ebook img

CT Teaching Manual: A Systematic Approach To CT Reading Second Edition PDF

198 Pages·2005·55.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CT Teaching Manual: A Systematic Approach To CT Reading Second Edition

Matthias Hofer Second edition 4 I KeytoAnatomicStructures FrontCoverFlap NormalAnatomyofthePetrousBone(CoronalandAxial) 46 onpages26-73,152/153(head/ neck) NormalVariantsoftheCranium 50 TypicalPartialVolumePhenomenaoftheCranium 52 NotesfortheUser,"Whatyoushouldknow" FrontCoverFlap CerebralCT,PathologicFindings NotesfortheUser,ListoftheCTdiagrams IntracranialBleeds 54 CerebralInfarcts 58 ForewordandListof Abbreviations 3 CerebralTumorsandMetastases 59 InflammatoryProcesses 60 PhysicalandTechnical Fundamentals OrbitalChanges 61 GeneralPrinciplesofCT 6 ChangesoftheFacialBonesandParanasalSinuses 62 ComparisonofConventionalCTwithSpiralCT 7 SpatialResolution,Pitch 8 NeckCT SectionCollimation:ResolutionalongtheZ-axis 9 SelectionoftheImagePlane 64 AdaptiveDetectorDesign 10 CheckiistforaSystemicApproach 64 ReconstructionAlgorithms 11 NormalAnatomyoftheNeck 65 EffectsofkV,mAsandScanTime 12 Three-dimensionalReconstruction Methods: 13 NeckCT,PathologicChanges Maximum IntensityProjection(MIP) InflammatoryProcessesandTumors 70 MultiplanarReconstruction(MPR) ThyroidGland 71 SurfaceRendering Testyourselfl 72 BasicRulesforReading CTExaminations KeytoAnatomicStructures BackCoverFlap AnatomicDrientation 14 onpages71,74-149 (thorax/ abdomen) PartialVolumeEffects DistinguishingNodularfromTubularStructures 15 ChestCT Densitometry SelectionoftheImagePlane 74 DensityLevelsofDifferentTIssues 16 SystemicSequentialApproach toInterpretation DocumentationUsingDifferentWindowSettings 17 ChecklistforInterpretingChestCT 74 NormalAnatomyoftheChest 75 PreparingthePatient Testyourself! 82 MedicalHistory 18 RenalFunction ChestCT,PathologicChanges Hyperthyroidism AnatomyofthePulmonarySegments 84 AdverseReactiontoContrastAgents HRCToftheLungs:Technique,Effects,Indications 86 Premedication AnatomicVariantsoftheChest 88 OralAdministrationofContrastAgents 19 ChestWall InformingthePatient AbnormalLymphNodes 89 RemovalofForeignObjects Breast,BonyThorax 90 ControllingRespiration Mediastinum TumorMasses 91 AdministrationofContrastAgents EnlargedLymph Nodes 92 OralAdministrationofContrastAgents 20 VascularPathology 93 SelectionoftheAppropriateContrastAgents Heart 94 DurationandDose Lung In avenousInjectionofContrastAgents IntrapulmonaryNodules 95 In avenousAccess 21 BronchialCarcinoma,MalignantLymphangiomatosis 96 :l1ilo'o EffectofContrastAgents Sarcoidosis,Tuberculosis,Aspergillosis 97 ~""re .8ReactiontoContrastAgentsandTheirTherapy 24 PleuralChanges,Asbestosis 98 -ayro;o· CrisisanditsTherapy 25 Silicosis,PulmonaryEmphysema 99 InterstitialPulmonaryFibrosis 100 ......,,,,,,,1 CT Testyourselfl 100 s.=ec OJ ' ImagePlane 26 '3 _-=- ~:'O 02 toInterpretation Abdomen CT CranialCT 26 SelectionoftheImagePlane 102 SystemicSequentialApproachtoInterpretation ChecklistforInterpretingAbdomen CT 10, 27 NormalAnatomyoftheAbdomen 104 32 NormalAnatomyofthePelvis(Male) 11, it(Axial) 33 NormalAnatomyofthePelvis(Female) 114 - Bones(Coronal) 41 45 Table of Contents 5 AbdomenCT,PathologicChanges Spine AnatomicVariantsoftheAbdomen 116 Cervical Spine(C-spine) 152 TypicalPartialVolumePhenomena C-Spine, DiskProlapseand Fractures 153 Abdominal Wall ThoracicSpine(T-spine): 15t Enlarged LymphNodes,Abscesses 117 NormalFindingsand Fracture SubcutaneousHeparinInjections 118 LumbarSpine(L-spine): 155 AbdominalWallMetastases