ebook img

Cycle classes in overconvergent rigid cohomology and a semistable Lefschetz $(1,1)$ theorem PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cycle classes in overconvergent rigid cohomology and a semistable Lefschetz $(1,1)$ theorem

CYCLE CLASSES IN OVERCONVERGENT RIGID COHOMOLOGY AND A SEMISTABLE LEFSCHETZ (1,1) THEOREM CHRISTOPHERLAZDAANDAMBRUSPA´L ABSTRACT. In this article we prove a semistable version of the variational Tate conjecture for divisors in 7 crystalline cohomology, stating that arational (logarithmic) line bundle onthespecial fibreofasemistable 1 schemeoverkJtKliftstothetotalspaceifandonlyifitsfirstChernclassdoes. Theproofiselementary,using 0 2 standardpropertiesofthelogarithmicdeRham–Wittcomplex. Asacorollary,wededucesimilaralgebraicity liftingresultsforcohomologyclassesonvarietiesoverglobalfunctionfields.Finally,wegiveacounterexample n a toshowthatthevariationalTateconjecturefordivisorscannotholdwithQp-coefficients. J 8 1 ] CONTENTS G A Introduction 1 . 1. Cycleclassmapsinoverconvergentrigidcohomology 3 h t 2. PreliminariesonthedeRham–Wittcomplex 4 a m 3. Morrow’svariationalTateconjecturefordivisors 8 [ 4. AsemistablevariationalTateconjecturefordivisors 11 5. Globalresults 15 1 v 6. Acounter-example 16 7 References 18 1 0 5 0 . 1 0 INTRODUCTION 7 Manyofthedeepestconjecturesinarithmeticandalgebraicgeometryconcerntheexistenceofalgebraic 1 : cycles on varieties with certain properties. For example, the Hodge and Tate conjectures state, roughly v i speaking,thatonsmoothandprojectivevarietiesoverC (Hodge)orfinitely generatedfields(Tate) every X cohomologyclasswhich‘lookslike’theclassofacycleisindeedso.Onecanalsoposevariationalformsof r a theseconjectures,givingconditionsforextendingalgebraicclassesfromonefibreofasmooth,projective morphism f :X→Stothewholespace.Fordivisors,theHodgeformsofboththeseconjectures(otherwise knownastheLefschetz(1,1)theorem)arerelativelystraightforwardtoprove,usingtheexponentialmap, butevenfordivisorstheTateconjectureremainswideopeningeneral. Applying the principle that deformation problems in characteristic p should be studied using p-adic cohomology,Morrowin[Mor14]formulatedacrystallinevariationalTateconjectureforsmoothandproper families f :X →S ofvarietiesin characteristic p, andprovedtheconjecturefordivisors,atleast when f isprojective. ThekeystepoftheproofisaversionofthisresultoverS=Spec(kJt ,...,t K),whichwhen 1 n n=1isadirectequicharacteristicanalogueofBerthelotandOgus’theorem[BO83,Theorem3.8]onlifting linebundlesfromcharacteristic0tocharacteristic p. 1 CycleclassesandLefschetz(1,1) Morrow’sproofofthelocalstatementusessomefairlyheavymachineryfrommotivichomotopytheory, in particulara ‘continuity’resultfor topologicalcyclic homology. In this article we providea new proof ofthelocalcrystallinevariationalTateconjecturefordivisors,atleastoverthebaseS=Spec(kJtK),which onlyusessomefairlybasicpropertiesofthedeRham–Wittcomplex. Thepointofgivingthisproofisthat itadaptsessentiallyverbatimtothecaseofsemistablereduction,oncethecorrespondingbasicproperties ofthelogarithmicdeRham–Wittcomplexareinplace. SoletX beasemistable,projectiveschemeoverkJtK,withspecialfibreX andgenericfibreX. Then 0 thereisanisomorphism H2 (X/R)(cid:209) =0∼=H2 (X×/K×)N=0 rig log-cris 0 betweenthe horizontalsectionsof the Robba ring-valuedrigid cohomologyof X and the