ebook img

Cyanobacteria Biotechnology PDF

549 Pages·2021·8.388 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cyanobacteria Biotechnology

CyanobacteriaBiotechnology Cyanobacteria Biotechnology Edited by Paul Hudson VolumeEditor AllbookspublishedbyWILEY-VCH arecarefullyproduced.Nevertheless, Prof.Dr.PaulHudson authors,editors,andpublisherdonot KTHRoyalInstituteofTechnology warranttheinformationcontainedin ScienceforLifeLaboratory thesebooks,includingthisbook,to Tomtebodavägen23A befreeoferrors.Readersareadvised 17165Solna tokeepinmindthatstatements,data, Sweden illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate. SeriesEditors LibraryofCongressCardNo.: Prof.SangY.Lee appliedfor KAIST 373-1;Guseong-Dong BritishLibraryCataloguing-in-Publication 291Daehak-ro,Yuseong-gu Data 305-701Daejon Acataloguerecordforthisbookis SouthKorea availablefromtheBritishLibrary. Prof.Dr.JensNielsen Bibliographicinformationpublishedby ChalmersUniversity theDeutscheNationalbibliothek DepartmentofChemicalandBiological TheDeutscheNationalbibliotheklists Engineering thispublicationintheDeutsche Kemivägen10 Nationalbibliografie;detailed 41296Göteborg bibliographicdataareavailableonthe Sweden Internetat<http://dnb.d-nb.de>. GregoryStephanopoulos ©2021WILEY-VCHGmbH,Boschstr. MassachusettsInstituteofTechnology 12,69469Weinheim,Germany DepartmentofChemicalEngineering MassachusettsAve77 Allrightsreserved(includingthoseof UnitedStates translationintootherlanguages).No partofthisbookmaybereproducedin Cover:CultureFlasksinmicrobiological anyform–byphotoprinting, laboratory/sciencephoto,fotolia microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc. usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw. PrintISBN:978-3-527-34714-8 ePDFISBN:978-3-527-82492-2 ePubISBN:978-3-527-82491-5 oBookISBN:978-3-527-82490-8 CoverDesign Adam-Design, Weinheim,Germany Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Foreword:CyanobacteriaBiotechnology xv Acknowledgments xviii PartI CoreCyanobacteriaProcesses 1 1 InorganicCarbonAssimilationinCyanobacteria:Mechanisms, Regulation,andEngineering 3 MartinHagemann,ShanshanSong,andEva-MariaBrouwer 1.1 Introduction–TheNeedforaCarbon-ConcentratingMechanism 3 1.2 TheCarbon-ConcentratingMechanism(CCM)Among Cyanobacteria 4 1.2.1 C UptakeProteins/Mechanisms 5 i 1.2.2 CarboxysomeandRubisCO 8 1.3 RegulationofC Assimilation 10 i 1.3.1 RegulationoftheCCM 10 1.3.2 FurtherRegulationofCarbonAssimilation 13 1.3.3 MetabolicChangesandRegulationDuringC Acclimation 14 i 1.3.4 RedoxRegulationofC Assimilation 15 i 1.4 EngineeringtheCyanobacterialCCM 16 1.5 Photorespiration 17 1.5.1 CyanobacterialPhotorespiration 17 1.5.2 AttemptstoEngineerPhotorespiration 19 1.6 ConcludingRemarks 20 Acknowledgments 21 References 21 2 ElectronTransportinCyanobacteriaandItsPotentialin Bioproduction 33 DavidJ.Lea-SmithandGuyT.Hanke 2.1 Introduction 33 2.2 ElectronTransportinaBioenergeticMembrane 34 2.2.1 LinearElectronTransport 34 vi Contents 2.2.2 CyclicElectronTransport 37 2.2.3 ATPProductionfromLinearandCyclicElectronTransport 37 2.3 RespiratoryElectronTransport 38 2.4 RoleofElectronSinksinPhotoprotection 41 2.4.1 TerminalOxidases 41 2.4.2 HydrogenaseandFlavodiironComplexes 41 2.4.3 CarbonFixationandPhotorespiration 43 2.4.4 ExtracellularElectronExport 44 2.5 RegulatingElectronFluxintoDifferentPathways 45 2.5.1 ElectronFluxThroughthePlastoquinonePool 45 2.5.2 ElectronFluxThroughFdx 46 2.6 SpatialOrganizationofElectronTransportComplexes 47 2.7 ManipulatingElectronTransportforSyntheticBiologyApplications 48 2.7.1 ImprovingGrowthofCyanobacteria 49 2.7.2 ProductionofElectricalPowerinBPVs 49 2.7.3 HydrogenProduction 50 2.7.4 ProductionofIndustrialCompounds 50 2.8 FutureChallengesinCyanobacterialElectronTransport 51 References 52 3 OptimizingtheSpectralFitBetweenCyanobacteriaandSolar RadiationintheLightofSustainabilityApplications 65 KlaasJ.Hellingwerf,QueChen,andFilipeBrancodosSantos 3.1 Introduction 65 3.2 MolecularBasisandEfficiencyofOxygenicPhotosynthesis 67 3.3 FitBetweentheSpectrumofSolarRadiationandtheActionSpectrumof Photosynthesis 72 3.4 ExpansionofthePARRegionofOxygenicPhotosynthesis 74 3.5 ModulationandOptimizationoftheTransparencyof Photobioreactors 79 3.6 FullControloftheLightRegime:LEDsInsidethePBR 81 3.7 ConclusionsandProspects 82 References 83 PartII ConceptsinMetabolicEngineering 89 4 WhatWeCanLearnfromMeasuringMetabolicFluxesin Cyanobacteria 91 XiangGao,ChaoWu,MichaelCantrell,MelissaCano,JianpingYu,and WeiXiong 4.1 CentralCarbonMetabolisminCyanobacteria:AnOverviewand RenewedPathwayKnowledge 91 4.1.1 GlycolyticRoutesInterwovenwiththeCalvinCycle 91 4.1.2 TricarboxylicAcidCycling 94 Contents vii 4.2 MethodologiesforPredictingandQuantifyingMetabolicFluxesin Cyanobacteria 95 4.2.1 FluxBalanceAnalysisandGenome-ScaleReconstructionofMetabolic Network 95 4.2.2 13C-MetabolicFluxAnalysis 96 4.2.3 ThermodynamicAnalysisandKineticsAnalysis 99 4.3 CyanobacteriaFluxomeinResponsetoAlteredNutrientModesand EnvironmentalConditions 101 4.3.1 AutotrophicFluxome 101 4.3.2 PhotomixotrophicFluxome 104 4.3.3 HeterotrophicFluxome 105 4.3.4 PhotoheterotrophicFluxome 105 4.3.5 DiurnalMetaboliteOscillations 106 4.3.6 NutrientStates’ImpactonMetabolicFlux 107 4.4 MetabolicFluxesRedirectedinCyanobacteriaforBiomanufacturing Purposes 108 4.4.1 RestructuringtheTCACycleforEthyleneProduction 108 4.4.2 MaximizingFluxintheIsoprenoidPathway 109 4.4.2.1 MeasuringPrecursorPoolSizetoEvaluatePotentialDrivingForcesfor IsoprenoidProduction 109 4.4.2.2 BalancingIntermediatesforIncreasedPathwayActivity 110 4.4.2.3 KineticFluxProfilingtoDetectBottlenecksinthePathway 111 4.5 SynopsisandFutureDirections 112 Acknowledgments 112 References 112 5 SyntheticBiologyinCyanobacteriaandApplicationsfor Biotechnology 123 EltonP.Hudson 5.1 Introduction 123 5.2 GettingGenesintoCyanobacteria 123 5.2.1 Transformation 123 5.2.2 ExpressionfromEpisomalPlasmids 125 5.2.3 DeliveryofGenestotheChromosome 127 5.3 BasicSyntheticControlofGeneExpressioninCyanobacteria 129 5.3.1 QuantifyingTranscriptionandTranslationinCyanobacteria 130 5.3.2 ControllingTranscriptionwithSyntheticPromoters 134 5.3.2.1 ConstitutivePromoters 136 5.3.2.2 RegulatedPromotersthatAreSensitivetoAddedCompounds (Inducible) 137 5.3.2.3 CRISPRInterferenceforTranscriptionalRepression 139 5.3.3 ControllingTranslation 141 5.3.3.1 RibosomeBindingSites(Cis-Acting) 141 5.3.3.2 Riboswitches(Cis-Acting) 142 5.3.3.3 SmallRNAs(Trans-Acting) 143 viii Contents 5.4 ExoticSignalsforControllingExpression 143 5.4.1 Oxygen 144 5.4.2 LightColor 144 5.4.3 CellDensityorGrowthPhase 145 5.4.4 EngineeringRegulatorsforAlteredSensingProperties:Stateofthe Art 147 5.5 AdvancedRegulation:TheNearFuture 148 5.5.1 LogicGatesandTimingCircuits 148 5.5.2 OrthogonalTranscriptionSystems 151 5.5.3 SyntheticBiologySolutionstoIncreaseStability 152 5.5.4 SyntheticBiologySolutionsforCellSeparationandProduct Recovery 154 5.6 Conclusions 157 Acknowledgments 158 References 158 6 SinkEngineeringinPhotosyntheticMicrobes 171 MaríaSantos-Merino,AmitK.Singh,andDanielC.Ducat 6.1 Introduction 171 6.2 SourceandSink 172 6.3 RegulationofSinkEnergyinPlants 177 6.3.1 SucroseandOtherSignalingCarbohydrates 178 6.3.2 Hexokinases 179 6.3.3 SucroseNon-fermentingRelatedKinases 180 6.3.4 TORKinase 181 6.3.5 EngineeredPathwaysasSinksinPhotosyntheticMicrobes 182 6.3.6 Sucrose 183 6.3.7 2,3-Butanediol 187 6.3.8 Ethylene 187 6.3.9 Glycerol 188 6.3.10 Isobutanol 188 6.3.11 Isoprene 189 6.3.12 Limonene 189 6.3.13 P450,anElectronSink 190 6.4 WhatAreKeySource/SinkRegulatoryHubsinPhotosynthetic Microbes? 191 6.5 ConcludingRemarks 194 Acknowledgment 195 References 195 7 DesignPrinciplesforEngineeringMetabolicPathwaysin Cyanobacteria 211 JasonT.KuandEthanI.Lan 7.1 Introduction 211 7.2 CofactorOptimization 212 Contents ix 7.2.1 RecruitingNADPH-DependentEnzymesWhereverPossible 215 7.2.2 EngineeringNADH-SpecificEnzymestoUtilizeNADPH 217 7.2.3 IncreasingNADHPoolinCyanobacteriaThroughExpressionof Transhydrogenase 218 7.3 IncorporationofThermodynamicDrivingForceintoMetabolicPathway Design 219 7.3.1 ATPDrivingForceinMetabolicPathways 220 7.3.2 IncreasingSubstratePoolSupportstheCarbonFluxToward Products 222 7.3.3 ProductRemovalUnblockstheLimitationsofProductTiter 223 7.4 DevelopmentofSyntheticPathwaysforCarbonConserving PhotorespirationandEnhancedCarbonFixation 225 7.5 SummaryandFuturePerspectiveonCyanobacterialMetabolic Engineering 229 References 229 8 EngineeringCyanobacteriaforEfficientPhotosynthetic Production:EthanolCaseStudy 237 GuodongLuanandXuefengLu 8.1 Introduction 237 8.2 PathwayforEthanolSynthesisinCyanobacteria 238 8.2.1 PyruvateDecarboxylaseandTypeIIAlcoholDehydrogenase 238 8.2.2 SelectionofBetterEnzymesinthePdc–AdhIIPathway 240 8.2.3 SystematicCharacterizationofthePdc –Slr1192Pathway 241 ZM 8.3 SelectionofOptimalCyanobacteria“Chassis,”StrainforEthanol Production 242 8.3.1 SynechococcusPCC6803andSynechococcusPCC7942 243 8.3.2 SynechococcusPCC7002 245 8.3.3 AnabaenaPCC7120 245 8.3.4 NonconventionalCyanobacteriaSpecies 246 8.4 MetabolicEngineeringStrategiesTowardMoreEfficientandStable EthanolProduction 246 8.4.1 EnhancingtheCarbonFluxviaOverexpressionofCalvinCycle Enzymes 248 8.4.2 BlockingPathwaysthatAreCompetitivetoEthanol 248 8.4.3 ArrestingBiomassFormation 249 8.4.4 EngineeringCofactorSupply 249 8.4.5 EngineeringStrategiesGuidedbyInSilicoSimulation 250 8.4.6 StabilizingEthanolSynthesisCapacityinCyanobacterialCell Factories 251 8.5 ExploringtheResponseinCyanobacteriatoEthanol 253 8.5.1 ResponseofCyanobacterialCellsTowardExogenousAdded Ethanol 254 8.5.2 ResponseofCyanobacteriatoEndogenousSynthesizedEthanol 255 x Contents 8.6 MetabolicEngineeringStrategiestoFacilitateRobustCultivationAgainst Biocontaminants 256 8.6.1 EngineeringCyanobacteriaCellFactoriestoAdaptforSelective EnvironmentalStresses 256 8.6.2 