Normal Findingsand LumbarDiskProlapse InguinalHernias L-spine,Fractures 156 liver L-spine,Tumors/ Metastases 157 AnatomyoftheHepaticSegments 119 L-spine,Inflammations/InternalFixation 158 ExaminationProtocols 120 SelectionofWindow Display LowerExtremity Bolus PassageofContrastAgents NormalAnatomyoftheThigh 159 CTPortography NormalAnatomyoftheKnee 160 HepaticCysts 121 NormalAnatomyoftheCalf 161 HepaticMetastases 122 NormalAnatomyoftheFoot 162 SolidHepaticLesions: 123 Fractures ofthe Foot 163 Hemangioma PelvisandThigh:InflammatoryProcesses 166 Adenoma Knee,Fractures,ChecklistFractureDiagnosis 167 FocalNodularHyperplasia DiffuseHepaticChanges: 124 CT-guidedInterventions 168 FattyLiver Hemochromatosis ExaminationProtocolsforSpinalCT 169 Cirrhosis BiliarySystem RadiationProtection Pneumobilia 124 Radiation Dose/ CancerRisk 174 Cholestasis AutomatedBolusTracking(BT) 176 Gallbladder TubeCurrentModulation 177 Cholecystolithiasis 124 ChronicInflammatoryProcesses 125 CT-Angiography Spleen IntracranialArteries 178 Enhancement,Splenomegaly 126 Cranial DuralVenousSinus 179 FocalSplenicChanges 127 CarotidArteries 180 Pancreas Aorta 182 AcuteandChronicPancreatitis 128 Heart:CoronaryArteries, 184 PancreasNeoplasms ScreeningforCoronary AdrenalGlands ArteryCalcifications Hyperplasia,Adenomas, Metastases,Neoplasm 130 PulmonaryVasculature(PulmonaryEmboli) 186 Kidneys AbdominalVasculature 187 CongenitalVariants 132 IliofemoralVasculature 188 Cysts,Hydronephrosis 133 VascularProtheses,Outlook 189 SolidTumors 134 TestYourself! 190 VascularRenal Changes 135 UrinaryBladder The FundamentalsofInterpretingCT 192 IndwellingCatheter,Diverticula,SolidLesions 136 GenitalOrgans AnswerstoTestYourself 196 Uterus 137 Ovaries, Prostate Gland,Vas Deferens 138 Index 203 GastrointestinalTract Stomach 139 References BackCoverFlap InflammatoryBowelDiseases 139 Colon 140 KeytoAnatomicStructures BackCoverFlap Ileus 141 on pages152-167(spine/ leg) TestYourself! 141 Retroperitoneum KeytoAnatomicStructures BackCoverFlap Aneurysms 142 on pages71,74-149 (thorax/ abdomen) VenousThromboses 143 Enlarged LymphNodes 144 SkeletalChanges BonyPelvis:Normal Findings,Metastases 145 Fractures 147 HipDysplasia,Necrosisofthe FemoralHead 148 TestYourself! 149 Physical and Technical Fundamentals 6 General PrinciplesofCT Computed tomography isaspecialtype ofx-rayprocedure that design,and isdefined bythe angle originating atthe focusofthe involvestheindirectmeasurementoftheweakening,orattenua x-raytubeandextendingtotheouterlimitsofthedetectorarray. tion,ofx-raysat numerouspositionslocatedaround the patient Typically,images areproduced foreach360°rotation,permitting being investigated.Basicallyspeaking,allweknowis ahighnumberofmeasurementdatatobeacquired andsufficient • whatleavesthex-raytube, dosetobeapplied.Whilethescanisbeing performed,attenuation • whatarrivesatthedetectorand profiles,alsoreferred toas samplesorprojections,areobtained. • the positionofthex-raytubeanddetectorforeachposition. Attenuationprofilesarereallynothingotherthanacollectionofthe Simplystated,everythingelse isdeduced from thisinformation. signalsobtainedfromallthedetectorchannelsatagivenangular Most CTslices areorientedverticaltothebody'saxis.Theyare position of thetube-detectorunit.Modern CTsystems(Fig.6.4) usuallycalled axial or transversesections.For eachsection the acquireapproximately1400 projectionsover360°,oraboutfour x-ray tube rotates around the patient to obtain a preselected projections per degree. Each attenuation profile comprises the section