partof the log- crystallinecohomologyofX killedbythemonodromyoperator.TheformerisdefinedtobeH2 (X/E†)⊗ 0 rig E† R, where H2 (X/E†) is the bounded Robba ring-valued rigid cohomology of X constructed in [LP16]. rig Thesegroupsare (j ,(cid:209) )-modulesoverR and E† respectively. Inparticular, if L is a line bundleon X , 0 wecanviewitsfirstChernclassc (L)asanelementofH2 (X/R). Ourmainresultisthenthefollowing 1 rig semistableversionofthelocalcrystallinevariationalTateconjecturefordivisors. Theorem(4.5). L liftstoPic(X) ifandonlyifc (L)liesinH2 (X/E†)⊂H2 (X/R). Q 1 rig rig ThereisalsoaversionforlogarithmiclinebundlesonX .Thegeneralphilosophyofp-adiccohomology 0 overk((t))isthattheE†-structureHi (X/E†)⊂Hi (X/R)istheequicharactersiticanalogueoftheHogde rig rig filtrationon the p-adic cohomologyof varietiesovermixedcharacteristic localfields. With this in mind, this is the direct analogue of Yamashita’s semistable Lefschetz (1,1) theorem [Yam11]. As a corollary, we can deduce a global result on algebraicity of cohomology class as follow. Let F be a function field of transcendence degree 1 over k, and X/F a smooth projective variety. Let v be a place of semistable reductionforX,withreductionX . Thenthereisamap v sp :H2(X/K)(cid:209) =0→H2 (X×/K×) v rig log-cris v v fromthesecondcohomologyofX (see§5)tothelogcrystallinecohomologyofX . v Theorem(5.2). Aclassa ∈H2(X/K)(cid:209) =0 isintheimageofPic(X) undertheChernclassmapifand rig Q onlyifsp (a )isintheimageofPic(X ) . v v Q One might wonder whether the analogue of the crystalline variational Tate conjecture holds for line bundles with Q -coefficients (in either the smooth or semistable case). Unfortunately, the answer is no. p Indeed,ifitweretrue, thenitfollowsrelativelyeasilythatthe analogueofTate’sisogenytheoremwould holdoverk((t)),inotherwordsforanytwoabelianvarietiesA,Boverk((t)),themap ¥ ¥ Hom(A,B)⊗Q →Hom(A[p ],B[p ])⊗ Q p Zp p would be an isomorphism. Thatthis cannotbe true is well-known, and examplescan be easily provided withbothAandBellipticcurves. Let us now summarise the contents of this article. In §1 we show that the cycle class map in rigid cohomology over k((t)) descends to the bounded Robba ring. In §2 we recall the relative logarithmic deRham–Wittcomplex,andprovecertainbasicpropertiesofitthatwewillneedlateron.In§3wereprove aspecialcaseofthekeystepinMorrow’sarticle[Mor14],showingthecrystallinevariationalTateconjec- ture for smooth and projectiveschemes over kJtK. The argumentwe give is elementary. In §4 we prove 2 C.Lazda,A.Pa´l the semistable versionof the crystalline variationalTate conjectureover kJtK, moreor less copyingword for word the argumentin §3. In §5 we translate these results into algebraicitylifting results for varieties overglobalfunctionfields. Finally,in§6we givea counter-exampletothe analogueoftheofcrystalline variationalTateconjectureforlinebundleswithQ -coefficients. p Acknowledgements. A.Pa´lwaspartiallysupportedbytheEPSRCgrantP36794.C.Lazdawassupported byaMarieCuriefellowshipoftheIstitutoNazionalediAltaMatematica“F.Severi”. Bothauthorswould liketothankImperialCollegeLondonandtheUniversita` DegliStudidiPadovaforhospitalityduringthe writingofthisarticle. Notationsandconvenions. Throughoutwewillletk beaperfectfieldofcharacteristic p>0,W itsring of Witt vectors and K =W[1/p]. In general we will let F =k((t)) be the