ebook img

Cultural Algorithms: Recent Advances PDF

277 Pages·2023·9.184 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cultural Algorithms: Recent Advances

Engineering Optimization: Methods and Applications Shahin Jalili Cultural Algorithms Recent Advances Engineering Optimization: Methods and Applications SeriesEditors AnandJ.Kulkarni,DepartmentofMechanicalEngineering,SymbiosisInstitute ofTechnology,Pune,Maharashtra,India AmirH.Gandomi,Engineering&InformationTechnology,University ofTechnologySydney,Sydney,NSW,Australia SeyedaliMirjalili,Brisbane,QLD,Australia NikosD.Lagaros,NationalTechnicalUniversityofAthens,Athens,Greece WarrenLiao,LSU,ConstructionManagementDepartment,BatonRouge,LA, USA Optimizationcarriesgreatsignificanceinbothhumanaffairsandthelawsofnature. It refers to a positive and intrinsically human concept of minimization or maxi- mization to achieve the best or most favorable outcome from a given situation. Besides, as the resources are becoming scarce there is a need to develop methods andtechniqueswhichwillmakethesystemsextractmaximumfromminimumuse of these resources, i.e. maximum utilization of available resources with minimum investment or cost of any kind. The resources could be any, such as land, mate- rials, machines, personnel, skills, time, etc. The disciplines such as mechanical, civil, electrical, chemical, computer engineering as well as the interdisciplinary streamssuchasautomobile,structural,biomedical,industrial,environmentalengi- neering,etc.involveinapplyingscientificapproachesandtechniquesindesigning anddevelopingefficientsystemstogettheoptimumanddesiredoutput.Themulti- facetedprocessesinvolvedaredesigning,manufacturing,operations,inspectionand testing, forecasting, scheduling, costing, networking, reliability enhancement, etc. Thereareseveraldeterministicandapproximation-basedoptimizationmethodsthat have been developed by the researchers, such as branch-and-bound techniques, simplex methods, approximation and Artificial Intelligence-based methods such as evolutionary methods, Swarm-based methods, physics-based methods, socio- inspired methods, etc. The associated examples are Genetic Algorithms, Differen- tial Evolution, Ant Colony Optimization, Particle Swarm Optimization, Artificial BeeColony,GreyWolfOptimizer,PoliticalOptimizer,CohortIntelligence,League ChampionshipAlgorithm,etc.Thesetechniqueshavecertainadvantagesandlimi- tationsandtheirperformancesignificantlyvarieswhendealingwithacertainclass of problems including continuous, discrete, and combinatorial domains, hard and soft constrained problems, problems with static and dynamic in nature, optimal control,anddifferenttypesoflinearandnonlinearproblems,etc.Thereareseveral problem-specificheuristicmethodsarealsoexistingintheliterature. This series aims to provide a platform for a broad discussion on the devel- opment of novel optimization methods, modifications over the existing methods including hybridization of the existing methods as well as applying existing opti- mization methods for solving a variety of problems from engineering streams. This series publishes authored and edited books, monographs, and textbooks. The series will serve as an authoritative source for a broad audience of individuals involvedinresearchandproductdevelopmentandwillbeofvaluetoresearchersand advancedundergraduateandgraduatestudentsinengineeringoptimizationmethods andassociatedapplications. Shahin Jalili Cultural Algorithms Recent Advances ShahinJalili SchoolofEngineering UniversityofAberdeen Aberdeen,UK ISSN 2731-4049 ISSN 2731-4057 (electronic) EngineeringOptimization:MethodsandApplications ISBN 978-981-19-4632-5 ISBN 978-981-19-4633-2 (eBook) https://doi.org/10.1007/978-981-19-4633-2 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface According to the biocultural evolutionary theory, genes and culture are two inter- actingformsofinheritanceandoverallhumanevolutioncanbeviewedastheproduct of the changes in biological and cultural traits. Both genetic and cultural evolu- tionaryprocessesincludeaformofinformationtransmission.Ingeneticevolution, the genetic information embedded within the genes is being vertically transmitted fromparentstooffspring.Inculturalevolution,theculturalvariantssuchasbeliefs, habits,skills,traditions,andpreferences,passfromonegenerationtothenextand theycanbechangedorevenreplacedbynewonesovertimeduetochangesinthe culturalenvironment.Incomparisontogeneticevolution,theinformationtransmis- sioninculturalevolutionisamuchmorecomplicatedprocess.Theinformationflow inculturalevolutionincludesbothverticalandhorizontaltransmissionsinwhichthe cultural information is not only vertically inherited from parents to offspring, but also offspring have the opportunity to socially learn and acquire information from othermembersofthesociety. Culturalalgorithms(CAs)aremeta-heuristicnumericaloptimisationalgorithms inspired by the abovementioned biocultural evolutionary theory. CAs