thickness (Fig. 6.1). Most CT systems employ the data obtained from about 1500 detector channels, about 30 continuous rotation and fanbeamdesign: withthis design,the channelsperdegree incaseofa50°fan beam.Whilethepatient x-raytubeanddetectorarerigidlycoupledand rotatecontinuous table ismoving continuouslythrough the gantry,adigital radio lyaroundthescanfield while x-rays areemitted and detected. graph ("scanogramm" or "localizer", Fig. 6.2) is produced on Thus,thex-rays,whichhavepassedthroughthepatient,reachthe whichthedesiredsectionscanbeplanned.ForaCTexamination detectorsontheoppositeside ofthetube.Thefanbeam opening of thespineor thehead, thegantry is angled to the optimal ranges from 40° to 60°, depending on the particular system orientation (Fig.6.3). Angulnlion Gantry • ..o « . ~ ~ Table movement Fig.6.1 Fig.6.2 Fig.6.3 Multiple-RowDetectorSpiralCT Multiple-row detector CT (MOCn isthelatest scanner develop ment. Ratherthan onedetectorrow,multipledetectorrows are placedoppositethex-raytube.Thisshortenstheexaminationtime " I and improvesthetemporalresolution,allowing,forinstance,the determinationoftherateofvascularenhancement. Thedetector rowsalong the z-axisoppositethex-ray tubeare unequal inwidth,withtheouterrowswiderthantheinnerrowsto provide better conditions for image reconstruction affer data acquisition(see pages9-11). Fig.6.4 Physical and Technical Fundamentals 7 ComparisonofConventionalCTwithSpiralCT Inconventional CT,aseries ofequallyspacedimagesisacquired x-raytube sequentiallythrougha specificregion,e.g.theabdomenorthe head (Fig.7.1).Thereisashortpauseaftereachsection inorder Gantry toadvancethepatienttabletothenextpresetposition.Thesection thicknessandoverlap/intersection gapareselectedatIheoutset. Therawdataforeach imagelevelisstoredseparately.The short pausebetween sections allows theconsciouspatienttobreathe withoutcausing majorrespiratoryartifacts. Step-wise table However,theexaminationmaytakeseveralminutes,dependingon movement thebodyregionandthesize ofthepatient.Propertimingofimage acquisition after Lv. contrastmedia is particularlyimportant for assessing perfusion effects. CT is the technique of choice for acquiring complete 20 axial images of the body without the disadvantages of superimposed bone and / or air as seen in conventionalx-rayimages. Fig.7.1 Both single-row detectorCT(SOCT)andmultiple-rowdetectorCT X-ray lube ~ (MOCl) continuously acquire data of the patient while the Imaging . examination table moves through the gantry. The x-ray tube volume "\ / describesanapparenthelicalpatharoundthepatient(Fig.7.2).If Rotation tableadvance iscoordinatedwiththetimerequired for a360' --.~,,- rotation (pitchfactor), dataacquisitioniscompleteanduninter rupted. Thismodern technique hasgreatlyimprovedCTbecause respiratoryartifactsandinconsistenciesdonotaffect the single datasetasmarkedlyasinconventionalCT.Thesingledatasetcan beusedtoreconstructslicesof differing thicknessoratdiffering intervals.Evenoverlappingslicescanbereconstructed. Dataacquisitionfortheabdomen takes only1-2 minutes: two or threehelices,eachabout10to20seconds,areobtained.Thetime limit isdetermined bythedurationapatient canholdhisbreath Continuous table andthenecessarycoolingofthex-raytubes.Imagereconstruction movement takes longer. An assessment ofrenal function following CM will Fig.7.2 requireashortbreaktoallowforCM excretiontooccur. One of the advantages ofthe helicaltechnique is that lesions respiration resultsinthem notbeing includedinthesection(Fig. smallerthantheconventionalthicknessofaslicecanbedetected. 7.3a).Themetastaseswouldappear inoverlappingreconstruc Smalllivermetastases (7)willbemissedif inconsistentdepthof tionsfrom thedatasetofthehelical technique(Fig.7.3b). -- ----------- --- -- 5 Fig.7.3a ConventionalCT Fig.7.3b Spiral CT Physical and Technical Fundamentals 8 SpatialResolution Thereconstructedimagesshouldhaveahightemporalresolution as grey values proportionate totheir attenuation (Fig. 8.1b).In toseparateeven smallstructuresfromeachother.Thisgenerally reality,however,they are notsquares butcubes (voxel= volume createsno problem along thex-ory-axis oftheimagesince the element) with their length along the bodyaxis defined by the selected fieldofview (FOV) typicallyencompasses 512 x512 or sectionthickness(Fig.8.1a). morepicture elements(pixel).These pixelsappearon the monitor ~" .: / '/ r-,\1 I 'I' i 129'" \\ 122 J.. \ 50 l-1 1,3~ 7 7';;::V <, v:r.:::v Fig.8.1a Fig.8.1b Theimagequalityshouldimprovewithsmallervoxels,butthisonly advantage: The multiplanar reconstruction (MPR) in coronal, appliestothespatialresolution sinceathinnersection lowersthe sagittalorotherplanesdisplaysthe reconstructed imagesfree of signal-to-noise ratio.Another disadvantageofthinnersectionsis anystep-likecontour(Fig. 8.2).Usingvoxelsofunequaldimen the inevitableincrease intheradiationdosetothe patient(see sion (anisotropic voxels) for MPR is burdened by a serrated page 175). Nonetheless,smaller voxels withidentical measure appearance of thereconstructed images (Fig. 8.3), which, for ments in all three dimensions (isotropic voxels) offer a crucial instance,can makeitdifficulttoexcludeafracture(Fig.148.5b). Fig.8.2MPRfrom isotropicvoxels Fig.8.3MPRfrom anisotropicvoxels Pitch Pitch= 1 Pitch=2 Bynow,severaldefinitionsexistforthe pitch,which describesthe ~ rate of table increment per rotation in millimeter and section mn thickness. Aslowly moving table perrotationgenerates atight acquisition spiral (Fig. 8.4a).Increasingthetableincrement per rotation without changing section thickness or rotation speed createsinterscan spacesoftheacquisitionspiral (Fig.8.4b). a b Fig.8.4 Themostlyuseddefinition ofthepitch describesthetabletravel (feed)pergantryrotation,expressedinmillimeters,and selected Tabletravel/rotation collimation,alsoexpressedinmillimeters. Pitch = Collimation Physical and Technical Fundamentals 9 Feed!rotation 24mm! rotation 24mm Pitch = e.g.: = -- = 1 Collimation 16x 1.5mm 24mm Sincetheunits(mm)inthenumeratoranddenominatorcancelout, The new scanners give the examiner the option to select e the pitch is a dimensionless number. For a while, a so-called craniocaudalextension(z-axis)oftheregiontobeexaminedon e volumepitch wasstated for multiple-row detector CTscanners, topogramaswellasthe rotationtime, sectioncollimation(thinor whichrelatesthetablefeedtoasinglesectionratherthan tothe thicksections?)and examinationtime (breath-holdingintervals?). entirearrayof sectionsalongthez-axis.Forthe examplegiven The software, e.g., "SureView®," calculates the suitablepitch, above, this means a volume pitch of 24 mm! 1.5 mm = 16. usuallyprovidingvaluesbetween0.5and2.0. However,thereseems tobeatrendtoreturning tothe original definition ofthepitch. SectionCollimation: ResolutionAlong theZ-Axis Theresolution(alongthebody axis orz-axis)ofthe images can (=z-axis),Theexaminercanlimitthefan-likex-raybeamemitted alsobeadapted totheparticularclinicalquestionbythechoiceof from the x-ray tube by a collimator, whereby the collimator's thecollimation.Sectionsbetween5and8mmgenerallyaretotal