EngineeringCyanobacteriaCellFactoriestoUtilizeUncommon Nutrients 258 8.7 ConclusionsandPerspectives 258 References 259 9 EngineeringCyanobacteriaasHostOrganismsforProduction ofTerpenesandTerpenoids 267 JoãoS.RodriguesandPiaLindberg 9.1 TerpenoidsandIndustrialApplications 267 9.2 TerpenoidBiosynthesisinCyanobacteria 270 9.2.1 Methylerythritol-4-PhosphatePathway 270 9.2.2 FormationofTerpeneBackbones 272 9.3 NaturalOccurrenceandPhysiologicalRolesofTerpenesandTerpenoids inCyanobacteria 274 9.4 EngineeringCyanobacteriaforTerpenoidProduction 275 9.4.1 MetabolicEngineering 277 9.4.1.1 TerpeneSynthases 277 9.4.1.2 IncreasingSupplyofTerpeneBackbones 285 9.4.1.3 EngineeringtheNativeMEPPathway 286 9.4.1.4 ImplementingtheMVAPathway 287 9.4.1.5 EnhancingPrecursorSupply 288 9.4.2 OptimizingGrowthConditionsforProduction 289 9.4.3 ProductCaptureandHarvesting 291 9.5 SummaryandOutlook 292 Acknowledgments 293 References 293 10 CyanobacterialBiopolymers 301 MoritzKochandKarlForchhammer 10.1 Polyhydroxybutryate 301 10.1.1 Introduction 301 10.1.2 PHBMetabolisminCyanobacteria 302 10.1.3 IndustrialApplicationsofPHB 305 10.1.3.1 PhysicalPropertiesofPHBandItsDerivatives 305 10.1.3.2 Biodegradability 306 10.1.3.3 ApplicationofPHBasaPlastic 306 10.1.3.4 ReactorTypes 306 10.1.3.5 ProductionProcess 307 10.1.3.6 DownstreamProcessing 308 10.1.4 MetabolicEngineeringofPHBBiosynthesis 308 10.1.5 LimitationsandPotentialofPHBProductioninCyanobacteria 310 Contents xi 10.2 CyanophycinGranulesinCyanobacteria 311 10.2.1 BiologyofCyanophycin 311 10.2.2 GenesandEnzymesofCGPMetabolism 315 10.2.2.1 CyanophycinSynthetase 315 10.2.2.2 CyanophycinDegradingEnzymes 316 10.2.3 RegulationofCyanophycinMetabolism 317 10.2.4 CyanophycinOverproductionandPotentialIndustrial Applications 318 Acknowledgement 319 References 319 11 BiosynthesisofFattyAcidDerivativesbyCyanobacteria:From BasicstoBiofuelProduction 331 AkihitoKawaharaandYukakoHihara 11.1 Introduction 331 11.2 OverviewofFattyAcidMetabolism 332 11.2.1 FattyAcidBiosynthesis 332 11.2.2 FattyAcidDegradationandTurnover 335 11.2.3 AccumulationofStorageLipids 336 11.3 BasicTechnologiesforProductionofFreeFattyAcids 337 11.3.1 ProductionofFreeFattyAcidsinE.coli 337 11.3.2 ProductionofFreeFattyAcidsinCyanobacteria 338 11.4 AdvancedTechnologiesforEnhancementofFreeFattyAcid Production 339 11.4.1 EnhancementofFattyAcidBiosynthesis 339 11.4.2 EnhancementofCarbonFixationActivity 345 11.4.3 EngineeringofCarbonFlow:ModificationofKeyRegulatory Factors 345 11.4.4 EngineeringofCarbonFlow:DeletionofCompetitivePathways 346 11.4.5 MitigationoftheToxicityofFFAs 347 11.4.6 EnhancementofFFASecretion 348 11.4.7 InductionofCellLysis 349 11.4.8 RecoveryofProducedFFAsfromMedium 350 11.4.9 IdentificationofCyanobacterialStrainsSuitableforFFA Production 350 11.5 HydrocarbonProductioninCyanobacteria 351 11.6 AdvancedTechnologiesforEnhancementofHydrocarbon Production 353 11.6.1 EnhancementofAlk(a/e)neBiosynthesis 353 11.6.2 ImprovementofthePerformanceofAlkaneBiosyntheticEnzymes 354 11.7 BasicTechnologiesforProductionofFattyAlcohols 355 11.8 AdvancedTechnologiesforEnhancementofFattyAlcohol Production 355 11.9 BasicTechnologiesforProductionofFattyAcidAlkylEsters 356 11.10 Perspectives 357 References 358

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.