ebook img

CUORE: A Cryogenic Underground Observatory for Rare Events PDF

2.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CUORE: A Cryogenic Underground Observatory for Rare Events

CUORE: A CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS 7th February 2008 5 0 0 Dipartimentodi Fisicadell’Universitàdi Milano-Bicocca 2 eSezionedi Milanodell’INFN,MilanoI-20126,Italy n a Dipartimentodi IngegneriaStrutturaledelPolitecnicodi Milano, J MilanoI-20133,Italy 6 DepartmentofPhysicsandAstronomy,UniversityofSouthCarolina, 1 v Columbia,South Carolina29208USA 0 Laboratori Nazionalidel Gran Sasso, 1 0 I-67010,Assergi(L’Aquila),Italy 1 0 DipartimentodiFisicadell’UniversitàdiFirenze 5 eSezione diFirenze dell’INFN, FirenzeI-50125, Italy 0 / x LawrenceBerkeley NationalLaboratory, e Berkeley,California94720,USA - p e LawrenceLivermoreNationalLaboratory, h Livermore,California,94551,USA : v i LaboratoriodeFisicaNucleary AltasEnergias, X UniversidaddeZaragoza, 50009Zaragoza, Spain r a KamerlingOnnesLaboratory,Leiden University, 2300RAQ, Leiden,TheNetherlands DipartimentodiScienzeChimiche,FisicheeMatematichedell’Universitàdell’Insubria e SezionediMilanodell’INFN, ComoI-22100, Italy Dipartimentodi Fisicadell’Universitàdi Genova eSezione diGenovadell’INFN, GenovaI-16146,Italy UniversityofCalifornia, Berkeley,California94720USA LaboratoriNazionalidi Legnaro, 1 2 I-35020Legnaro (Padova),Italy Dipartimentodi Fisicadell’Universitàdi Roma eSezionedi Roma1dell’INFN, RomaI-16146,Italy (TheCUORE Collaboration) Professor EttoreFiorini,UniversitàdiMilanoBicocca, Spokesman. 3 SCIENTIFIC PERSONAL MEMBERSOFTHE CUORE COLLABORATION R.Ardito1,2,C.Arnaboldi1,D.R.Artusa3,F.T.AvignoneIII3,M.Balata4,I.Bandac3, M.Barucci5,J.W.Beeman6,F.Bellini14,C.Brofferio1,C.Bucci4,S.Capelli1,F.Capozzi1, L. Carbone1, S. Cebrian7, C. Cosmelli14, O. Cremonesi1, R. J. Creswick3, I. Dafinei14, A. de Waard8, M. Diemoz14, M. Dolinski6,11, H. A. Farach3, F. Ferroni14, E. Fiorini1, G. Frossati8, C. Gargiulo14, E. Guardincerri10, A. Giuliani9, P. Gorla7, T.D. Gutierrez6, E.E.Haller6,11,I.G.Irastorza7,E.Longo14,G.Maier2,R.Maruyama6,11,S.Morganti14, S. Nisi4, E. B. Norman13, A. Nucciotti1, E. Olivieri5, P. Ottonello10, M. Pallavicini10, V. Palmieri12, E. Pasca5, M. Pavan1, M. Pedretti9, G. Pessina1, S. Pirro1, E. Previtali1, B. Quiter6,11, L. Risegari5, C. Rosenfeld3, S. Sangiorgio9, M. Sisti1, A. R. Smith6, S. Toffanin12, L. Torres1, G. Ventura5,N. Xu6, and L.Zanotti1 1. Dipartimento di Fisica dell’Università di Milano-Bicocca e Sezione di Milano dell’INFN, MilanoI-20126,Italy 2. DipartimentodiIngegneriaStrutturaledelPolitecnicodiMilano,MilanoI-20133, Italy 3. Dept.of Physics and Astronomy, University of South Carolina, Columbia, South Carolina, USA 29208 4. LaboratoriNazionali delGran Sasso, I-67010,Assergi (L’Aquila),Italy 5. DipartimentodiFisicadell’UniversitàdiFirenzeeSezionediFirenzedell’INFN, Firenze I-50125,Italy 6. LawrenceBerkeley NationalLaboratory,Berkeley, California,94720,USA 7. Laboratorio de FisicaNuclear y Altas Energias, Universidàdde Zaragoza, 50009 Zaragoza, Spain 8. KamerlingOnnesLaboratory,LeidenUniversity,2300RAQ,Leiden,TheNether- lands 9. Dipartimento di Fisica e Matematica dell’Università dell’Insubria e Sezione di Milanodell’INFN, ComoI-22100,Italy 10. DipartimentodiFisicadell’UniversitàdiGenovaeSezionediGenovadell’INFN, GenovaI-16146,Italy 4 11. UniversityofCalifornia, Berkeley, California94720,USA 12. LaboratoriNazionali diLegnaro,I-35020 Legnaro(Padova), Italy 13. LawrenceLivermoreNationalLaboratory,Livermore,California, 94550,USA 14. Dipartimento di Fisica dell’Universitàdi Roma e Sezione di Roma 1 dell’INFN, RomaI-16146,Italy CONTENTS 1 Contents 1 Executivesummary 10 2 CUOREScience Motivation 12 2.1 TheoreticalMotivationofNeutrinolessDouble-BetaDecay Experiments 12 2.2 NeutrinoMixingMatrix . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 NeutrinolessDouble-BetaDecay . . . . . . . . . . . . . . . . . . . . . 13 2.4 ExperimentalProspects . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Status ofNeutrinoless Double-Beta Decay Experiments 19 3.1 MainstrategiesforDoubleBetaDecay searches . . . . . . . . . . . . . 21 3.2 Overviewofmainexperimentsand synopsisofresults. . . . . . . . . . 24 3.3 Thermaldetectorapproach todoublebetadecay . . . . . . . . . . . . . 27 3.4 Nextgenerationexperiments . . . . . . . . . . . . . . . . . . . . . . . 28 4 CUOREexperimental prospects 31 4.1 Doublebetadecay prospects . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 OtherphysicswithCUORE . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 WIMP detection . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Solar axiondetection . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.3 Searches for otherrare processes . . . . . . . . . . . . . . . . . 43 5 Principles ofoperationofTeO bolometers 47 2 5.1 Basicprinciplesofthermalparticledetectors . . . . . . . . . . . . . . . 47 5.2 Semiconductorthermistors . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 Detectoroperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Bolometerapplications . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Detectormodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 Previousresults ofMiDBD and CUORICINO 59 6.1 LNGScryogenicsetups . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 MiDBDexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 CUORICINO experiment . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.1 CUORICINO backgroundmeasurements . . . . . . . . . . . . 72 6.3.2 CUORICINO backgroundanalysis. . . . . . . . . . . . . . . . 72 6.3.3 AnalysisoftheCUORICINO backgroundabove3 MeV . . . . 80 6.3.4 Preliminary measurementsoftheCoppersurface contaminations 83 6.3.5 CUORICINO vs. CUORE . . . . . . . . . . . . . . . . . . . . 84 CONTENTS 2 7 CUOREproject 85 7.1 SingleCUORE detector . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2 TheNTDthermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 ModularstructureoftheCUORE detector . . . . . . . . . . . . . . . . 94 7.4 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8 Cryogenicsystem 99 8.1 DevelopmentofaPulse-Tube-assistedcryostat . . . . . . . . . . . . . 101 8.2 Shieldingrequirements . . . . . . . . . . . . . . . . . . . . . . . . . . 102 9 Required laboratory 104 9.1 Coolingwaterrequirements . . . . . . . . . . . . . . . . . . . . . . . . 106 9.2 Powerrequirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.3 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.4 Spacerequirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 10 Electronics 107 10.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 10.2 Thermistorbiasingand detectorwiring . . . . . . . . . . . . . . . . . . 108 10.3 Preamplifierand Cold bufferstage . . . . . . . . . . . . . . . . . . . . 110 10.4 Programmablegainamplifier . . . . . . . . . . . . . . . . . . . . . . . 112 10.5 Antialiasingfilterand analogtrigger . . . . . . . . . . . . . . . . . . . 112 10.6 CalibratingPulseGeneratorSystem . . . . . . . . . . . . . . . . . . . 112 10.7 VoltageSupplysystem . . . . . . . . . . . . . . . . . . . . . . . . . . 113 10.8 Digitalcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 10.9 EMIShielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 10.10Noiseconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 11 Dataacquisitionsystem (DAQ) 116 11.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11.2 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 11.3 Readout board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 11.4 ComputingsystemandDAQ layout . . . . . . . . . . . . . . . . . . . 121 11.5 Slowcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 12 Constructionprocedures 123 12.1 MaterialSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 12.1.1 Materials forcrystalgrowth . . . . . . . . . . . . . . . . . . . 123 12.1.2 Materials forthedetectorstructure . . . . . . . . . . . . . . . . 124 12.1.3 Shieldingmaterials . . . . . . . . . . . . . . . . . . . . . . . . 126 12.1.4 Othercomponentsoftheexperimentalsetup . . . . . . . . . . . 126 CONTENTS 3 12.2 Constructionenvironment . . . . . . . . . . . . . . . . . . . . . . . . . 126 12.3 Lowbackgroundtechnologytransfertothecrystalgrowthcompany . . 128 12.4 CUORE assemblyprocedure . . . . . . . . . . . . . . . . . . . . . . . 129 12.5 Workbreakdown andconstructionschedulefortheCUORE detector . . 133 12.6 General timescheduleoftheCUORE project . . . . . . . . . . . . . . 133 13 Off-lineanalysis 136 13.1 First-levelanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 13.2 Second-levelanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 14 Simulationand predicted performances 140 14.1 Background simulations . . . . . . . . . . . . . . . . . . . . . . . . . 140 14.2 Bulkcontaminations . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 14.3 Surface contaminations . . . . . . . . . . . . . . . . . . . . . . . . . . 143 14.4 Cosmogeniccontribution . . . . . . . . . . . . . . . . . . . . . . . . . 147 14.5 Undergroundneutron,µ and γ interactions . . . . . . . . . . . . . . . . 151 14.6 Twoneutrinosdoublebetadecay background . . . . . . . . . . . . . . 154 15 Innovationsinthe CUOREstructure 155 15.1 Innovationin thesinglemodule . . . . . . . . . . . . . . . . . . . . . . 155 15.1.1 Optimizationofthethermistorsensitivity . . . . . . . . . . . . 155 15.1.2 Innovativethermalcouplingsin detectorconstruction . . . . . . 156 15.1.3 Modificationofthebasiccrystal size. . . . . . . . . . . . . . . 156 15.2 PossibleinsertioninCUOREofcrystalscontainingcompoundsofother nuclearcandidatesforββ(0ν) . . . . . . . . . . . . . . . . . . . . . . 157 15.3 Developmentofsurface sensitiveTeO elements . . . . . . . . . . . . . 159 2 15.4 DevelopmentofscintillatingTeO bolometers . . . . . . . . . . . . . . 163 2 16 CleaningofCUOREstructure: crystals,frames and ancillaries 165 16.1 Surface cleaningtechniques . . . . . . . . . . . . . . . . . . . . . . . 165 16.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 17 Enrichment option 182 18 Structure ofthe collaboration 183 19 Coststatement 185 20 Conclusions 188 LISTOFFIGURES 4 List of Figures 1 Normal and inverted mass hierarchies schemes. Quasi-degeneratehier- archycorresponds tothecasem >> δm T >> δm . . . . . . . . . . 14 1 A S 2 Exclusion projected for 1 year of CUORE assuming a threshold of 10 keV, a low energy resolutionof 1 keV, and low energy background lev- els of 0.05 and 0.01 c/keV/kg/day respectively. The dashed line corre- spondsto theMiDBD result. . . . . . . . . . . . . . . . . . . . . . . . 37 3 The solid lines represent the sensitivity plot in the (m,σ) plane for CUORE, assuming a threshold of 10 keV, two years of exposure (1500 kgyear)andflatbackgroundsof0.05and0.01c/keV/kg/day. Ithasbeen calculated for δ2 = 5.6 (see the text). The sensitivity curve has been h i also calculated for a possible threshold of 5 keV with a background of 0.01c/keV/kg/day(dashedline). . . . . . . . . . . . . . . . . . . . . . 