have some characteristic features that make them unique in comparison to other evolutionary algorithms (EAs). They model the biocultural evolutionary theory to perform the search process for global optima, in which both types of vertical and horizontal learningbehavioursofindividualsaremodelled.Sincetheiremergence,CAshave been extended and successfully employed to solve a wide variety of problems in differentbranchesofscienceandtechnology. The main aim of this book is to explore the recent advances in the algorithmic frameworkofCAsandtheirapplicationstothedifferentproblemsintheliterature. Whilethemainapproachofthebookistobrieflydiscussandexplaintheapplication studiesandalgorithmicdetailsofCAs,thedetailedmathematicalformulationsand algorithmicpseudo-codesarealsodiscussedineachchaptertoprovideaclearexpla- nationsforthedifferentconcepts.Thebookismainlyaimedatpostgraduatestudents andresearchersincomputerscienceandengineeringsubjectswithresearchinterests inoptimisationandmeta-heuristicalgorithms.Throughoutthebook,itisassumed v vi Preface thatthereadersarefamiliarwiththebasicconceptsofoptimisationtheoryandmeta- heuristicalgorithms.However,theauthortriedtoproviderelevantreferencesineach chaptertoassistthereadersinunderstandingthecontentsofthebook. Thebookcomprisesninedifferentchaptersdividedintothreeparts.PartIcontains the basic concepts of standard CAs and their theoretical background. The first part explains how the basic concepts in biocultural evolutionary theory have been employedtodevelopstandardCAs.PartIIdiscussestheapplicationsofCAstoawide rangeofreal-worldproblemsandpresentstheirdetailedmathematicalformulations, includingdecisionvariables,objectivefunctions,andconstraints.PartIIIinvestigates thedifferentvariantsofCAsdevelopedinliteratureandtheiralgorithmicdetails.The third part includes a comprehensive survey and detailed pseudo-codes of different extended, hybrid, and multi-population versions of CAs. The last chapter of the bookpresentstheapplicationstudyofCAstothereal-worldstructuraloptimisation problems. Althoughasignificantefforthasbeenmadetominimisetheerrorsandtyposinthe book,theauthorwarmlywelcomesreceivingfeedback,suggestions,andcomments fromreadersonthecontentsofthebook. The author would like to thank the series editors, Prof. Amir H. Gandomi and Dr.AnandJ.Kulkarni,aswellasthepublishingeditor,Ms.KamiyaKhatter,andher colleagues in Springer Nature for their efforts and supports during the production processofthisbook. Aberdeen,Scotland,UK ShahinJalili April2022 Contents PartI Foundations 1 IntroductiontoStochasticOptimisation .......................... 3 1.1 Introduction ............................................... 3 1.2 ConventionalOptimisationMethods .......................... 4 1.3 ModernStochasticMethods .................................. 6 1.3.1 Heuristics .......................................... 6 1.3.2 Meta-Heuristics .................................... 8 1.3.3 NoFreeLunchTheorems ............................ 8 1.3.4 EvolutionaryAlgorithms(EAs) ....................... 9 1.3.5 SwarmIntelligence(SI) .............................. 11 1.3.6 Socio-inspiredAlgorithms ........................... 11 1.3.7 PhysicsInspiredAlgorithms .......................... 12 1.3.8 Hyper-Heuristics .................................... 13 1.4 Summary .................................................. 13 References ..................................................... 14 2 IntroductiontoCulture ......................................... 17 2.1 Introduction ............................................... 17 2.2 WhatistheCulture? ........................................ 19 2.3 CharacteristicFeaturesofCulture ............................. 20 2.4 CulturalLearninginHumansandAnimals ..................... 21 2.5 CulturalEvolution .......................................... 21 2.6 SocialLearningBiases ...................................... 23 2.7 WhoCanChangeCulturalVariants? .......................... 25 2.8 Summary .................................................. 26 References ..................................................... 27 3 CulturalAlgorithms(CAs) ...................................... 29 3.1 Introduction ............................................... 29 3.2 OverallFramework ......................................... 30 3.3 PopulationSpace ........................................... 32 vii viii Contents 3.4 BeliefSpace ............................................... 33 3.4.1 SituationalKnowledge ............................... 33 3.4.2 NormativeKnowledge ............................... 37 3.4.3 HistoryKnowledge ................................. 38 3.4.4 TopographicalKnowledge ............................ 39 3.4.5 DomainKnowledge ................................. 40 3.5 CommunicationProtocols ................................... 40 3.5.1 AcceptanceFunction ................................ 41 3.5.2 InfluenceFunction .................................. 