ebook img

Culture on the Edge of Chaos PDF

112 Pages·2018·5.092 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Culture on the Edge of Chaos

SPRINGER BRIEFS IN COMPUTER SCIENCE Robert G. Reynolds Culture on the Edge of Chaos Cultural Algorithms and the Foundations of Social Intelligence 123 SpringerBriefs in Computer Science Moreinformationaboutthisseriesathttp://www.springer.com/series/10028 Robert G. Reynolds Culture on the Edge of Chaos Cultural Algorithms and the Foundations of Social Intelligence RobertG.Reynolds ComputerScienceDepartment WayneStateUniversity Detroit,MI,USA ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-3-319-74169-7 ISBN978-3-319-74171-0 (eBook) https://doi.org/10.1007/978-3-319-74171-0 LibraryofCongressControlNumber:2018932416 ©TheAuthor(s),underexclusivelicencetoSpringerInternationalPublishingAG,partofSpringerNature 2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Thanks to my family, Kathy, Lauren, and Leslie for their inspiration and support. Contents 1 TheCulturalAlgorithm:CultureontheEdgeofChaos. . . . . . . . . 1 1.1 CulturalAlgorithms:Data-DrivenProblemSolvinginComplex Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 CultureasaProblem-SolvingProcess. . . . . . . . . . . . . . . . . . . . 2 1.3 TheCulturalEngine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 CultureontheEdgeofChaos. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 TheSocialOrganizationModels. . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 OrganizationoftheBook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 CulturalAlgorithmFramework. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 TheCulturalAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 TheCulturalAlgorithmKnowledgeSources. . . . . . . . . . . . . . . . 15 2.4 TheCommunicationProtocol. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 ThePopulationSpace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ModelingtheSocialFabric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 HomogeneousTopologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 HeterogeneousTopologies.. . . .. . . .. . . .. . . .. . . .. . .. . . .. 31 3.4 SubculturedHeterogeneousTopologies. . . . . . . . . . . . . . . . . . . 35 3.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 GeneratingChaos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 TheConesWorldGenerator. . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 SocialMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 TheDispersionMetric:SocialTension. . . . . . . . . . . . . . . . . . . . 46 vii viii Contents 5.3 TheMajorityWinScoresandtheInnovationCosts. . . . . . . . . . . 47 5.4 TrackingProblem-SolvingBehaviorinTermsoftheSocial FabricMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6 TheCulturalEngine:PuttingIndividualstoWork. . . . . . . . . . . . . 53 6.1 KnowledgeSwarmsandMaxwell’sDemon. . . . . . . . . . . . . . . . 53 6.2 TheBasicLawsofThermodynamics. . . . . . . . . . . . . . . . . . . . . 53 6.3 Maxwell’sDemon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.4 TheCulturalEngine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 ComparingNuclearFamilyandExtendedFamilySocial Organizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 OverallPerformanceComparison. . . . . . . . . . . . . . . . . . .. . . . . 60 7.3 LearningCurves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.4 t-TestsforPerformanceDifferences. . . . . . . . . . . . . . . . . . . . . . 68 7.5 UsingSocialMetricstoAssessEnginePerformance. . . . . . . . . . 69 7.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 8 ThePowerofSubcultures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8.2 OverallPerformanceComparison. . . . . . . . . . . . . . . . . . .. . . . . 78 8.3 SubculturalSupportofProblemSolvingPredictability. . . . . . . . 83 8.4 StatisticalComparisonofSubculturesandHomogeneous Usingt-Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.5 TheStatisticalComparisonofSubculturesandHeterogeneous Usingt-Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.6 TheAbilityofSubculturestoSupportIncreased PopulationSize. . . .. . . . . .. . . . . . .. . . . . .. . . . . .. . . . . .. . 