Grundlehren der mathematischen Wissenschaften 301 A Series of Comprehensive Studies in Mathematics Editors S. S. Chern B. Eckmann P. de la Harpe H. Hironaka F. Hirzebruch N. Hitchin 1. Hormander M.-A. Knus A. Kupiainen J. Lannes G. Lebeau M. Ratner D. Serre Ya.G. Sinai N. J. A. Sloane J.Tits M. Waldschmidt S. Watanabe Managing Editors M. Berger J. Coates S.R.S. Varadhan Springer-Verlag Berlin Heidelberg GmbH Jean -Louis Loday Cyclic Homology Second Edition With 24 Figures Springer Jean-Louis Loday Institut de Recherche Mathematique Av ancee Centre National de la Recherche Scientifique 7, rue Rene Descartes F-67084 Strasbourg, France Library of Congress Cataloging-in-Publication Data Loday, Jean-Louis. Cyclic homology I Jean-Louis Loday. - znd ed. p. cm. - (Grundlehren der mathematischen Wissenschaften; 301) Includes bibliographical references and index. ISBN 978-3-642-08316-7 ISBN 978-3-662-11389-9 (eBook) DOI 10.1007/978-3-662-11389-9 1. Homology theory. I. Tide. II. Series. QA61Z.3.L63 1998 51Z' .55-dc21 97-22418 CIP Mathematics Subject Classification (1991): Primary: 14Fxx, 16E40, 17B56, 18F25, 18Gxx, 19-xx, 46Lxx, 55-xx Secondary: 05A19, 16E30, 16R30, 16Wxx, 17D99, 20B30, 57R20, 58B30 ISSN 0072-7830 ISBN 978-3-642-08316-7 This work is subject to copyright. AU rights are reserved, whether the whole or part ofthe material is concerned, specificaUy the rights oftranslation, reprinting, reuse of illustrations, re citation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current vers ion, and permis sion for use must always be obtained from Springer-Verlag Berlin Heidelherg GmhH. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1992, 1998 OriginaUy published by Springer-Verlag Berlin Heidelberg New York in 1998 Cover design: MetaDesign plus GmbH, Berlin Data conversion: Satztechnik K. Steingraeber, Heidelberg, Germany, using a Springer TEX macro-package SPIN: 1I7686S4 41/3III-S 4 3 2 Printed on acid-free paper U ne mathematique bleue Dans une mer jamais etale a D' ou no us remonte peu peu Cette memoire des etoiles Leo Ferre , .- A Eliane Preface to the Second Edition Apart from correction of misprints, inaccuracies and errors, the main differ ence between the second edition and the first is the addition of a new chapter on Mac Lane (co)homology, written jointly with Teimuraz Pirashvili. It is related to Hochschild homology, to algebraic K-theory and cohomology of small categories as treated in the previous chapters (see the introduction to Chapter 13). Appendix C has been modified accordingly. The first list of references was reasonably up to date for papers dealing with cyclic homology until 1992. It contains all the references mentioned in Chapters 1 to 12 and in the appendices. Chapter 13 has its own list of references. Since the publication of the first edition numerous results on the cyclic theory have appeared, namely about the periodic theory, and also about topological cyclic homology. For the convenience of the reader we give a second list of references concerning the cyclic theory for the period 1992-96. It is a pleasure to thank here all the colleagues who helped me to im prove this second edition, namely C. Allday, C.-F. Bodigheimer, J. Browkin, B. Dayton, I. Emmanouil, V. Franjou, A. Frabetti, J. Franke, F. Goichot, V. Gnedbaye, J.A. Guccione, J.J. Guccione, P. Julg, W. van der Kallen, M. Karoubi, C. Kassel, B. Keller, M. Khalkhali, J. Lodder, J. Majadas, J. Mc Cleary, M. Ronco, G. van der Sandt. It is a pleasure to warmly thank Teimuraz Pirashvili for numerous en lightening conversations and for his kind collaboration on Chapter 13. At 48°35'N and 7°48'E, January 21st, 1997. Preface II y a maintenant 10 ans que l'homologie cyclique a pris son essor et Ie rythme a de parution des publications son sujet confirme son importance. Durant ce laps de temps l'efIet de sedimentation a pu operer et il devenait possible, sinon necessaire, de disposer d'un ouvrage de reference sur Ie sujet. a Je n'ai pu ecrire ce livre que grace aux enseignements et l'aide de nombreux collegues, que je voudrais remercier ici. Les cours de topologie algebrique d'Henri Cartan, qui resteront certainement dans la memoire de ses auditeurs, ont constitue mon initiation et il est difficile d'en etre digne. a Max Karoubi m'a introduit la K-theorie, topologique tout d'abord, puis a algebrique ensuite, et son enseignement n'a pas peu contribue rna forma tion. Dan Quillen a ete constamment present tout au long de ces annees. Au debut ce fut par ses ecrits (cobordisme et groupes formels, homotopie rationnelle), puis par ses exposes (K-theorie algebrique) et, plus recemment, a par une collaboration qui est l'origine de ce livre. Les conversations et discussions avec Alain Connes furent toujours stimulantes et exaltantes. Ses encouragements et son aide furent pour moi un soutien constant. Je voudrais aussi remercier Zbignew Fiedorowicz, Claudio Procesi et Ronnie Brown pour a leur collaboration effie ace et amicale. Remerciements aussi Keith Dennis pour m'avoir donne l'opportunite de faire un cours sur l'homologie cyclique a a Cornell University au tout debut de la redaction et Jean-Luc Brylin a ski pour un semestre fructueux passe Penn State University. Ce livre doit aussi beaucoup ad e nombreux autres collegues, soit pour des discussions, soit pour des commentaires pertinents, en particulier a L. Avramov, P. Blanc, J. L. Cathelineau, C. Cuvier, S. Chase, P. Gaucher, F. Goichot, P. Julg, W. van der Kallen, C. Kassel, P. Ion, J. Lodder, R. MacCarthy, A. Solotar, T. Pirashvili, C. Weibel et Ie rapporteur. Mamuka Jiblaze a relu entierement Ie manuscrit durant la phase finale et je lui en sais gre. Je voudrais aussi mentionner tout particulierement Maria Ronco pour m'avoir toujours ecoute avec attention, pour avoir lu plusieurs versions de ce livre et pour avoir corrige de nombreuses imprecisions. Enfin et surtout je terminerai en remerciant chaleureusement Daniel Guin pour Ie nombre incalculable d'heures que nous avons passe ensemble devant un tableau noir et dont je garde Ie meilleur souvenir. Par 48° 35'N et 7° 48'E, Ie 12 janvier 1992. Contents Introduction ................................................ XV Notation and Terminology .................................. XIX Chapter 1. Hochschild Homology ........................... 1 1.0 Chain Complexes ......................................... 2 1.1 Hochschild Homology ..................................... 8 1.2 The Trace Map and Morita Invariance ...................... 16 1.3 Derivations, Differential Forms ............................. 23 1.4 Nonunital Algebras and Excision ........................... 29 1.5 Hochschild Cohomology, Cotrace, Duality ................... 37 1.6 Simplicial Modules ....................................... 44 Bibliographical Comments on Chapter 1 .................... 48 Chapter 2. Cyclic Homology of Algebras .................... 51 2.1 Definition of Cyclic Homology ............................. 53 2.2 Connes' Exact Sequence, Morita Invariance, Excision ......... 61 2.3 Differential Forms, de Rham Cohomology ................... 68 2.4 Cyclic Cohomology ....................................... 72 2.5 Cyclic Modules .......................................... 75 2.6 Non-commutative Differential Forms ........................ 83 Bibliographical Comments on Chapter 2 ......... . . . . . . . . . . . 88 Chapter 3. Smooth Algebras and Other Examples .......... 89 3.1 Tensor Algebra .......................................... 90 3.2 Symmetric Algebras ...................................... 94 3.3 Universal Enveloping Algebras of Lie Algebras ............... 97 3.4 Smooth Algebras ......................................... 101 3.5 Andre-Quillen Homology .................................. 107 3.6 Deligne Cohomology ...................................... 112 Bibliographical Comments on Chapter 3 .................... 114 XII Contents Chapter 4. Operations on Hochschild and Cyclic Homology 115 4.1 Conjugation and Derivation ............................... 116 4.2 Shuffle Product in Hochschild Homology .................... 123 4.3 Cyclic Shuffles and Kiinneth Sequence for He ............... 127 4.4 Product, Coproduct in Cyclic Homology .................... 133 4.5 ,X-Decomposition for Hochschild Homology .................. 139 4.6 ,X-Decomposition for Cyclic Homology ....................... 149 Bibliographical Comments on Chapter 4 .................... 155 Chapter 5. Variations on Cyclic Homology .................. 157 5.1 The Periodic and Negative Theories ........................ 158 5.2 Dihedral and Quaternionic Homology ....................... 167 5.3 Differential Graded Algebras ............................... 175 5.4 Commutative Differential Graded Algebras .................. 182 5.5 Bivariant Cyclic Cohomology .............................. 190 5.6 Topological Algebras, Entire Cyclic Cohomology ............. 195 Bibliographical Comments on Chapter 5 ........ . . . . . . . . . . .. 199 Chapter 6. The Cyclic Category, Tor and Ext Interpretation 201 6.1 Connes Cyclic Category ..de and the Category..dS ........... 202 6.2 Tor and Ext Interpretation of HH and He .................. 211 6.3 Crossed Simplicial Groups ................................. 214 6.4 The Category of Finite Sets and the ,X-Decomposition ......... 220 Bibliographical Comments on Chapter 6 .................... 225 Chapter 7. Cyclic Spaces and Sl-Equivariant Homology .... 227 7.1 Cyclic Sets and Cyclic Spaces .............................. 228 7.2 Cyclic Homology and Sl-Equivariant Homology .............. 234 7.3 Examples of Cyclic Sets and the Free Loop Space ............ 241 7.4 Hochschild Homology and Cyclic Homology of Group Algebras ................................................ 250 Bibliographical Comments on Chapter 7 .................... 256 Chapter 8. Chern Character ................................ 257 8.1 The Classical Chern Character it la Chern-Weil .............. 258 8.2 The Grothendieck Group Ko ............................... 261 8.3 The Chern Character from Ko to Cyclic Homology ........... 264 8.4 The Dennis Trace Map and the Generalized Chern Character .. 269 8.5 The Bass Trace Conjecture and the Idempotent Conjecture .... 277 Bibliographical Comments on Chapter 8 .................... 279 Contents XIII Chapter 9. Classical Invariant Theory ...................... 281 9.1 The Fundamental Theorems of Invariant Theory ............. 282 9.2 Coinvariant Theory and the Trace Map ..................... 284 9.3 Cayley-Hamilton and Amitsur-Levitzki Formulas ............. 287 9.4 Proofs of the Fundamental Theorems ....................... 291 9.5 Invariant Theory for the Orthogonal and Symplectic Groups ... 293 Bibliographical Comments on Chapter 9 .................... 297 Chapter 10. Homology of Lie Algebras of Matrices 299 10.1 Homology of Lie Algebras ................................. 301 10.2 Homology of the Lie Algebra gl(A) ......................... 306 10.3 Stability and First Obstruction to Stability .................. 315 10.4 Homology with Coefficients in the Adjoint Representation ..... 320 10.5 The Symplectic and Orthogonal Cases ...................... 323 10.6 Non-commutative Homology (or Leibniz Homology) of the Lie Algebra of Matrices ............................. 326 Bibliographical Comments on Chapter 10 ....... . . . . . . . . . . .. 340 Chapter 11. Algebraic K-Theory ........................... 341 11.1 The Bass-Whitehead Group Kl and the Milnor Group K2 ..... 342 11.2 Higher Algebraic K -Theory ................................ 349 11.3 Algebraic K-Theory and Cyclic Homology of Nilpotent Ideals .. 361 11.4 Absolute and Relative Chern Characters .................... 371 11.5 Secondary Characteristic Classes ........................... 375 Bibliographical Comments on Chapter 11 ................... 379 Chapter 12. Non-commutative Differential Geometry ....... 381 12.1 Foliations and the Godbillon-Vey Invariant .................. 382 12.2 Fredholm Modules and Index Theorems ..................... 385 12.3 Novikov Conjecture on Higher Signatures .................... 390 12.4 The K -Theoretic Analogue of the Novikov Conjecture ........ 395 Chapter 13. Mac Lane (co)homology 399 by Jean-Louis Loday and Teimuraz Pirashvili 13.1 (Co)homology with Coefficients in Non-additive Bimodules .... 401 13.2 Mac Lane (co)homology ................................... 408 13.3 Stable K-theory and Mac Lane homology .................... 417 13.4 Calculations ............................................. 428 Bibliographical Comments on Chapter 13 ................... 442 References of Chapter 13 .................................. 443
Description: