J'N At! T:.LECJ'lUG ARC FUIU'-L\G}~ CURRENT DISTHIBU'fiON AND H.E'I'AL FLO'I'! IN AN EL.F.C'rfliC ARC F'URNACE by l'J:J..,TON HARLBOHOUGH HUNR OE, B.A. Sc. A Thesis .Submitted tCJ the Fac•J.l ty of Grad:t~:l:~ Studisf3 iu FarLL~;l Jl'ulfj.lnont: of th\c K\qu:Lr.:•m:;;u·~I:J for tlte D~gTe·a Hcl~'later TJni verai ty March 1972 !-lASTER OF' ENGINEERING (1972) gcMASTER UNIVERSITY (Electrical lligineerillg) Onta:.:-io Hamilton~ TITI,E: Current Distribution and Metal i.''l.. ow in an Electric Arc Furnace AUTilOR: Hilton l·a rlborough Hunroe, B.A.Sc. (Univ~~rsity o! Toron.t.o) SUP:E:RVISOR: Dr. R.T.H. Alden NU:mEH OF PAGES: 139 , X SCOPE tlND CONTENTS: Current Distribution and Metal Flow in the crucible of an Electric Arc Furnace is investigated using a small-scale, three dimensional model. Results obtained indicate that current distribution for furMces of different sizes and ratings may be predicted using one model. Naturally occurring metal flow is shown to be related to phase rotation of the supply voltage. A two-phase, four-electrode design is proposed as an alternati'Ce to the present three-phase, three-electrode design. (ii) .· ..... ~ ;, ACKNO\VLEWEHENTS I would l ike to express IllY sincere thanks to Dr . R.T.H .. Alden fer suggesting and supervising the topic. I am also grateful to Dr. D.A.R. Kay and Hr. H. Ghosh of the ~~etalhu·gy Department for the ma.ny di<;;cussions on the metallurgical aspects of the subjact. 'lne assistance and. helpful suggest.i.ons giv n by Mr. B1ytho viil.li 03'\IS and i".he at::~.ff of the Electrical Ene,inBnrin3 1-Jor.ks l''IJ :i.n t!10 construction of ~,he apparatus for this pl·ojcct is gratefvJ.ly ( :Ht) TABLE o:F' CONTENTS Pi\.CTJ:; Descriptive Note :i.i Acknowledt;ements i ii CHAP'l'l!~ 1 THE ELECTRIC ARC FURNACE 1 1.1 INTIWDUCTION 1 1.2 IIIS'rORY AND DEV:E:LOP ENT OF 3 '!"HE ELEG'l'RIC ARC FURNACE 1.3 OVE.R4.TION AND CONTI?.OL OF 6 l'[E ELECTRIC ARC FUREACE 1.4 A.IH AND SCOPE OF THF..SIS CI~A.Fi'ER 2 DEVr~OP ·1EN'r OF MODEL 17 2.1 CHOICE O.F MODEL 17 2.2 SCAJ,ING 18 2.2.1 DIHE;NSI ON SC,\LING IN HODEL 18 19 2.2~?: 2.2.3 THERI-l.AL SC.A..LU~G 21 2.3 D:S.SIUN CONS'r:iWCTIO;\; AND 23 9 OPERA~I'ION 0~~ MODEL 2.3.1 DESIGN 23 CONi:.WRUC'I'ION 25 CHAPI'B~R 3 CURRF:N'l' DIS1'HIBU7:ION 11-l 3.1 41 3.2 CURR:Sl4:P. Jli.STfC:J}U'J:'lO;·J IN 'l'Hl:EE 43 PITA.Sl<~ l,!ODEl, (iv) PAGE 3.3 CURRSNT DISTRIBUTION IN 'l'HE 51 !''IJO-PHASE MODEL 3.4 DIS·rRIBiJ'l'ION IN THE FURNACE 57 3 .. 5 H:tiliTING EFF'F~TS ?1 CHAPTER 4 .fl,UID MOTION 76 4.1 INHEID1'lT MOT! ON IN FURNACES 76 4.2 MOl'ION IN THE THREE-PHASE MODEL 77 4.3 HOTION IN TlvO-PHASE MODEL 79 4.4 EFFECT OF VANES ON HOTION 83 4.5 ELECTROKINETIC EFFECTS 85 CHAPTER 5 DISCUSSION AND CONCLUSIONS 93 5.1 DISCUSSION 93 5.1.1 THE AIM 93 5.1.2 CUHRENT DIS'l'RIBUTION 94 5.1.3 MOTION 99 5.1.4 TWO-PHASE SYSTEM 101 5.2 FUTURE WORK 103 5.3 CONCLUSIONS 104 APPENDIX A RELATION OF CURRENT DISTRIBUTION TO lo6 INPUT CURRENT APPENDIX B THEORY OF ELECTROKINETIC EFFECTS ll4 APPENDIX C RECORD OF CURR~~T DENSITY MEASUREMENTS ll9 (v) PAGE GLOSSAHY OF f.'l.AIN TERMS 136 REFEHENCES 138 (vi) LIST OF FIGURES