88 8.7 HowSubculturesImpactCulturalEnginePerformanceinTerms oftheSocialMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.8 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9 ConclusionsandFutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 1 The Cultural Algorithm: Culture on the Edge of Chaos 1.1 Cultural Algorithms: Data-Driven Problem Solving in Complex Systems Traditionallyevolutionarycomputationhasfocusedonpopulation-basedmodels.In thesemodels,apopulationofproblemsolversexchangeslimitedamountsofknowl- edgeaboutaproblemtobesolvedandcanusethisknowledgetocollectivelysearch for a solution. Each problem solver makes decisions based upon the knowledge availabletoit.Thisapproachissuitableforproblemswheretheknowledgeneeded tosolveaproblemislimited. Data- or knowledge-driven systems on the other hand reflect problems gener- ated by complex systems that can be described at many levels of detail where the typeofknowledgeavailablemaychangefromleveltolevelinthesystemandwhere manylevelsmayneedtobeexaminedinordertofindasolutiontoagivenproblem. Jayyousi and Reynolds (2014) define a complex system as one made up of an organized group of heterogeneous independent units who interact with their envi- ronment and each other. They adapt based on feedback from the environment. In other words, a complex system is a mixture of relatively simple components or buildingblocksthatarecombinedtogetherthroughaseriesofbasicinteractions.The interaction between these building blocks or basic units can produce emergent behaviorsthatcannotbepredictedfromknowledgeoftheindividualunitsalone. Acomplexsystemoftenhasthefollowingcharacteristics(JayyousiandReynolds 2014): 1. Relationshipsinacomplexsystemareoftennonlinear,i.e.,effectsarenotdirectly proportionaltocauses. 2. Complexsystemscontainpositiveandnegativefeedbackloops. 3. Complex systems are open, i.e. usually far from equilibriums, but may form patternsofstability. ©TheAuthor(s),underexclusivelicencetoSpringerInternationalPublishingAG, 1 partofSpringerNature2018 R.G.Reynolds,CultureontheEdgeofChaos,SpringerBriefsinComputerScience, https://doi.org/10.1007/978-3-319-74171-0_1 2 1 TheCulturalAlgorithm:CultureontheEdgeofChaos 4. Complexsystemshavememory,i.e.,historymatters. 5. Complexsystemmayproduceemergentphenomena. DataScienceisconcernedwiththedevelopmentofpredictivemodelsofcomplex systemsthroughthe use oftools frommathematics,statistics,machinelearning, and other disciplines. Complex systems can operate on numerous temporal and spatial levels.Itisfrequentlythecasethatthedatacollectionprocessisconcentratedonone level or another. Questions or hypotheses posed at the macro-level may not have sufficientdatatotestthematthatlevel.Thus,itisimportantforadatascientisttobe abletotraverselevelssuchthatquestionsaskedononelevelwithsparsedatacanbe re-expressed at another level with sufficient data. As a result, the problem-solving processcanmovefromonelevelofgranularitytoanotherbasedupondataavailability. Theexample inFig.1.1correspondstoanancienturban centerintheValleyof Oaxaca,Mexico,thatdatesto500BC(JayyousiandReynolds2014).Thediagram shows three different levels of detail at which the system can be described: the macro-level, the meso-level, and the micro-level. Hypotheses reflecting the overall designofthecitycanbeexpressedatthemacro-level.Themeso-levelcorresponds to the basic neighborhood or barrio structure within the city. The micro-level describes the basic household terraces along with city structures. While the most interesting general hypotheses can be posed at the macro-level, much of the data collected by archaeologists was at the micro-level. So, the knowledge sources needed at one level may be different from those needed at another level. For an evolutionary algorithm to be successful as a tool for the data scientist, these knowledge sources need to operate in parallel and communicate with each other overthedifferentlevelsduringtheproblem-solvingprocess.Thus,thecomputation isdirectedbytheneedsoftheknowledgesourcesratherthanthoseofthepopulation ofproblemsolvers.Thepopulationofproblemsolversmediatesthetransmissionof knowledgefromonelevelofabstractiontoanother. Deep learning inits mostgeneral sense reflects this traversal ofdata abstraction levels, from fine-grained detail to coarse grained detail and vice versa. While the termdeeplearningisoftenrelatedtoworkinneuralnetworks,thegeneralprinciples can,ofcourse,applytoalltypesoflearningapproachesusedwithcomplexsystems. The Cultural Algorithm is a nature-inspired algorithm designed to navigate the hierarchy of hypotheses often found associated with complex systems. As such, wedesignateitasatoolformulti-levellearningincomplexsystems. 1.2 Culture as a Problem-Solving Process CulturalAlgorithmsweredevelopedasamechanismbywhichtodealwithproblem solving andlearning withincomplexsystemsbyReynolds (1979).Complexsocial systems can be found at various scales, and the types of problems that they are presentedwithareaffectedbythatscale.InFig.1.2,varioussocialsystemsthatare used as the basis for models of social problem solving, such as Particle Swarm Optimization(BrattonandKennedy2007)andAntColonysystems,arecomparedin

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.