41 3.6 CulturalAdjustment ........................................ 44 3.7 AlgorithmicSteps .......................................... 45 3.8 IllustrativeExample ........................................ 46 3.9 Summary .................................................. 51 References ..................................................... 52 PartII ApplicationofCulturalAlgorithms 4 ApplicationsofCulturalAlgorithmsinEngineering ............... 61 4.1 Introduction ............................................... 61 4.2 CivilEngineering ........................................... 62 4.2.1 TransportationEngineering ........................... 63 4.2.2 StructuralEngineering ............................... 65 4.2.3 EnvironmentalEngineering ........................... 66 4.2.4 UrbanEngineering .................................. 67 4.2.5 WaterEngineering .................................. 68 4.3 MechanicalEngineering ..................................... 70 4.3.1 DamageDetection .................................. 70 4.3.2 OptimumDesign ................................... 73 4.3.3 CompositeStructures ................................ 76 4.3.4 OptimalVibrationControl ........................... 78 4.3.5 VehicleSafety ...................................... 79 4.3.6 FlightControl ...................................... 79 4.3.7 GasTurbineOperation ............................... 80 4.3.8 RenewableEnergy .................................. 80 4.4 ChemicalEngineering ....................................... 81 4.4.1 PenicillinProduction ................................ 82 4.4.2 AmmoniaSynthesis ................................. 83 4.4.3 DieselBlending .................................... 84 4.4.4 WaxPrecipitation ................................... 84 4.5 ElectricalEngineering ....................................... 85 4.5.1 Economic/Environmental Dispatch of Power Systems ........................................... 85 4.5.2 PowerDistributionSystems .......................... 88 4.5.3 PhasedArrayRadars ................................ 89 4.5.4 WirelessSensorNetworks ............................ 89 Contents ix 4.5.5 SignalProcessing ................................... 91 4.5.6 MaintenanceScheduling ............................. 92 4.5.7 DigitalWatermarking ................................ 93 4.5.8 PowerSystemStabiliserDesign ....................... 93 4.5.9 OptimalReactivePowerDispatch ..................... 94 4.5.10 OptimalOperationofCascadeHydropowerStation ...... 95 4.5.11 OptimalDesignofPassivePowerFilters ............... 96 4.5.12 HydrothermalScheduling ............................ 97 4.5.13 HydroproductionScheduling ......................... 99 4.5.14 Multi-robotTasksAllocation ......................... 100 4.6 IndustrialEngineering ....................................... 100 4.6.1 SupplyChainManagement ........................... 101 4.6.2 IndustrialAutomation ............................... 102 4.7 Summary .................................................. 102 References ..................................................... 102 5 ApplicationsofCulturalAlgorithmsinDifferentBranches ofScience ...................................................... 111 5.1 Introduction ............................................... 111 5.2 ComputerScience .......................................... 112 5.2.1 FunctionOptimisation ............................... 112 5.2.2 Job-ShopScheduling ................................ 115 5.2.3 FacilityLocation .................................... 116 5.2.4 SetCovering ....................................... 118 5.2.5 SemanticNetwork .................................. 119 5.2.6 ProgramUnderstanding .............................. 120 5.2.7 Timetabling ........................................ 120 5.2.8 IntelligentLogistics ................................. 120 5.2.9 ArtificialNeuralNetworks ........................... 121 5.2.10 Multi-aircraftTargetAllocation ....................... 121 5.2.11 TravellingSalesmanProblem ......................... 123 5.2.12 DataMining ....................................... 123 5.2.13 CloudComputing ................................... 124 5.2.14 FogComputing ..................................... 127 5.2.15 OnlineMarketing ................................... 128 5.2.16 GeneticProgramming ............................... 128 5.2.17 Games ............................................ 128 5.2.18 SoftwareTesting .................................... 129 5.2.19 ImageSegmentation ................................. 129 5.2.20 ImageMatching .................................... 130 5.2.21 SonarSystems ...................................... 130 5.2.22 GestureRecognition ................................. 130 5.3 SocialScience ............................................. 131 5.3.1 Anthropology ...................................... 131 5.3.2 VirtualEnterprise ................................... 131

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.