PAGE Fig. 1.1 Early Designs of the Electric Arc Furnace 5 1.2 Electrical Supply Syst.em of a.n Electrical 8 Arc Furnace 1.3 Power Characteristics of a 150-ton Electric 10 Arc Furnace 1.4 Construction of the Threc-Fnase HeSoult 13 Electric Arc Furnace :ne. 2.1 DieJDeter of Fura<.:tce Modelled in Rcla.tion to 24 Frequency 2.2 Dimcusiom~ of Hodel and Ring 29 2.3 Pro e Arm, with Holder and Probe 32 2.4 Po\ver Supplies for Hodel 35 2.5 Model Assembl ed i n a Fume Chn.ruber 37 2.6 App<u·atue for Cleaning and Sto:cage of 39 Hercury Plan of Hodel Shm·ling SJ>sf~em of lr2 l1aa~urement o9f r~ e and ,5 Cur-re~'lt Distribution i n Tr...ree~Phasc Hodel 44 at 60 hz Current Distribution in Three-Phase Hodel at b,.QO hz .. :7;- 4 Cun·cnt Density Profil es in Ttn:·ec·,Phase 46 Hockl at 60 hz. 3 .:;c>: CtaTent D3nsi ty Profil ea in T!1reer•Phar;e 48 Model at l+OO hz 3.6 Cu ...·. re:lt StroaMli r::s at 60 hz ill 1'hree~PhF-:c-::: Ho::1el C:.trrent Stroaml:i.m~n i n Three·~.c :..,ace '~lodel ac 50 lJ.QO hz ( vi:i.) PAGE Fig. 3.8 Electrode Configurat i ons in Two-Phase 52 Hodel 3.9 Cu:t·rent Distri'btlti on in 'ltro-Phase 1-iodel. 53 Electrodes of Same Phase Adjacent (400 hz) 3.10 Current Distribution in T'.to-Phase f.iode1. 5L~ Electrodes of Same Phase 0 posite (400 hz) 3.11 Current Density Profiles i n Two-Phase ioiodel. 55 Electrodes of Same Phase Adjacent (/+00 hz) 3.12 Cur rent Density Profi l es i n Two-Phase Model. 56 Electrodes of Same Phase Op~osite (400 hz) 3.13 Current St reaml ines in T\-ro-Pha.se Hodel . 58 Electrodes o: Same Pl1.ase P.djacenc ( 1;')0 hz,) 3.14 Current Streamlines i n 'I\:o-P'nase Hodel .. 59 Elect rodes of Same Phase Opposite ( !iOO hz) 3.15 Relationship Between Furnace Si ze and 62 Transform8r Rating 3.16 Correlati on Bet..-Jeen Furnace 'l'raneforn1er Rat ine 63 and Maximum Elect rode Current c 3.1'1 Current Scal ing F-ctor , 6!1. 1 3.18 Gra.ph of IJ i vs I 66 3.19 Graph of l og I J I l og f 67 Vf] 3.20 Variation of Normalt zed VaJues of IJI with 69 Depth (i+OO and 1000 , z) 3.21 Heasured and Predicted Val ues cf Phsse at 70 400 c nd 1000 z 3.22 Current Path Boloi'J Hercury Surface in 'l"llree 72 Elect rode Mac.~]. Natural Flm:~ Pu.ttern i n 'I'h:r.ee-l'naue }iodel 78 (Phase Sequence A-B-C) 4.2 n~.tw:-al Flo1t Patter!l i n ri\c:o~J?hase l.odel. 81 E:iectrodes of Samo Phase Adjacent (Phase Sequence A-D~JJ-C) (viii) PAGE I'ig. 4.3 Natural Flow Pattern in Two-Phase Model. 82 1lectrodes of Same l~ase Opposite (Phase Sequence A-B--n.-C) 4 ·"''~ Effect of Vanes on Flo~ Pattern (Phase 84 Sequence A-B-C) 4"5 Electrocapillary Action Using Alternating 87 Current 4.6 Electrocapillary Action Using Direct 90 Cv.rrent 4.7 Stages in Development of Electrocapillary 91 Action on Direct Current Fi.g. 5.1 Forces on Surface under Foot of Arc 95 5.2 Features of a Typical Electroslag 98 Remelting Furnace Fig. Al The Model as a Cylinder of Infinite Length 107 Fig. Bl The Electrocapillary Curve 115 B2 Production of Surface Oscillations by 11? Alternating Current B3 Hcvement of Mercury Sur face by 118 Electrocapillary Action, Using Direct Current (ix)
Description: