ebook img

Cubical Homotopy Theory PDF

647 Pages·2015·7.993 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cubical Homotopy Theory

CubicalHomotopyTheory Graduate students and researchers alike will benefit from this treatment of various classical and modern topics in the homotopy theory of topological spaces, with an emphasisoncubicaldiagrams.Thebookcontainsmorethan300examplesandprovides detailedexplanationsofmanyfundamentalresults. PartIfocusesonfoundationalmaterialonhomotopytheory,viewedthroughthelens ofcubicaldiagrams:fibrationsandcofibrations,homotopypullbacksandpushouts,and the Blakers–Massey Theorems. Part II includes a brief example-driven introduction tocategories,limits,andcolimits,andanaccessibleaccount ofhomotopylimitsand colimits of diagrams of spaces. It also discusses cosimplicial spaces and relates this topic to the cubical theory of Part I, and provides computational tools via spectral sequences. The book finishes with applications to some exciting new topics that use cubicaldiagrams:anoverviewoftwoversionsofcalculusoffunctorsandanaccount ofrecentdevelopmentsinthestudyofthetopologyofspacesofknots. briana.munsonisanAssociateProfessorofMathematicsattheUSNavalAcademy. HehasheldpostdoctoralandvisitingpositionsatStanfordUniversity,HarvardUniver- sity,andWellesleyCollege,Massachusetts.Hisresearchareaisalgebraictopology,and hisworkspanstopicssuchasembeddingtheory,knottheory,andhomotopytheory. ismar volic´ is an Associate Professor of Mathematics at Wellesley College, Massachusetts. He has held postdoctoral and visiting positions at the University of Virginia, Massachusetts Institute of Technology, and Louvain-la-Neuve University in Belgium. His research is in algebraic topology and his articles span a wide variety of subjects such as knot theory, homotopy theory, and category theory. He is an award-winningteacherwhoseresearchhasbeenrecognizedbyseveralgrantsfromthe NationalScienceFoundation. NEWMATHEMATICALMONOGRAPHS EditorialBoard Béla Bollobás, William Fulton, Anatole Katok, Frances Kirwan, Peter Sarnak, Barry Simon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductive Groups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutive Structures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.WüstholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionof Symmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpaces onMetricMeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII Cubical Homotopy Theory BRIAN A. MUNSON UnitedStatesNavalAcademy,Maryland ISMAR VOLIC´ WellesleyCollege,Massachusetts UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107030251 (cid:2)c BrianA.MunsonandIsmarVolic´2015 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 PrintedintheUnitedKingdombyClays,StIvesplc AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationData Munson,BrianA.,1976– Cubicalhomotopytheory/BrianA.Munson,UnitedStatesNavalAcademy,Maryland, IsmarVolic´,WellesleyCollege,Massachusetts. pages cm Includesbibliographicalreferencesandindex. ISBN978-1-107-03025-1(alk.paper) 1. Homotopytheory. 2. Cube. 3. Algebraictopology. I. Volic´,Ismar,1973– II. Title. QA612.7.M86 2015 514′.24–dc23 2015004584 ISBN978-1-107-03025-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. To Marissa and Catherine Contents Preface pagexi PART I CUBICAL DIAGRAMS 1 Preliminaries 3 1.1 Spacesandmaps 3 1.2 Spacesofmaps 12 1.3 Homotopy 14 1.4 Algebra:homotopyandhomology 20 2 1-cubes:Homotopyfibersandcofibers 28 2.1 Fibrations 29 2.2 Homotopyfibers 40 2.3 Cofibrations 47 2.4 Homotopycofibers 56 2.5 Algebraoffibrationsandcofibrations 62 2.6 Connectivityofspacesandmaps 67 2.7 Quasifibrations 80 3 2-cubes:Homotopypullbacksandpushouts 91 3.1 Pullbacks 94 3.2 Homotopypullbacks 100 3.3 Arithmeticofhomotopycartesiansquares 111 3.4 Totalhomotopyfibers 127 3.5 Pushouts 133 3.6 Homotopypushouts 137 3.7 Arithmeticofhomotopycocartesiansquares 149 3.8 Totalhomotopycofibers 168 3.9 Algebraofhomotopycartesianandcocartesiansquares 171 vii viii Contents 4 2-cubes:TheBlakers–MasseyTheorems 183 4.1 Historicalremarks 183 4.2 Statementsandapplications 188 4.3 Hurewicz,Whitehead,andSerreTheorems 198 4.4 ProofsoftheBlakers–MasseyTheoremsforsquares 203 4.5 ProofsofthedualBlakers–MasseyTheoremsforsquares 213 4.6 Homotopygroupsofsquares 216 5 n-cubes:Generalizedhomotopypullbacksandpushouts 221 5.1 Cubicalandpuncturedcubicaldiagrams 221 5.2 Limitsofpuncturedcubes 226 5.3 Homotopylimitsofpuncturedcubes 230 5.4 Arithmeticofhomotopycartesiancubes 234 5.5 Totalhomotopyfibers 249 5.6 Colimitsofpuncturedcubes 255 5.7 Homotopycolimitsofpuncturedcubes 258 5.8 Arithmeticofhomotopycocartesiancubes 261 5.9 Totalhomotopycofibers 271 5.10 Algebraofhomotopycartesianandcocartesiancubes 275 6 TheBlakers–MasseyTheoremsforn-cubes 288 6.1 Historicalremarks 288 6.2 Statementsandapplications 290 6.3 ProofsoftheBlakers–MasseyTheoremsforn-cubes 299 6.4 ProofsofthedualBlakers–MasseyTheoremsforn-cubes 324 6.5 Homotopygroupsofcubes 329 PART II GENERALIZATIONS, RELATED TOPICS, AND APPLICATIONS 7 Somecategorytheory 339 7.1 Categories,functors,andnaturaltransformations 339 7.2 Productsandcoproducts 347 7.3 Limitsandcolimits 351 7.4 Modelsforlimitsandcolimits 367 7.5 Algebraoflimitsandcolimits 375 8 Homotopylimitsandcolimitsofdiagramsofspaces 379 8.1 Theclassifyingspaceofacategory 380 8.2 Homotopylimitsandcolimits 388 8.3 Homotopyinvarianceofhomotopylimitsandcolimits 399 8.4 Modelsforhomotopylimitsandcolimits 412 Contents ix 8.5 Algebraofhomotopylimitsandcolimits 423 8.6 Algebraintheindexingvariable 431 9 Cosimplicialspaces 443 9.1 Cosimplicialspacesandtotalization 444 9.2 Examples 458 9.3 Cosimplicialreplacementofadiagram 464 9.4 Cosimplicialspacesandcubicaldiagrams 471 9.5 Multi-cosimplicialspaces 476 9.6 Spectralsequences 479 10 Applications 502 10.1 Homotopycalculusoffunctors 502 10.2 Manifoldcalculusoffunctors 524 10.3 Embeddings,immersions,anddisjunction 542 10.4 Spacesofknots 553 Appendix 570 A.1 Simplicialsets 570 A.2 Smoothmanifoldsandtransversality 578 A.3 Spectra 586 A.4 Operadsandcosimplicialspaces 595 References 600 Index 613 Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 27 Aug 2017 at 03:16:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139343329 Downloaded from https://www.cambridge.org/core. Columbia University Libraries, on 27 Aug 2017 at 03:16:56, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139343329

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.