39 4 Best bound attainable with CUORE (straight line labelled "CUORE") comparedwithothers limits. . . . . . . . . . . . . . . . . . . . . . . . 42 5 Simplified model of a thermal detector (a) and schematic read-out of a resistivethermometer(b) . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 TypicalloadcurveforathermistoratT=8mK)(a)andresistance-power curvesforathermistorat differentbasetemperatures(b). . . . . . . . . 50 7 leftpanel: evaluationof theoptimumpoint ofa bolometer;rightpanel: evaluationofoperationpointwhich maximizesthesignal/noiseratio. . . 52 8 Networkrepresenting thedetectormodel. . . . . . . . . . . . . . . . . 54 9 DetectorMeritCurve: simulation(solidcurve)andexperimentalpoints forthe20 detectorarray. . . . . . . . . . . . . . . . . . . . . . . . . . 56 10 Real pulses(full line)and simulatedpulses(line+points). . . . . . . . . 56 11 SchemeoftheMiDBDdetectors. . . . . . . . . . . . . . . . . . . . . . 60 12 AnU+Th calibration,sumspectrumofthe20detectors . . . . . . . . . 61 13 DistributionofthesingleMiDBDdetectorenergyresolutions(FWHM) onthe208Tl 2615keV line. . . . . . . . . . . . . . . . . . . . . . . . . 61 14 Background spectrum: thealphaparticleregion . . . . . . . . . . . . . 62 15 Scatter plot of coincident events between all possible MiDBD detector pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 16 MiDBD-I (continuous line) and MiDBD-II (dashed line)background spectraafteranticoincidencecut. . . . . . . . . . . . . . . . . . . . . . 65 17 Schemeofasurface αdecay. . . . . . . . . . . . . . . . . . . . . . . . 67 18 Total spectrum (in anticoincidence) in the region of neutrinoless DBD obtained with the twenty crystal array. The solid curves represent the bestfit (lowestcurve)andthe68 %and 90 % C.L. excludedsignals. . . 69 LISTOFFIGURES 5 19 The CUORICINO detector: scheme of the tower and internal roman lead shields (left), the 13 planes tower (centre), the 4 crystal module (topright)and the9crystal module(bottomright). . . . . . . . . . . . 73 20 Summed calibration spectrum (232Th source just outside the crysotat) fromall theoperating 5 5 5 cm3 and 3 3 6 cm3 crystals. . . . . . . 74 × × × × 21 Distribution of the single CUORICINO detector energy responses nor- malizedto1 kg ofTeO . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2 22 DistributionofthesingleCUORICINOdetectorenergyresolutions(FWHM) at the208Tl 2615keV line. . . . . . . . . . . . . . . . . . . . . . . . . 75 23 Summed background spectra from the operating 5 5 5 cm3 and (nat- × × ural abundance)3 3 6 cm3 crystals. . . . . . . . . . . . . . . . . . . 75 × × 24 Comparison between the background of the 5 5 5 cm3 crystals and × × thatofthenatural3 3 6 cm3 crystalsinthegammaregion. . . . . . . 76 × × 25 Comparison between the background of the 5 5 5 cm3 crystals and × × thatofthenatural3 3 6 cm3 crystalsinthealfaregion. . . . . . . . . 77 × × 26 Comparison between the background spectra of CUORICINO crystals andthebackgroundmeasured inMiDBD-IIexperiment. . . . . . . . . 77 27 Summedbackgroundspectrum(5.29kg y)fromalltheoperatingcrys- × talsintheregionofneutrinolessdoublebetadecayof130Te(Q-value=2528.8 keV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 28 Comparisonbetweenspectraobtainedwithdifferentlinearizationmeth- ods. Theappearenceofclearalphastructureswiththepowerlawmetod isevident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 29 Comparison between Monte Carlo and CUORICINO anticoincidence (top) and coincidence (bottom) spectra in the case of the TeO crystal 2 surfacecontaminations(λ 1 µm)specified in thefigure. . . . . . . . . 