×A , 1 n whereA iseitherasimpleArtinianringorauniserialArtinianring,oraninvariant i hereditaryNoetheriandomain,i=1,...,n. ThemainresultsofSection9“Automorphism-invariantnonsingularmodulesandthe rings”areTheorems9A,9B,9C,9D. 9ATheorem(Tuganbaev[185]). LetAbearightstronglysemiprimering.IfXisaright A-moduleandthereexistsanessentialrightidealBoftheringAsuchthatXisinjec- tivewithrespecttothemoduleB ,thenXisaninjectivemodule. A 9BTheorem(Tuganbaev[189]). IfAisaringwithrightGoldieradicalG,thenthefol- lowingconditionsareequivalent.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.