aperture determineswhetherthefanpassingthroughthecollima lyadequateforstandardexaminationsoftheabdomen. However, torandcollected bythe detectorunitsbehindthepatientiseither theexactlocalizationofsmallfracturefragmentsortheevaluation wide(Fig.9.1)ornarrow(Fig.9.2),withthenarrowbeamallowing ofsubtlepulmonarychangesrequirethinslicesbetween0.5 and abetterspatial resolution along the z-axisof the patient. The 2mm.Whatdeterminesthesectionthickness? collimatorcannotonlybeplaced nexttothex-raytube,butalsoin The term collimation describes how thin orthick the acquired frontofthedetectors,i.e.,"behind"thepatientasseenfromthe slicescan bepreselected alongthelongitudinalaxisofthepatient x-raysource. _ x-raytube _ x-raytube Collimator Q" Collimator ?- "[ >- 1,1\\ "(" J,t,\ I'll" I I --..1,",1,.\1...- I I I I \ \ /I II II \\ \\ I"":I1'.~\\, I J I \ \ ,I:.II:1\\ I , I \ \ , ,II II II \\ \\ , ,II :I ,II •~ \, J I I \ '\ ,'::,,I ,:';I ; I :I I \: \\ ~ I ,, I ,, \\ ::t/ :tl: :L'\ I I \ ~ ::=::t11~... , , , , I Collimator I,, ! ! II \1 I ! -.~.-..1: ! ,1.....-- I , II 1 Ir c' . . ,ijB • • • • z-axis z-axrs Fig,9.1 Widesectioncollimation Fig.9.2Narrowsectioncollimation Dependingonthewidthofcollimator'saperture,theunitswithonly petrous bone with about 0.5 mm sections to detect delicate onedetectorrowbehindthe patient(singlesection) can generate fracture linesthrough the cranialbaseorauditoryossicles inthe sectionswithawidthof10mm,8mm,5mmoreven1mm.ACT tympaniccavity (seepages46- 49). Forthe liver,however, the examinationobtainedwithverythinsectionsisalsocalled ahigh examination is dominated by the contrast resolution since the resolution CT(HRCT) and,ifthesectionsareatthesub-millimeter question here is the detectabilityof hepatic metastases (here level,ultrahighresolution CT(UHRCn.TheUHRCTisused forthe somewhatthickersections). Physical and Technical Fundamentals 10 AdaptiveArrayDesign Afurtherdevelopmentofthesingle-slicespiraltechnologyisthe Thedetectorrows are notinevitablyequal inwidth.Theadaptive introduction of the multislice technique, which has not one array designconsistsofdetectorsthatincreaseinwidthfrom the detectorrowsbutseveraldetectorrows stackedperpendicularto centertotheedge of thedetectorring andconsequentlyallows thez-axis oppositethe x-ray source. This enables thesimul various combinations of thickness and numbers of acquired taneousacquisitionofseveralsections. sections. Adaptive detector design 4-rowunit Variable section thickness 2x0.5mm 4x 1.0mm , ,, , :U0>, , ,///// ,,,, I,,,I,I IIII,IIII, IIIII ,,,,, , 4x2.5mm ceuos // 5 ,I'2,5Ii-"j;"j ;I"'I\"2'5\\ 5 ,,,, z-axis // ,, I I I I ', , / " I I I , 2x8.0mm , Detect/ors II II II II ,, ~~ I I I I 4x5.0mm ! 17mwl I Resolutionalongthez-axis + + + + adaptabletoclinicalQuestion Fig.10.1Detectordesignofa4-rowunit,asfoundintheSiemensSensation4 Adaptive detector design 6-rowunit Variable section thickness Collimator 6x0.5 mm / " " I/l1I1l\1I \\ \ -, 6x1.0 mm e; /.. I I ,,11111\1\\ \ '\ I I I 11/11111\ \\ \ " ---:;~/.~!:;:'~/::'!!:~~~~,.':'~':;:::':JI.'__- - - __:_. U,L i l ' . .~ \ .~ /3' 2,ill 1\1\2\ 3 \ z-ans ....~ / J J I "" " ,'I \ \ \ ... 6x2.0mm / " / I 1/1JI1'1\ \ \ \ " .. 