ebook img

Crowds in Equations: An Introduction to the Microscopic Modeling of Crowds PDF

201 Pages·2019·15.044 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Crowds in Equations: An Introduction to the Microscopic Modeling of Crowds

Crowds in Equations An Introduction to the Microscopic Modeling of Crowds Q0163hc_9781786345516_tp.indd 1 14/5/18 9:14 AM Advanced Textbooks in Mathematics Print ISSN: 2059-769X Online ISSN: 2059-7703 The Advanced Textbooks in Mathematics explores important topics for post- graduate students in pure and applied mathematics. Subjects covered within this textbook series cover key fields which appear on MSc, MRes, PhD and other multidisciplinary postgraduate courses which involve mathematics. Written by senior academics and lecturers recognised for their teaching skills, these textbooks offer a precise, introductory approach to advanced mathematical theories and concepts, including probability theory, statistics and computational methods. Published Crowds in Equations: An Introduction to the Microscopic Modeling of Crowds by Bertrand Maury and Sylvain Faure The Wigner Transform by Maurice de Gosson Periods and Special Functions in Transcendence by Paula B Tretkoff Mathematics of Planet Earth: A Primer by Jochen Bröcker, Ben Calderhead, Davoud Cheraghi, Colin Cotter, Darryl Holm, Tobias Kuna, Beatrice Pelloni, Ted Shepherd and Hilary Weller edited by Dan Crisan Forthcoming Conformal Maps and Geometry by Dmitry Beliaev Vishnu Mohan - Q0163 - Crowds in Equations.indd 1 05-07-18 3:50:24 PM Advanced Textbooks in Mathematics Crowds in Equations An Introduction to the Microscopic Modeling of Crowds Jochen Bröcker • Ben Calderhead • Davoud Cheraghi Bertrand Maury Colin Cotter • Darryl Holm • Tobias Kuna Université Paris-Sud, France Beatrice Pelloni • Ted Shepherd • Hilary Weller Sylvain Faure Université Paris-Sud & CNRS, France World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO Q0163hc_9781786345516_tp.indd 2 14/5/18 9:14 AM Published by World Scientific Publishing Europe Ltd. 57 Shelton Street, Covent Garden, London WC2H 9HE Head office: 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 Library of Congress Cataloging-in-Publication Data Names: Maury, Bertrand, author. | Faure, Sylvain, 1976– author. Title: Crowds in equations : an introduction to the microscopic modeling of crowds / by Bertrand Maury (Université Paris-Sud, France), Sylvain Faure (Université Paris-Sud & CNRS, France). Description: New Jersey : World Scientific, 2018. | Series: Advanced textbooks in mathematics | Includes bibliographical references and index. Identifiers: LCCN 2018013165 | ISBN 9781786345516 (hc : alk. paper) Subjects: LCSH: Mathematical analysis. | Mathematical models. | Communication in mathematics. Classification: LCC QA401 .M448 2018 | DDC 511/.8--dc23 LC record available at https://lccn.loc.gov/2018013165 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2019 by World Scientific Publishing Europe Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. For any available supplementary material, please visit http://www.worldscientific.com/worldscibooks/10.1142/Q0163#t=suppl Desk Editors: V. Vishnu Mohan/Jennifer Brough/Koe Shi Ying Typeset by Stallion Press Email: [email protected] Printed in Singapore Vishnu Mohan - Q0163 - Crowds in Equations.indd 2 29-06-18 11:03:28 AM June29,2018 10:20 CrowdsinEquations 9inx6in b3216-fm pagev Foreword Building bridges, remarking similarities, crossing methods are essential driving forces of the scientific activity. Since ancient times, physics and mathematics have been interwoven.Today, althoughthe amountof knowl- edgemakesitessentiallyimpossibletohaveaglobalviewontheseso-called hard sciences, interactions remain fruitful. On the other hand, social sci- ences are — at first sight — unconcerned with this thinking system: they areinterestedinamultitude ofbehaviourswhichseemtoescapethe deter- ministic laws of physics and any mathematical formulation. A small revolution of the last decade has been to remove this barrier to allow a new research field to emerge. If one observes typical behaviours (at the scale of many individuals) and that one can identify parameters influencingthesebehaviours,thenthereisnoreasonthatthemathematical languagecannotdescribethem!Ofcourse,theconnectionisnotsoeasyand this new field is still in its infancy, not always considered seriously by its elders. In this book, intended to graduate students and researchers in mathematics, Sylvain Faure and Bertrand Maury invite us to discover the challengesandthe firstsuccessesofmathematics appliedto socialsciences. As a preamble, they clearly explain the difficulties of the exercise, due, in particular,tothefreedomofindividualsandtothedecisionprocesseswhich are neither symmetric, nor interchangeable. The book continues with the rigorous analysis of some models, essen- tiallyatthemicroscopicscale,whichserveasmathematicalprototypesand exhibit interesting phenomenologies. v June29,2018 10:20 CrowdsinEquations 9inx6in b3216-fm pagevi vi Foreword Starting from this picture, the authors propose eventually to extract the minimal elements which should be contained in a mathematical model in order to reproduce some typical and sometimes paradoxical properties of crowdmotions: “Faster-is-Slower”effect, “Stop-and-Go” waves,and flu- idizing effects of an obstacle. This is fascinating! A quick and easy read, which makes me want to learn more. Laure Saint-Raymond E´cole Normale Sup´erieure de Lyon & Acad´emie des Sciences, France June29,2018 10:20 CrowdsinEquations 9inx6in b3216-fm pagevii Contents Foreword v 1. Introduction 1 1.1 From Passive to Active Entities . . . . . . . . . . . . . . . 1 1.2 Basics on Crowd Motion Modeling . . . . . . . . . . . . . 3 1.3 The Mathematical Standpoint . . . . . . . . . . . . . . . . 5 1.4 How to Use this Book? . . . . . . . . . . . . . . . . . . . . 12 2. One-Dimensional Microscopic Models 13 2.1 Follow-the-Leader Model . . . . . . . . . . . . . . . . . . . 14 2.2 Accounting for Inertia/Delays . . . . . . . . . . . . . . . . 30 3. Social Force Model, Native and Overdamped Forms 37 3.1 Inertial Social Force Model . . . . . . . . . . . . . . . . . 37 3.2 Overdamped Social Force Model . . . . . . . . . . . . . . 49 3.3 Alternative Approaches . . . . . . . . . . . . . . . . . . . 56 4. Granular Models 59 4.1 One-Dimensional Model . . . . . . . . . . . . . . . . . . . 59 4.2 Two-Dimensional Model . . . . . . . . . . . . . . . . . . . 61 4.3 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . 66 4.5 Mathematical Issues . . . . . . . . . . . . . . . . . . . . . 68 4.6 Critical Discussion . . . . . . . . . . . . . . . . . . . . . . 76 vii June29,2018 10:20 CrowdsinEquations 9inx6in b3216-fm pageviii viii Contents 5. Cellular Automata 83 5.1 Cellular Automata: General Principles . . . . . . . . . . . 84 5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Variations, Extensions . . . . . . . . . . . . . . . . . . . . 92 5.4 Cellular Automata, Mathematical Issues . . . . . . . . . . 93 6. Compartment Models 97 6.1 Compartment Models: Toy Versions and General Setting . . . . . . . . . . . . . . . . . . . . . 97 6.2 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . 101 6.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4 Numerical Illustration . . . . . . . . . . . . . . . . . . . . 104 6.5 Mathematical Framework: A Cascade of Gradient Flows . . . . . . . . . . . . . . . . . . . . . . . 104 7. Toward Macroscopic Models 111 7.1 One-Dimensional Macroscopic Traffic Model . . . . . . . . 112 7.2 Two-Dimensional Models . . . . . . . . . . . . . . . . . . 115 7.3 Granular Models: Hard Congestion . . . . . . . . . . . . . 117 7.4 Micro–Macro Issues . . . . . . . . . . . . . . . . . . . . . . 123 7.5 Alternative Macroscopic Models . . . . . . . . . . . . . . . 125 8. Computing Distances and Desired Velocities 127 8.1 Shortest Path Problem on a Graph . . . . . . . . . . . . . 130 8.2 Shortest Path on a Domain: The Eikonal Equation . . . . 132 8.3 Non-homogenous Domains, Various Extensions . . . . . . 135 8.4 Shortest Paths in a Dynamic Environment . . . . . . . . . 139 8.5 Alternative Way to Compute Desired Velocities . . . . . . 142 8.6 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9. Data, Observable Phenomena 145 9.1 Diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.2 Proxemics, Interpersonal Distances, Density . . . . . . . . 146 9.3 Cone of Vision . . . . . . . . . . . . . . . . . . . . . . . . 148 9.4 Pedestrian Speed, Fundamental Diagram . . . . . . . . . . 148 9.5 Door Capacity . . . . . . . . . . . . . . . . . . . . . . . . 151 9.6 Capacity Drop Phenomenon . . . . . . . . . . . . . . . . . 151 9.7 Faster-is-SlowerEffect . . . . . . . . . . . . . . . . . . . . 152 June29,2018 10:20 CrowdsinEquations 9inx6in b3216-fm pageix Contents ix 9.8 Influence of an Obstacle . . . . . . . . . . . . . . . . . . . 154 9.9 Stop-and-Go Waves . . . . . . . . . . . . . . . . . . . . . . 157 9.10 Further Considerations on Human Behavior . . . . . . . . 158 10. A Wider Look on Characteristic Phenomena in Crowds 161 10.1 Faster-is-SlowerEffect . . . . . . . . . . . . . . . . . . . . 161 10.2 Fluidizing Effect of an Obstacle . . . . . . . . . . . . . . . 168 10.3 Damping, Propagation,and Stop-and-Go Waves. . . . . . 170 Appendix 177 A.1 Ordinary Differential Equations . . . . . . . . . . . . . . . 177 A.2 Constrained Optimization . . . . . . . . . . . . . . . . . . 180 Bibliography 183 Index 189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.