field of Laurentseries over k, and R=kJtK its ring of integers (although this will not be the case in §5). We will denote by E†,R,E respectivelythe boundedRobbaring, the Robbaring, andthe Amice ringoverK, andwe willalso write E+=WJtK⊗ K.ForanyoftheringsE+,E†,R,E wewilldenotebyMF (cid:209) thecorrespondingcategory W (−) of(j ,(cid:209) )-modules,i.e.finitefreemoduleswithconnectionandhorizontalFrobenius.Avarietyoveragiven Noetherianbaseschemewillalwaysmeanaseparatedschemeoffinitetype. ForanyabeliangroupAand anyringSwewillletA denoteA⊗ S. S Z 1. CYCLE CLASS MAPS IN OVERCONVERGENTRIGID COHOMOLOGY Recall that for varieties X/F over the field of Laurent series F =k((t)) the rigid cohomologygroups Hi (X/E) are naturally (j ,(cid:209) )-modules over the Amice ring E. In the book [LP16] we showed how rig to canonically descend these cohomologygroupsto obtain ‘overconvergent’(j ,(cid:209) )-modulesHi (X/E†) rig over the bounded Robba ring E†, these groups satisfy all the expected properties of an ‘extended’ Weil cohomologytheory.Inparticular,thereexistversionsHi (X/E),Hi (X/E†)withcompactsupport. c,rig c,rig Definition1.1. Definethe(overconvergent)rigidhomologyofavarietyX/F by Hrig(X/E):=Hi (X/E)∨, Hrig(X/E†):=Hi (X/E†)∨ i rig i rig andthe(overconvergent)Borel–Moorehomologyby HBM,rig(X/E):=Hi (X/E)∨, HBM,rig(X/E†):=Hi (X/E†)∨. i c,rig i c,rig In[Pet03]the authorconstructscycleclassmapsinrigidcohomology,whichcanbeviewedashomo- morphisms A (X)→HBM,rig(X/E) d 2d fromthegroupofd-dimensionalcyclesmodulorationalequivalence.Ourgoalinthissectionisthefollow- ingentirelystraightforwardresult. Proposition1.2. Thecycleclassmapdescendstoahomomorphism A (X)→HBM,rig(X/E†)(cid:209) =0,j =pd. d 2d Proof. NotethatsinceHBM,rig(X/E†)(cid:209) =0,j =pd ⊂HBM,rig(X/E)itsufficestoshowthatforeveryintegral 2d 2d closedsubschemeZ⊂X ofdimensiond,thecycleclassh (Z)∈HBM,rig(X/E)actuallyliesinthesubspace 2d HBM,rig(X/E†)(cid:209) =0,j =pd. 2d 3 CycleclassesandLefschetz(1,1) Byconstruction,h (Z)istheimageofthefundamentalclassofZ(i.e.thetracemapTr :H2d (Z/E)→ Z c,rig E(−d))underthemap HBM,rig(Z/E)→HBM,rig(X/E) 2d 2d induced by the natural map H2d (X/E)→H2d (Z/E) in compactly supported cohomology. Hence it c,rig c,rig sufficestosimplyobservethatboththismapandthetracemapdescendtohorizontal,Frobeniusequivariant maps on the level of E†-valued cohomology. Alternatively, we could observe that both H2d (X/E)→ c,rig H2d (Z/E)andTr arehorizontalandFrobeniusequivariantatthelevelofE-valuedcohomology,which c,rig Z gives A (X)→HBM,rig(X/E)(cid:209) =0,j =pd, d 2d thenapplyingKedlaya’sfullfaithfulnesstheorem[Ked04,Theorem5.1]givesanisomorphism HBM,rig(X/E)(cid:209) =0,j =pd ∼=HBM,rig(X/E†)(cid:209) =0,j =pd. 2d 2d (cid:3) 2. PRELIMINARIES ON THEDERHAM–WITT COMPLEX ThepurposeofthissectionistogathertogethersomeresultswewillneedonthevariousdeRham–Witt complexesthat will be used throughoutthe article. These are all generalisations to the logarithmic case ofwell-knownresultsfrom[Ill79],andshouldthereforepresentnosurprises. Thereaderwillnotlosetoo muchbyskimmingthissectiononfirstreadingandreferringbacktotheresultsasneeded. We will, as throughout, fix a perfect ground field k of characteristic p>0, all (log)-schemes will be considered over k. Given a morphism (Y,N)→(S,L) of fine log schemes over k, Matsuue in [Mat16] constructedarelativelogarithmicdeRham–WittcomplexW w ∗ ,denotedW L ∗ in[Mat16]. • (Y,N)/(S,L) • (Y,N)/(S,L) Thisisane´talesheafonY equippedwithoperatorsF,V satisfyingalltheusualrelations(seeforexample [Mat16,Definition3.4(v)])andwhichspecialisestovariouspreviousconstructionsinparticularcases. (1) WhenS=Spec(k)andthelogstructuresLandNaretrivial,thenthisgivesthe(canonicalextension ofthe)classicaldeRham–WittcomplexW W ∗ (toane´talesheafonY). • Y (2) Moregenerally,whenthemorphism(Y,N)→(S,L)isstrict,werecovertherelativedeRham–Witt complexW W ∗ ofLangerandZink[LZ04]. • Y/S (3) Whenthebase(S,L)istheschemeSpec(k)withthelogstructureofthepuncturedpoint,and(Y,N) isofsemistable type(i.e. e´talelocallye´tale overk[x ,...,x ]/(x ···x )with thecanonicallog 1 d+1 1 c structure)thenweobtainthelogarithmicdeRham–WittcomplexWw ∗ studiedin[HK94]. Y (4) Ifwetake(Y,N) semistablebutinsteadequipSpec(k)withthetriviallogstructure,theresulting complexisisomorphictotheonedenotedWw˜∗ in[HK94]. Y Ifwearegivenamorphismoflogschemes(Y,N)→(S,L)overk,thenasin[Mat16,§2.2]wecanliftthe logstructureN→O toalogstructureW N→WO ,wherebydefinitionWN=N⊕ker((WO )∗→O∗) Y r r Y r r Y Y and the map N →WO is the Techmu¨ller lift of N → O . Since Ww 1 is a quotient of the r Y Y r (Y,N)/(S,L) pd-log deRham complex w˘∗ (see [Mat16, §3.4]) there is a natural map dlog:W N → (WrY,WrN)/(WrS,WrL) r Ww 1 andhenceweobtainmaps r (Y,N)/(S,L) dlog:Ngp→W w 1 r (Y,N)/(S,L) whicharecompatibleasrvaries. WeletWw 1 denotetheimage. r (Y,N)/(S,L),log 4 C.Lazda,A.Pa´l Whenbothlogstructuresaretrivial,andY →Spec(k)issmooth,then[Ill79,PropositionI.3.23.2]says thatdloginducesanexactsequence 0→prO∗→O∗→WW 1 →0, Y Y r Y,log andourfirsttaskinthissectiontoobtainananalogueofthisresultforsemistablelogschemesoverk. In fact, since we will really only be interested in the case whenY arises as the special fibre of a semistable schemeoverkJtK,wewillonlytreatthisspecialcase. WewillthereforeletX denoteasemistableschemeoverR=kJtK(notnecessarilyproper). Wewilllet LdenotethelogstructuregivenbytheclosedpointofSpec(R),andwriteR×=(R,L). Wewilldenoteby L theinverseimagelogstructureonR =kJtK/(tn+1),andwriteR×=(R ,L ). Wewillalsowritek×= n n n n n (k,L ). WewilldenotebyM thelogstructureonX givenbythespecialfibre,andwriteX×=(X,M). 0 Similarlywe havelogstructuresM on X =X ⊗ R , andwe will write X×=(X ,M ). Finally, when n n R n n n n consideringthelogarithmicdeRham–Wittcomplexrelativetok(withthetriviallogstructure)wewilldrop kfromthenotation,e.g.wewillwriteWw ∗ insteadofW w ∗ . r X× r X×/k 0 0 Proposition2.1. Thesequence 0→prMgp→Mgp−dl→ogWw 1 →0 0 0 r X×,log 0 isexact. Proof. Thesurjectivityoftherighthandmapandtheinjectivityofthelefthandmaparebydefinition,and since prWw 1 =0,thesequenceisclearlyacomplex. Thekeypointisthentoshowexactnessin the r X×,log 0 middle. Sosupposethatwearegivenm∈Mgp issuchthatdlogm=0. Wewillshowthatm∈ prMgp by 0 0 inductiononr. When r=1 we note that the claim is e´tale local, we may thereforeassume X× to be affine, e´tale and 0 strictoverSpec k[x1,...,xd] ,sayX =Spec(A). Wehave (cid:16) (x1···xc) (cid:17) 0 c d w (1A,Nc)∼=MA·dlogxi⊕ M A·dxi. i=1 i=c+1 Nowsupposethatwearegivenalocalsectionn=u(cid:213) c xni ofNgp foru∈A∗andn ∈Z. Write i=1 i i c d (cid:229) (cid:229) dlogu= adlogx + adx i i i i i=1 i=c+1 witha ∈A,notethatsincedloguactuallycomesfromanelementofW 1 itfollowsthata ∈xAfor1≤i≤c. i A i i Inparticular,we haven =−xa for1≤i≤c, andpassingto A/xAitthereforefollowsthatn =0ink. i i i i i Henceeachn isdivisibleby p. Itfollowsthat(cid:213) c xni isin pNgp, anditsdlogvanishes. Bydividingby i i=1 i thiselementwemaythereforeassumethatn=u∈A∗. SincesemistableschemesareofCartiertype,we mayapply[Kat89,Theorem4.12],whichtellsusthat(e´talelocally)u∈A(p)∗(sincedlogu=0⇒du=0). Sincekisperfect,A(p)∗=(A∗)pandwemayconclude. Whenr>1anddlogn=0∈W w 1 , theninparticulardlogn=0∈W w 1 ; hencebyapplying r X×,log r−1 X× 0 0 theinductionhypothesiswe obtainn= pr−1n . Butnowthisimpliesthat pr−1dlogn =0∈Ww 1 , we 1 1 r X× 0 claim that in fact it follows that dlogn =0∈w 1 . Indeed, since w 1 is a locally free O -module, to 1 X× X× X0 0 0 provethata sectionvanishesitsufficestoshowthatitdoesso ona denseopensubscheme. Inparticular, byrestrictingtothesmoothlocusofX wecanassumethatX issmoothandthelogstructureisgivenby 0 0 5 CycleclassesandLefschetz(1,1) O∗ ⊕N,(u,m)7→u.0m. Wenowapply[Ill79,PropositionI.3.4]and[Mat16,Lemma7.4]toconcludethat X0 dlogn =0asrequired.Thusapplyingthecaser=1finishestheproof. (cid:3) 1 Thefollowingisanalogousto[Ill79,CorollaireI.3.27]. Proposition2.2. Thesequencesofpro-sheaves 0→ W w 1 → Ww 1 1→−F Ww 1 →0, n r X×,logor (cid:8) r X×(cid:9)r (cid:8) r X×(cid:9)r 0→ Ww 1 → Ww 1 1→−F Ww 1 →0 n r X0×/k×,logor n r X0×/k×or n r X0×/k×or areexact. Proof. Letusconsiderthefirst sequence. Using Ne´ron–Popescudesingularisation[Pop86, Theorem1.8] andthe factthatthe logarithmicdeRham–Wittcomplexcommuteswith filtered colimits, we may reduce to considering the analogous question for Y smooth over k with log structure N coming from a normal crossingsdivisorD⊂Y. Theclaimise´talelocal,wemaythereforeassumethatY ise´taleoverk[x ,...,x ] 1 n withDtheinverseimageof{x ···x =0}. Locally,N isgeneratedbyO∗ andx for1≤i≤c,soinorder 1 c Y i tosee thatthesequenceisacomplex,orinotherwordsthat(1−F)(dlogn)=0,itsufficestocheckthat (1−F)(dlogx)=0. Thisisa straightforwardcalculation. Forthesurjectivityof1−F weclaim infact i that 1−F:W w 1 →Ww 1 r+1 (Y,N) r (Y,N) issurjective.Forthiswenotethatby[Mat16,§9]thereexistsanexactsequence c 0→WW 1 →Ww 1 → WO ·dlogx →0 r Y r (Y,N) M r Di i i=1 for all r, where D are the irreducible componentsof D. Denote the induced mapWw 1 →W O by i r (Y,N) r Di Res. Since(1−F)(dlogx)=0itfollowsthatwehavethecommutativediagram i i 0 // W W 1 // W w 1 // c W O // 0 r+1 Y r+1 (Y,N) Li=1 r+1 Di 1−F 1−F 1−F (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // W W 1 // Ww 1 // c W O // 0 r Y r (Y,N) Li=1 r Di where WW 1 is the usual (non-logarithmic) deRham–Witt complex of Y. It therefore suffices to apply r Y [Ill79, Propositions I.3.26, I.3.28], stating that the left and right vertical maps are surjective. Finally, to showexactnessinthemiddle,supposethatwearegivenw ∈W w 1 suchthat(1−F)(w )=0. Then r+1 (Y,N) applying[Ill79,PropositionI.3.28]wecanseethat Res(w )∈Z/pr+1Z+ker(W O →WO ) i r+1 Di r Di foralli. Henceaftersubtractingoffanelementofdlog(Ngp)wemayassumethatinfact w ∈W W 1+ker W w 1 →Ww 1 . r+1 Y (cid:16) r+1 (Y,N) r (Y,N)(cid:17) Nowapplying[Ill79,CorollaireI.3.27]tellsusthat w ∈dlog(Ngp)+ker W w 1 →W w 1 (cid:16) r+1 (Y,N) r (Y,N)(cid:17) andhencethegivensequenceofpro-sheavesisexactinthemiddle. 6 C.Lazda,A.Pa´l For the second sequence, the surjectivity of 1−F follows from the corresponding claim for the first sequence, since sections ofWw 1 can be lifted locally toW w 1 . We may also argue e´tale locally; r X×/k× r X× 0 assumingthat X× is e´tale andstrict overSpec Nc→ k[x1,...,xd] . The factthat the claimed sequenceis a 0 (cid:16) (x1···xc) (cid:17) complex follows again from observing that (1−F)(dlogx)=0 for 1≤i≤c. To see exactness in the i middleweusethefactthat(againworkinge´talelocally)wehaveanexactsequence 0→ WW 1 →Ww 1 → WO →0 M r Di r X0×/k× M r Dij i ij by[Mat16,Lemma8.4],whereD aretheirreduciblecomponentsofX×andD theirintersections.More- i 0 ij over,thisfitsintoadiagram 0 // O∗ // Mgp // Z // 0 Li Di 0 Lij Dij dlog dlog (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // WW 1 // Ww 1 // WO // 0 Li r Di r X0×/k× Lij r Dij 1−F 1−F 1−F (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) 0 // W W 1 //W w 1 // W O // 0 Li r−1 Di r−1 X0×/k× Lij r−1 Dij with exact rows. Exactness of the middle vertical sequence atWw 1 now follows from the classical r X×/k× result[Ill79,CorollaireI.3.27,PropositionI.3.28]andasimplediagram0 chase. (cid:3) Next,wewillneedtounderstandthekernelofWw 1 →Ww 1 . r X×,log r X×/k×,log 0 0 Lemma2.3. Forallr≥1thesequence Z 0→ ∧dlogt→Ww 1 →W w 1 →0 prZ r X0×,log r X0×/k×,log isexact. Proof. Notethatby[Mat16,Lemma7.4]itsufficestoshowthat Z dlog(M )∩WO ∧dlogt= ∧dlogt 0 r X0 prZ insideWw 1 ,thecontainment⊃isclear. Fortheother,supposethatwearegivenanelementoftheform r X× 0 g∧dlogt∈Ww 1 whichisintheimageofdlog. Thenweknowthatg˜∧dlogt=dlogn+cinW w 1 , r X× r+1 X× 0 0 for some c∈ker W w 1 →Ww 1 and g˜∈W O lifting g. Arguingas in Proposition2.2 above (cid:16) r+1 X× r X×(cid:17) r+1 X0 0 0 wecan see that(1−F)(dlogn)=0, andagainapplying[Mat16, Lemma7.4]we candeducethatinfact g=F(g)inW O . Henceg∈Z/prZasclaimed. (cid:3) r X0 Finally,wewillneedtoknowthatthelogarithmicdeRham–Wittcomplexcomputesthelogcrystalline cohomologyofthesemistableschemeX. Proposition2.4. Thereisanisomorphism Hi (X ,Ww ∗ ) →∼ Hi (X×/K) cont e´t X× Q log-cris foralli≥0. 7 CycleclassesandLefschetz(1,1) Proof. ItsufficestoshowthatHi(Xe´t,Wrw X∗ ×)∼=Hliog-cris(X×/Wr)whereWr =Wr(k). Arguinglocally onX wemayassumeinfactthatX isaffine,andinparticularadmitsaclosedembeddingX ֒→P into someaffinespaceoverW JtK. r NowapplyingNe´ron–Popescudesingularisation[Pop86,Theorem1.8]toW →WJtK, wemayinfact r r writeX =lima Xa asalimitofsmoothk-schemes,suchthat: • thatthereexistcompatiblenormalcrossingsdivisorsDa ⊂Xa whoseinverseimageinX ispre- ciselythespecialfibreX ; 0 • there exist compatible closed embeddings Xa ֒→ Pa into smooth Wr-schemes such that P = lima Pa . SinceboththelogdeRham–Wittcomplexande´talecohomologycommutewithcofilteredlimitsofschemes, itsufficestoshowthatthesameistrueoflog-crystallinecohomology,inotherwordsthatwehave Hliog-cris(X×/Wr)=colima Hliog-cris(Xa×/Wr), whereXa× denotestheschemeXa endowedwiththelogstructuregivenbyDa . By[Kat89,Theorem6.4], Hliog-cris(Xa×/Wr)iscomputedasthedeRhamcohomologyofthelog-PDenvelopeofXa× insidePa . Since log-PDenvelopescommutewithcofilteredlimitsofschemes(i.e. filteredcolimitsofrings), itsufficesto showthatHi (X×/W)canbecomputedasthedeRhamcohomologyofthelog-PDenvelopeofX× log-cris r insideP. In other words, what we require a logarithmic analogue of [Kat91, Theorem 1.7], or equivalently a log-p-basisanalogueof[Kat89,Theorem6.4].ButthisfollowsfromProposition1.2.18of[CV15]. (cid:3) 3. MORROW’S VARIATIONAL TATECONJECTURE FORDIVISORS Thegoalofthissectionistoofferasimplerproofofaspecialcaseof[Mor14,Theorem3.5]forsmooth andproperschemesX overthepowerseriesringR=kJtK. Thisresultessentiallystatesthatalinebundle onthespecialfibreofX liftsiffitsitsfirstChernclassinH2 does,andshouldbeviewedasanequichar- cris acteristicanalogueofBerthelotandOgus’stheorem[BO83,Theorem3.8]statingthatalinebundleonthe special fibre of a smooth proper scheme over a DVR in mixed characteristic lifts iff its Chern class lies in the firstpiece ofthe Hodgefiltration. We willalso givea slightly differentinterpretationof thisresult thatemphasisesthephilosophythatinequicharacteristicthe‘correct’analogueofaHodgefiltrationisan E†-structure. Ourproofissimplerinthatitdoesnotdependonanyresultsfromtopologicalcyclichomol- ogy, but only on fairly standard propertiesof the deRham–Wittcomplex. As such, it is far morereadily adaptabletothesemistablecase,whichweshalldoin§4below. Throughoutthissection,X willbeasmoothandproperR=kJtK-scheme.LetR denotekJtK/(tn+1)and n setX =X ⊗ R . WriteX forthegenericfibreofX andXforitsformal(t-adic)completion. Sinceall n R n schemesinthissectionwillhavetriviallogstructure,wewillusethenotationW W ∗ forthedeRham–Witt • complexinsteadofW w ∗. Thekeytechnicalcalculationwewillmakeisthefollowing. • Lemma3.1. Fixn≥0,writen=pmn with(n ,p)=1,andletr=m+1.Thenthemap 0 0 dlog:1+tnO →WW 1 Xn r Xn,log isinjective. Proof. WemayassumethatX =Spec(A )isaffine,moreovere´taleoverR [x ,...,x ]. Inthiscasesince n n n 1 d deformationsofsmoothaffineschemesaretrivial,wehaveAn∼=A0⊗kRn. Hence1+tnAn=1+tnA0,and 8 C.Lazda,A.Pa´l ourproblemthereforereducestoshowingthatifa∈A issuchthatdlog[1+atn]=0,theninfacta=0. 0 ButvanishingofamaybecheckedoverallclosedpointsofSpec(A ),sobyfunctorialityofthedlogmap 0 wemayinfactassumethatA isafiniteextensionofk;enlargingkwemaymoreoverassumethatA =k. 0 0 Inotherwordsweneedtoshowthatthemap dlog:1+tnk→WW 1 r Rn isinjective.Sincekisperfect,any1+atn∈1+tnkcanbewrittenuniquelyas(1+tn0b)pm forsomeb∈k, hence dlog[1+atn]= pmdlog(1+tn0b). It follows that if dlog[1+atn]=0, then pmn0btn0−1dt =0 in WrW 1Rn. Since any non-zerosuch b is invertible, the lemma will follow if we can show that pmtn0−1dt is non-zeroinWW 1 . Thiscanbecheckedeasilyusingtheexactsequence r Rn Wr((tn+1)) →d W W 1 ⊗ WR →WW 1 →0 W((tn+1)2) r k[t] Wr(k[t]) r n r Rn r from[LZ05]. (cid:3) Fromthiswededucethefollowing. Proposition3.2. Forr≫0(dependingonn)thereisacommutativediagram 1 // 1+tO // O∗ // O∗ // 1 Xn Xn X0 dlog dlog (cid:15)(cid:15) (cid:15)(cid:15) 1 // 1+tO dlog // WW 1 //W W 1 // 0 Xn r Xn,log r X0,log withexactrows. Proof. It is well-known that the top row is exact, and the diagram is clearly commutative, it therefore sufficestoshowthatforallnthesequence 1→1+tO →WW 1 →W W 1 →0 Xn r Xn,log r X0,log isexactforr≫0. FromthedefinitionofWW 1 andtheexactnessofthesequence r Xn,log 1→1+tO →O∗ →O∗ →1 Xn Xn X0 it is immediate thatW W 1 →WW 1 is surjective and the composite1+tO →WW 1 is zero. r Xn,log r X0,log Xn r X0,log Given a ∈O∗ mapping to 0 in WW 1 , it follows from [Ill79, Proposition I.3.23.2] that there exists Xn r X0,log b ∈O∗ andg ∈1+tO suchthata =b pr+g ,andhencedloga =dlogg inWW 1 . Thesequence Xn Xn r Xn,log 1+tO →WW 1 →WW 1 →0 Xn r Xn,log r X0,log isthereforeexact,anditremainstoshowthat dlog:1+tO →W W 1 Xn r Xn,log isinjectiveforr≫0. ByinductiononnthisfollowsfromLemma3.1above. (cid:3) Wenowset WrW iX,log:=linmWrW iXn,log assheavesonX anddefine e´t Hcjont(Xe´t,WW iX,log):=Hj(RlimRG (Xe´t,WrW iX,log)). r 9 CycleclassesandLefschetz(1,1) AsanessentiallyimmediatecorollaryofProposition3.2,wededucethekeystepofMorrow’sproofofthe variationalTateconjectureinthiscase. Corollary3.3. Let L ∈Pic(X ), with first Chern class c (L)∈H1 (X ,WW 1 ). Then L lifts to 0 1 cont 0,e´t X0,log Pic(X)ifandonlyifc (L)liftstoH1 (X ,WW 1 ) 1 cont e´t X,log Proof. One directionis obvious. For the other direction, assume that the first Chern class c (L) lifts to 1 H1 (X ,WW 1 ), in particular it therefore lifts to H1 (X ,WW 1 ). Hence by Proposition 3.2 it cont e´t X,log cont e´t X,log follows that L lifts to Pic(X), and we may conclude using Grothendieck’s algebrisation theorem that it liftstoPic(X). (cid:3) Fromthistheform(crys-f )formofthevariationalTateconjecturefollowsasin[Mor14]. Corollary3.4. LetL ∈Pic(X ) ,withfirstChernclassc (L)∈H2 (X/K)j =p.ThenL liftstoPic(X) 0 Q 1 cris Q ifandonlyifc (L)liftstoH2 (X/K)j =p. 1 cris Proof. Let us first assume that k is algebraically closed. By [Mor14, Proposition 3.2] the inclusions WW 1 [−1]→WW ∗ andWW 1 [−1]→WW ∗ induceanisomorphism X,log X,log X0,log X0,log H1 (X ,WW 1 ) →∼ H2 (X /K)j =p cont 0,e´t X0,log Q cris 0 andasurjection Hc1ont(Xe´t,WW 1X,log)Q։Hc2ris(X/K)j =p. Theclaimfollows. Ingeneral,weargueasin[Mor14,Theorem1.4]: theclaimfork algebraicallyclosed shows that L lifts to Pic(X) after making the base change kJtK→kJtK. Let kJtKsh denote the strict Q HenselisationofkJtKinsidekJtK,byNe´ron–PopescudesingularisationthereexistssomesmoothlocalkJtKsh- algebraAsuchthatL liftstoPic(X) aftermakingthebasechangekJtK→A. ButthemapkJtKsh →A Q hasasection,fromwhichitfollowsthatinfactL liftstoPic(X) aftermakingsomefinitefieldextension Q k →k′. But now simply taking the pushforward via X ⊗ k′ →X and dividing by [k′ :k] gives the k result. (cid:3) Tofinishoffthissection,wewishtogiveaslightlydifferentformulationofCorollary3.4. After[LP16] we can consider the ‘overconvergent’ rigid cohomology Hi (X/E†) of the generic fibre X, which is a rig (j ,(cid:209) )-module over the bounded Robba ring E†. Set Hi (X/R):=Hi (X/E†)⊗ R. By combining rig rig E† Dwork’strickwithsmoothandproperbasechangeincrystallinecohomologywehaveanisomorphism Hriig(X/R)(cid:209) =0∼=Hriig(X0/K) forall i. In particular, forany L ∈Pic(X ) we can considerc (L) as an elementofHi (X/R)(cid:209) =0⊂ 0 Q 1 rig Hi (X/R). Oneofthe generalphilosophiesof p-adiccohomologyin equicharacteristicisthatwhile the rig cohomology groups Hi (X/R) in some sense only depend on the special fibre X , the ‘lift’ X of X is rig 0 0 seenintheE†-latticeHi (X/E†)⊂Hi (X/R). ThecorrectequicharacteristicanalogueofaHodgefiltra- rig rig tion, therefore,is an E†-structure. With this in mind, then, a statementof the variationalTate conjecture for divisors which is perhaps slightly more transparently analogous to that in mixed characteristic is the following. Theorem3.5. AssumethatX isprojectiveoverR. ThenalinebundleL ∈Pic(X ) liftstoPic(X) if 0 Q Q andonlyifc (L)∈H2 (X/R)liesinH2 (X/E†). 1 rig rig Proof. Thisissimplyanotherwayofstatingthecondition(flat)in[Mor14,Theorem3.5]. (cid:3) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.