11 111111111\\\ \ , Detect/ors II "I 111/J'I I1I11I1\ I\ \\ \\ II,, ,,, \ I I '" I I I I I \ \ \ 6x3.0mm Resolutionalongthez-axls adaptabletoclinicalQuestion Fig.10.2Detectordesignofa6-rowunit,asfoundintheSiemensEmotion6 Physical and Technical Fundamentals 11 Forinstance,a16-sliceexaminationcanbe performedwith16thinsectionsofahigherresolution (fortheSiemensSensation16,this means16x0.75mm)orwith16sectionsoftwicethethickness.ForaniliofemoralCTA(seepage 188),itispreferabletoacquireaiong volumealongthez-axisinasinglerun,ofcoursewithaselected widecollimationof16x1.5mm. Adaptive detector design16-row unit Variablesection thickness Collimator x-raytube _____ /11I '\~ _ ~II. ,,, ,f:/, \\~~~" III/ I \\\ \\,\ ~-----A(-If;i ~A----- /~III '/J/f/rlll'\\\\\~ \\\~\ II ' ,'",1/111111\\\\' \\ \\ > 1111111111l1l1l1\\\~\\\\ o~f-------,1I'•11/•"'/,"."""11"11,1"\\\\\•'.\•"•:.'f:----... H(1;\. I// 1,5 I IIfII•I'.'IIQ75\•\"\\\\\\ 15''\\\\ z-axis V~ / / 1. /' I I II III ' \\,\ \\ ' \ \ \ /1 1I IIIIJIII I \\ \\\\ \ \ \\ I I I 1 / 1111,'1111\\\ \\ \ \ \ \ \ 16x1.5mm I I.' / // / II I I Jl l 1 \\ \\\\ \ \ \ \ Detectors ' 1 1 111 11 111'\\ \ \ \ \ \ \" \ . I ( 11/ 11111 11 11 \\\\\ \ \ \ \ Resolutionalongthez-axis adaptabletoclinicalquestion Fig.l1.1 Detectordesignofa16-rowunit,asfoundintheSiemensSensation16 ThedevelopmentoftheCThardwaredidnotendwith 16slicesandfasterdataacquisitioncanalreadybeachievedwith32-and64-row scanners.Thetrend tothinnerslicesisassociatedwithhigherpatientexposure toradiation,requiring additional andalreadyintroduced measuresforexposurereduction(seepages 174-177). Whenboth liverandpancreasare included,many usersprefera reducedslicethickness from10mmto3mm toimproveimage sharpness.This increases,however,the noiselevelbyapproxi mateiy80%.Thereforeitwouldbenecessarytoemploy80%more rnAortolengthenthescantime(this increasesthe mAs product) tomaintain imagequality. measured data ReconstructionAlgorithm Spiral users havean additional advantage: Inthe spiral image reconstructionprocess,mostofthedatapointswere notactually tableposition measuredintheparticularslice being reconstructed(Fig. 11.2). slice Instead,dataareacquiredoutside thisslice (e)andinterpolated Fig.11.2 Wide(360°)spiral reconstructionalgorithm withmoreimportance,or"contibutinn",beingattachedtothedata located closest tothe slice (X). In other words:The data point closesttotheslice receivesmore weight,orcounts more,inthe selecting highrnA values,increasethespatial resolution(image reconstructionofanimageatthedesiredtableposition. sharpness)byreducingslicethickness,andemploypitchtoadjust the lengthof thespiral range as desired,allwhilereducingthe This results in an interesting phenomenon. The patient dose patient'sdose!Moreslicescanbeacquiredwithoutincreasingthe (actually given in mGy) is determined by the mAs per rotation doseorstressingthex-raytube. dividedbythepitch,and the imagedose isequal tothemAs per Thistechnique isespecially helpfulwhendataare reformattedto rotationwithoutconsideringthepitch.Ifforinstance150mAs per createother2D views,likesagittal,oblique,coronal,or3Dviews rotationwithapitchof1.5areemployed,thepatientdose inmGy (MIP,surfaceshaded imaging,seepp.8and 13). islinearrelatedto100mAs,andtheimagedoseisrelatedto150 mAs.Thereforespiraluserscanimprovecontrastdetectabilityby Physical and Technical Fundamentals 12 Thedataobtainedatthedetectorchannelarepassedon,profilefor TheInfluenceofkV profile,tothedetectorelectronicsaselectricsignalscorresponding Whenexamininganatomicregionswithhigherabsorption(e.g.,CT totheactualx-rayattenuation.Theseelectricsignalsaredigitized ofthehead,shoulders,thoracicorlumbarspine,pelvis,and larger andthentransmitted tothe image processor. At thisstage,the patients),itisoftenadvisabletousehigherkVlevelsinadditionto, images are reconstructed bymeans ofthe"pipelineprinciple", orinsteadof, highermA values: when youchoose higherkV,you consisting of preprocessing, convolution, and back projection arehardeningthex-raybeam.Thusx-rayscanpenetrateanatomic (Fig.12.1). regions with higher absorption more easily. As a positive side effect,thelowerenergycomponentsoftheradiationarereduced, Preprocessingincludes allthe correctionstaken topreparethe whiChisdesirablesince lowenergy x-rays are absorbedby the measuredscandatafor reconstruction,e.q.,correction fordark patientanddonotcontribute tothe image.Forimagingofinfants current, dose output, calibration, channel correction, beam orbolustracking,itmay beadvisabletoutilize kV lowerthanthe hardening,andspacingerrors.Thesecorrectionsarepertormedto standard setting. furtherminimizetheslightvariationsinherentlyfoundinthetube anddetectorcomponentsoftheimagingchain. TubeCurrent[mAs] Thetubecurrent,stated inmilliampere-seconds [mAs],alsohasa Convolutionisbasicallytheuseofnegativevaluestocorrectfor significanteffectonthe radiationdose deliveredtothe patient.A smearinginherenttosimpleback projecfion.II, forinstance, a patient with morebody Widthrequires anincrease inthe tube cylindric water phantom is scanned and reconstructed without currenttoachieveanadequateimagequality.Thus,morecorpulent convolution,theedges ofthisphantomwillbe extremelyblurry patientsreceivealargerradiationdosethan,forinstance,chiidren (Fig.12.2a):Whathappenswhenjusteightattenuationprofilesof withamarkedlysmallerbodywidth. asmall,highlyabsorbentcylindricalobjectare superimposed to Bodyregionswithskeletalstructuresthatabsorborscatterradia createanimage?Sincethesamepartofthecylinderismeasured tion,suchas shoulder andpelvts,require ahigher tubecurrent bytwooverlapping projections,astar-shaped imageisproduced than,forinstance,theneck,aslenderabdominaltorsoorthelegs. instead of what isin reality acylinder. By introducing negative Thisrelationshiphas beenactivelyapplied toradiationprotection valuesjustbeyondthepositive portionoftheattenuationprofiles, forsome timenow(comparewithpage 177).. theedgesofthiscylindercanbesharplydepicted (Fig,12.2b). ScanTime Back projectioninvolvesthe reassigningofthe convolved scan It isadvantageous toselect a scan time asshort aspossible, datatoa20imagematrixrepresentingthe section ofthepatient particularlyinabdominal orcheststudieswhere heartmovement thatisscanned.Thisispertormed profileforprofileforthe entire andperistalsismaydegradeimagequality.OtherCTinvestigations imagereconstructionprocess.Theimagematrixcanbethoughtof canalsobenefitfromlastscantimesduetodecreasedprobability asanalogoustoachessboard,consistingoftypically512x512or ofinvoluntarypatientmotion.Ontheotherhand,itmaybe neces 1024 x 1024 picture elements, usually called "pixels". Back sary toselectalongerscan time toprovide sufficient doseorto projectionresuitsinanexactdensity beingassigned toeach of enable moresamplesformaximalspatialresolution.Some users thesepixels,whicharethendisplayedasalighterordarkershade mayalso consciously choose longerscantimes tolowerthe mA ofgrayThelightertheshadeofgray,the higherthedensityofthe settingandthusincreasethe likelihoodoflongerx-raytube life. tissuewithinthepixel(e.g.,bone). Simple Back Projection vs. Convolution ~, ---------------------------,, -+0 -0 -0+0 , , Dataacquisitionsystem Preprocessing Convolution Backprojection : Imagedisplay ----------------------------- b Fig.12,1 Thepipelineprincipleofimagereconstruction Fig.12.2a Backprojection Fig.12.2b Backprojection withoutconvolution withconvolution

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.