81 ∼ 30 Comparison between Monte Carlo and CUORICINO anticoincidence (top) and coincidence (bottom) spectra when a Th surface contamina- tionofthedetectorcopperholder(greenline)isadded(pinkline)tothe crystalconatminationsconsideredin fig. 29. . . . . . . . . . . . . . . . 82 31 TheCUORE detector(left), oneofthe19 towers(right). . . . . . . . . 85 32 Effects of the system thermal instabilities on the worsening of the de- tectorenergyresolution(above). Comparisonbetweencalibrationspec- tra before (black curve: ∆EFWHM = 30 keV) and after (red curve: 2615 ∆EFWHM =6 keV)thestabilizationprocedure. . . . . . . . . . . . . . 88 2615 33 Graph depicting the solution for thermal and epithermal flux for a set of three monitors, each with different ratios of thermal and epithermal cross-sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 34 Resistivityofvariousbatches ofNTDGermaniumas afunctionof1/√T. 92 LISTOFFIGURES 6 35 Thermistorperformanceasafunctionofthecalculatednetacceptorcon- centration. The first six points (from the left) involved only one irradi- ation (and show a relatively large spread in deviations from the line) whilethelastthreepointsarefollowingthesecondirradiationandhave averysmallspread from theline. . . . . . . . . . . . . . . . . . . . . . 93 36 A fourdetectormodule. . . . . . . . . . . . . . . . . . . . . . . . . . . 95 37 Improvement in the Detector Merit Curve by increasing the thermistor size: 3 3 1 mm3 thermistors(stars)vs. 3 1.5 0.4 mm3 (diamonds). . 95 × × × × 38 Noise Power Spectra without damping suspension (1), with damping suspensiononly(2)and withdumpingsuspension+cold electronics(3). 96 39 Fifteen thermistorload curvesforthe20crystal array. . . . . . . . . . . 97 40 FinallocationofCUOREinhallAoftheundergroundLaboratoriNazion- alidel Gran Sasso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 41 CUORE cryostat andshielding. . . . . . . . . . . . . . . . . . . . . . . 100 42 Temperatureinstabilityas observedina typicalMiDBDmeasurement. . 101 43 SchemeoftheCUORE setupinstallation. . . . . . . . . . . . . . . . . 105 44 Schematic diagram of the front-end electronic circuit operated at room temperature(WFE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 45 Schematic diagram of the front-end having the first stage, the differen- tialbufferQ ,Q , atcold. . . . . . . . . . . . . . . . . . . . . . . . . . 110 1 2 46 Block diagram of the proposed DAQ system. The digitizing boards are housed in 5 VME crates, each controlled and read by a dedicated Linux PC that uses a VME-PCI interface to access the VME bus. All computers are connected via a network (normal 100 Mbit ethernet or fast optical link if required) to a set of consoles that provide graphical user interface and event display. A custom designed software runs on allcomputers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 47 Basedesignofthedigitizingboard. Inthis"minimal"versiontheboard simplyhasthefunctiontoconverttheinputsignalintoastreamofwords thatare transferred totheDAQcomputersviaVMEbus. . . . . . . . . 119 48 Optional enhanced design of the digitizing board. In this version the board is equipped with a DSP that can perform additional computing functionslikeeventselection ordigitalfiltering. . . . . . . . . . . . . . 120 49 GanttdiagramillustratingtheCUORE detectorfabricationschedule. . . 132 50 GanttdiagramillustratingtheCUORE project timeschedule. . . . . . . 135 51 DetailsoftheCUOREsinglemodulesaccountedforintheMonteCarlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.