ebook img

Crossed Products and MF algebras PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Crossed Products and MF algebras

Crossed products and MF algebras Weihua Li, Stefanos Orfanos January 22, 2013 3 1 0 Abstract 2 We prove that the crossed product A ⋊ G of a unital finitely generated MF algebra A by a n α a discrete finitely generated amenable residually finite group G is an MF algebra, provided that the J action α is almost periodic. This generalizes a result of Hadwin and Shen. We also construct two 9 examplesofcrossedproductC∗-algebraswhoseBDF Ext semigroupsarenotgroups. 1 ] A Keywords: MF algebras; crossed products; BDF Ext semigroups; amenable groups; residually finite O groups. . h 2000Mathematics SubjectClassification: 46L05 t a m [ Introduction 1 v The purposeofthis noteis togeneralizetworecentresultsconcerningcrossedproducts. The firstis: 5 8 Theorem 1 (Hadwin–Shen [4]). Suppose that A is a finitely generated unital MF algebra and α is a 5 homomorphismfromZintoAut(A)suchthatthereisa sequenceofintegers0≤n <n <··· satisfying 4 1 2 . 1 lim kα(n )a−ak=0 j 0 j→∞ 3 1 forany a∈A. ThenA ⋊ ZisanMFalgebra. α : v andthe secondis: i X Theorem2(Orfanos[5]). LetA beaseparableunitalquasidiagonalalgebraandG adiscretecountable r a amenableresiduallyfinitegroupwithasequenceofFølnersetsF andtilingsoftheformG =K L . Assume n n n α:G→Aut(A)isa homomorphismsuchthat max kα(l)a−ak→0as n→∞ l∈L ∩K K−1F n n n n forany a∈A. ThenA ⋊ G isalsoquasidiagonal. α whichwere bothmotivatedby Theorem 3 (Pimsner–Voiculescu [6]). Suppose that A is a separable unital quasidiagonal algebra and α is a homomorphism from Z into Aut(A) such that there is a sequence of integers 0 ≤ n < n < ··· 1 2 satisfying lim kα(n )a−ak=0 j j→∞ forany a∈A. ThenA ⋊ Zisalsoquasidiagonal. α 1 CrossedproductsandMFalgebras(W.Li,S.Orfanos) 2 MFalgebrasareimportantintheirownrightbutalsoduetotheirconnectiontoVoiculescu’stopological free entropy dimension for a family of self-adjoint elements x ,...,x in a unital C∗-algebra A ([8]). 1 n The definition of topological free entropy dimension requires that Voiculescu’s norm microstate space of x ,...,x is “eventually" nonempty, which is equivalent to saying that the C∗-subalgebra generated 1 n by x ,...,x inA isanMFalgebra. SoitiscrucialtodetermineifaC∗-algebraisMF,inwhichcaseits 1 n Voiculescu’stopologicalfreeentropydimensionis well-defined. Inthenextsectionwedescribeanotherconnection,thatbetweenMFalgebrasandtheBrown–Douglas– FillmoreExt semigroup(introducedin[2]). Wewillthenexhibittwonewexamplesofcrossedproduct C∗-algebras whose Ext semigroupfailstobeagroup. Background Westartwith afewwell-knowndefinitionsandfacts. Definition 1. A discrete countable group G is amenable if there is a sequence of finite sets {F }∞ n n=1 (called a Følner sequence) such that lim F = G and lim |F △F s|/|F | = 0 for any s ∈ G. The group n n n n n→∞ n→∞ G is residually finite if for every e 6= x ∈ G, there is a finite index normal subgroup L of G such that L 6= xL. Stated differently, finite index normal subgroups of G separate points in G. A tiling of G is a decomposition G = KL, with K a finite set, so that every x ∈ G is uniquely written as a product of an elementin K andanelementin L. Lemma 1. Assume G is a discrete countable group. Then G is amenable and residually finite if and only if G has a Følner sequence {F }∞ for which there exists a separating sequence of finite index normal n n=1 subgroups L and a sequence of finite subsets K ⊃ F such that G has a tiling of the form G = K L for n n n n n all n≥1. Theorem4. Adiscretegroup G isamenableifandonlyif C∗(G)∼=C∗(G). LetA bea C∗-algebra. If G is r amenableandifthereisahomomorphismα:G →Aut(A),thenA ⋊ G ∼=A ⋊ G. α,r α Quasidiagonal operators were firstconsideredbyHalmos. Definition 2. A separable family of operators {T ,T ,...} ⊂ B(H) is quasidiagonal if there exists a 1 2 sequence of finite rank projections {P }∞ such that P → I in SOT and kP T − T P k → 0 for all n n=1 n n j j n j ≥ 1 as n → ∞. A separable C*-algebra is quasidiagonal if it has a faithful ∗-representation to a quasidiagonal setofoperators. Theorem 5 (Rosenberg [7]). Let G be a discrete group. If C∗(G) is a quasidiagonal algebra, then G is r amenable. MFalgebraswere introducedbyBlackadarandKirchberg in [1]. Definition 3. Aseparable C∗-algebraA isanMFalgebraifthere is anembeddingfromA to ∞ ∞ M (C)/ M (C) N N t t t=1 t=1 Y X for positive integers {N }∞ . If A= A ∞ is an elementofthe above C*-algebra,define its norm by t t=1 t t=1 kAk=limsupkAtkM (C). t→∞ Nt (cid:8) (cid:9) CrossedproductsandMFalgebras(W.Li,S.Orfanos) 3 Theorem 6 (Blackadar–Kirchberg [1]). A separable C∗-algebra A is MF if and only if every finitely generatedC∗-subalgebraofA isMF.SubalgebrasofMFalgebrasarealsoMF.Everyquasidiagonalalgebra A isMFandtheconverseistrueif,inaddition,A isnuclear. An exciting result connecting quasidiagonal and MF algebras on one hand, and Brown–Douglas– Fillmoretheoryofextensionsontheother, is thefollowing. Theorem7. LetA beaunitalseparableMFalgebra. IfA isnotquasidiagonal,then Ext(A)failstobe agroup. Example1(Haagerup–Thorbsørnsen[3]). ThereducedgroupC∗-algebraofthefreegrouponngener- ators,namelyC∗(F ),isanMFalgebrabutitisnotquasidiagonalornuclear(sinceF isnotamenable). r n n Therefore, Ext(C∗(F ))is notagroup. r n Moreexamplesofthis flavorwereexhibited in[4]. Preliminary Facts Here we state a few facts that will be used extensively in the rest of this note. In what follows, C(X ,...,X )willdenotethesetofallnon-commutativecomplexpolynomialsinX ,...,X ,X∗,...,X∗. 1 m 1 m 1 m The first result gives equivalent definitions for an MF algebra. Refer to [4] and the references therein foraproof. Proposition 1. Suppose A is a unital C∗-algebra generated by a family of elements a ,...,a in A. 1 m Thenthefollowingareequivalent: (i) A isanMFalgebra. (ii) Foranyε>0andanyfinitesubset{f ,...,f }ofC(X ,...,X ),thereisapositiveinteger N anda 1 J 1 m family ofmatrices{A ,...,A }inM (C),suchthat 1 m N max kf (A ,...,A )k −kf (a ,...,a )k <ε. j 1 m M (C) j 1 m A 1≤j≤J N (cid:12) (cid:12) (cid:12) (cid:12) (iii) Suppose π : A → B(H) is a faithful ∗-representation of A on an infinite dimensional separable complex HilbertspaceH. Then thereisafamily{[a ] ,...,[a ] }∞ ⊂B(H)such that 1 n m n n=1 (a) For each n≥1,{[a ] ,...,[a ] }⊂B(H)isquasidiagonal; 1 n m n (b) f [a ] ,...,[a ] → f a ,...,a as n→∞,forany f ∈C(X ,...,X ); 1 n m n B(H) 1 m A 1 m (c) (cid:13)[ai(cid:0)]n→π(ai)in∗-S(cid:1)O(cid:13)Tas n→(cid:13)∞(cid:0),forevery1(cid:1)≤(cid:13) i≤m. (cid:13) (cid:13) (cid:13) (cid:13) Let G beadiscretecountableamenableresiduallyfinitegroup,equippedwithFølnersets F ,finitesets n K and finite index normal subgroups L such that F ⊂ K and G = K L is a tiling of G for every n n n n n n n≥1. Considerthefamily{ξ : y ∈K }⊂ℓ2(G),with ξ = φ (x)δ and yL n yL n x n n x∈yL Xn |K ∩F x| n n φ (x)= . n È |Fn| The followingtwolemmascanbefoundin [5]. Thesecondis aconsequenceofthefirst. CrossedproductsandMFalgebras(W.Li,S.Orfanos) 4 Lemma2. Assume G andξ areasabove. Thefollowingaretrue: yL n (i) For every n≥1,{ξ : y ∈K }isanorthonormalfamilyofvectors. yL n n (ii) For anys∈G, |F △F s| 2 n n λ(s)ξ =ξ + φ (x)−φ (sx) δ ,with φ (x)−φ (sx) ≤ . yLn syLn n n sx n n |F | x∈yL x∈yL n Xn(cid:0) (cid:1) Xn(cid:12) (cid:12) (cid:12) (cid:12) Lemma3. Assume G andξ areasabove. If P ξ=〈ξ,ξ 〉ξ and P = P ,then yL yL yL yL n yL n n n n n y∈K Xn (i) For every n≥1, P isa self-adjointprojectioninB(ℓ2(G))andrank P =|K |. n n n |F △F s| (ii) P → I inSOTas n→∞;andforanys∈G,kP λ(s)−λ(s)P k2≤4 n n →0as n→∞. n n n |F | n Main Result Let A = 〈a ,...,a 〉 be a unital finitely generated MF C∗-algebra. We first establish three claims 1 m relatedtoourmainresult. For y ∈ K , s ∈ S ={s ,s ,...,s }∪{e}⊂ G and 1≤ i ≤ m, consider the elements α(y−1s−1)a ∈ A, n 1 2 k i the quasidiagonal set α(y−1s−1)a :1≤i≤m,s∈S,y ∈K ⊂B(H) obtained from part (a) of i n n Proposition 1(iii), andn”a sequence of—finite rank projections Qnoin B(H) such that Qn → I in SOT as n → ∞ and Q asymptotically commutes with all elements in the above-mentioned set. For every n 1≤i≤m,positive integer nands∈S,define A(s)= Q α(y−1s−1)a Q ⊗P ,A =A(e) ,and U =Q ⊗P λ(s)P . i n i n n yLn i i s n n n y∈K Xn ” — Claim1. Foranyε>0andanyfinitesubset{q ,...,q }ofC(X ,...,X ),thereisapositiveinteger 1 J 1 (k+1)m nsuchthat,for N =rank(Q ⊗P ), n n max q A ,...,A(sk),...,A ,...,A(sk) − q a ,...,α(s−1)a ,...,a ,...,α(s−1)a <ε. 1≤j≤J j 1 1 m m M (C) j 1 k 1 m k m A (cid:12) N (cid:12) (cid:12)(cid:13) (cid:16) (cid:17)(cid:13) (cid:13) € Š(cid:13) (cid:12) (cid:13) (cid:13) (cid:13) (cid:13) Proof.(cid:12)(cid:13)Forevery1≤ j≤J, (cid:13) (cid:13) (cid:13) (cid:12) (cid:12) (cid:12) q A ,...,A(sk) =max q Q α(y−1)a Q ,...,Q α(y−1s−1)a Q (cid:13) j€ 1 m Š(cid:13)MN(C) y∈Kn¨(cid:13) j(cid:16) n” 1—n n n” k m—n n(cid:17)(cid:13)MN/|Kn|(C)« (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) by Lemma 2(i). Now use the quasidiagonality of α(y−1s−1)a :1≤i≤m,s∈S,y ∈K , with n i n n sufficientlylarge,toobtain,forevery1≤ j≤J, n” — o q Q α(y−1)a Q ,...,Q α(y−1s−1)a Q j n 1 n n n k m n n M (C) (cid:12)(cid:12)(cid:13) (cid:16) ” — ” — (cid:17)(cid:13) N/|Kn| (cid:13) (cid:13) (cid:12) (cid:13) (cid:13) ε (cid:12) − q α(y−1)a ,..., α(y−1s−1)a < , j 1 n k m n B(H) 2 (cid:12) (cid:13) (cid:16)” — ” — (cid:17)(cid:13) (cid:12) (cid:13) (cid:13) (cid:12) (cid:13) (cid:13) (cid:12) CrossedproductsandMFalgebras(W.Li,S.Orfanos) 5 andpart (b)ofProposition 1(iii) toget ε q α(y−1)a ,..., α(y−1s−1)a − q α(y−1)a ,...,α(y−1s−1)a < . j 1 n k m n B(H) j 1 k m A 2 (cid:12) (cid:12) (cid:12)(cid:13) (cid:16)” — ” — (cid:17)(cid:13) (cid:13) € Š(cid:13) (cid:12) (cid:13) (cid:13) (cid:13) (cid:13) The(cid:12)(cid:12)(cid:13)lastnormisequalto qj a1,...,α(s−k1)am(cid:13) sinc(cid:13)e α(y−1)is a∗-automorphism. (cid:13) (cid:12)(cid:12) A (cid:13) (cid:13) Claim 2. For any s ,...,s(cid:13)∈€G, any ε>0, andŠa(cid:13)nyfinite subset {p ,...,p }of C(X ,...,X ), thereis a 1 (cid:13)k (cid:13) 1 J 1 k positiveinteger nsuchthatfor N =rank(Q ⊗P ), n n max p U ,...,U − p λ(s ),...,λ(s ) <ε. 1≤j≤J j s1 sk M (C) j 1 k B(ℓ2(G)) (cid:12) N (cid:12) (cid:13) (cid:13) Proof. Itfollowsfrom(cid:12)(cid:12)L(cid:13)emm€a3(ii)andŠt(cid:13)hedefiniti(cid:13)(cid:13)on o(cid:0)ftheprojection(cid:1)s(cid:13)(cid:13)Q . (cid:12)(cid:12) (cid:13) (cid:13) n (cid:12) (cid:12) Let ε > 0 and s ∈ F ⊂ G. Choose appropriately large positive integer n so that |F △F s| < ε2|F |/4. n n n n Assumethatforevery1≤i≤m,the actionis almostperiodic, inthe sensethat max kα(l)a −a k→0as n→∞. i i l∈L ∩F K K−1 n n n n Claim 3. ForA(s),A , U asaboveandsufficiently largepositiveinteger n, U∗A U −A(s) <ε. i i s s i s i M (C) N (cid:13) (cid:13) Proof. Withoutlossofgenerality,startwith aunitvectorη∈Q H andc(cid:13)ompute,for y(cid:13)∈K , n (cid:13) (cid:13) n 2 2 U∗A U −A(s) η⊗ξ = U∗A η⊗P ξ + (φ (x)−φ (sx))δ −A(s)η⊗ξ (cid:13)(cid:16) s i s i (cid:17) yLn(cid:13) (cid:13)(cid:13)(cid:13) s i n syLn xX∈yLn n n sx i yLn(cid:13)(cid:13)(cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13)(cid:13)  2 ε2  (cid:13)(cid:13) ≤ U∗A η⊗(cid:13)ξ −A(s)η⊗ξ + ,byLemma2(ii). (cid:13) s i syLn i yLn 4 (cid:13) (cid:13) Let sy =zl′ = lz with z(cid:13)∈ K and l,l′ ∈ L . Then l =(cid:13)syz−1 ∈ L ∩F K K−1 and ξ = ξ , which (cid:13) n n (cid:13) n n n n syLn zLn gives 2 2 U∗A η⊗ξ −A(s)η⊗ξ = U∗Q α(z−1)a η⊗ξ −Q α(y−1s−1)a η⊗ξ s i zLn i yLn s n i n zLn n i n yLn (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) ” — ” — (cid:13)2 (cid:13) (cid:13) (cid:13) (cid:13) = Q α(z−1)a η⊗P ξ + (φ (sx)−φ (x))δ −Q α(y−1s−1)a η⊗ξ (cid:13) n i n n yLn n n x n i n yLn(cid:13) (cid:13) x∈yL (cid:13) (cid:13) ” — Xn ” — (cid:13) (cid:13)(cid:13)  2 ε2  2 (cid:13)(cid:13)ε2 ≤ Q(cid:13) α(z−1)a − α(y−1s−1)a η⊗ξ + ≤ α(z−1)a − α(y−1s−1)a +(cid:13) . n i n i n yLn 4 i n i n 4 By(cid:13)(cid:13)part(cid:16)(”b) ofProp—ositio”n 1(iii), — (cid:17) (cid:13)(cid:13) (cid:13)(cid:13)” — ” — (cid:13)(cid:13) (cid:13) (cid:13) (cid:13) (cid:13) 2 ε2 α(z−1)a − α(y−1s−1)a < α(z−1)a −α(y−1s−1)a 2 + . i n i n B(H) i i A 4 (cid:13) (cid:13) ” — ” — (cid:13) (cid:13) Finally, α(z−(cid:13)(cid:13)1)a −α(y−1s−1)a 2 = a −α(cid:13)(cid:13)(l)a 2 <(cid:13) ε2 bythealmostperiod(cid:13)icity ofthe action. i i A i i A 4 Overall,forsufficientlylarge n, (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) 2 U∗A U −A(s) η⊗ξ <ε2. s i s i yLn (cid:13)(cid:16) (cid:17) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) CrossedproductsandMFalgebras(W.Li,S.Orfanos) 6 Weare nowreadytostatethe mainresult. Theorem8. LetA =〈a ,...,a 〉beaunitalfinitelygeneratedMFalgebraandG =〈s ,...,s 〉adiscrete 1 m 1 k finitelygeneratedamenableresiduallyfinitegroupwithasequenceofFølnersets F andtilingsoftheform n G =K L . Assumeα:G →Aut(A)isahomomorphismsuchthatforevery1≤i≤m, n n max kα(l)a −a k→0as n→∞. i i l∈L ∩F K K−1 n n n n ThenA ⋊ G isalsoMF. α Proof. Following the proof in [4], we will show that A ⋊ G is an MF algebra by using Proposition 1. α More specifically,we will showthat foranyε>0andanyfinite subset{f ,...,f }ofC(X ,...,X ), 1 J 1 m+k there isapositive integer N andafamilyofmatrices {A ,...,A ,U ,...,U }inM (C),suchthat 1 m s s N 1 k max f a ,...,a ,λ(s ),...,λ(s ) − f A ,...,A ,U ,...,U <ε. 1≤j≤J j 1 m 1 k A⋊αG j 1 m s1 sk M (C) (cid:12) N (cid:12) (cid:13) (cid:13) (cid:12)(cid:13) (cid:0) (cid:1)(cid:13) (cid:13) € Š(cid:13) (cid:12) Let {f ,...,f(cid:12)(cid:13)} ⊂ C(X ,...,X ), and A ,..(cid:13).,A ,U ,(cid:13)...,U ,N as in Claims 1-3.(cid:13)We firs(cid:12)t prove that 1 (cid:12)J 1 m+k 1 m s s (cid:12) 1 k forevery1≤ j≤J andsufficientlylarge n, f a ,...,a ,λ(s ),...,λ(s ) ≥ f A ,...,A ,U ,...U . j 1 m 1 k A⋊αG j 1 m s1 sk M (C) N (cid:13) (cid:13) Consider an (cid:13)(cid:13)enu(cid:0)meration of all polynomial(cid:1)s(cid:13)(cid:13)in C(X1,.(cid:13)(cid:13)..,€X(k+1)m) (respectively,Šin(cid:13)(cid:13) C(X1,...Xk)) with rational coefficients. Foreach t =1,2,...,we can findapositive integer n and N = rank(Q ⊗P ), t t n n t t suchthat,byClaim1(respectively, Claim2)andforall1≤ j≤ t, 1 q A ,...,A(sk),...,A ,...,A(sk) − q a ,...,α(s−1)a ,...,a ,...,α(s−1)a < j 1 1 m m M (C) j 1 k 1 m k m A t (cid:12)(cid:12)(cid:13) (cid:16) (cid:17)(cid:13) Nt (cid:13) € Š(cid:13) (cid:12)(cid:12) (cid:13) (cid:13) (cid:13) (cid:13) (re(cid:12)(cid:13)spectively, (cid:13) (cid:13) (cid:13) (cid:12) (cid:12) (cid:12) 1 p U ,...,U − p λ(s ),...,λ(s ) < ). (cid:12)(cid:13) j s1 sk (cid:13)MNt(C) j 1 k Cr⋆(G)(cid:12) t Let,forevery1≤i≤(cid:12)(cid:12)(cid:13)ma€nds∈S, Š(cid:13) (cid:13)(cid:13) (cid:0) (cid:1)(cid:13)(cid:13) (cid:12)(cid:12) (cid:13) (cid:13) (cid:12) (cid:12) ∞ ∞ ∞ ∞ ∞ A(s)= A(s) ∈ M (C)/ M (C),A =A(e) ,andU = U ∞ ∈ M (C)/ M (C), i i t=1 Nt Nt i i s s t=1 Nt Nt t=1 t=1 t=1 t=1 n o Y X Y X (cid:8) (cid:9) and C denote the C∗-algebra generated by A ,...,A(sk),...,A ,...,A(sk) . Consequently, there are 1 1 m m embeddingsρ1:A →C andρ2:Cr∗(G)→Cn,givenby o ρ α(s−1)a =A(s) andρ (λ(s))=U 1 i i 2 s with the property that (ρ ,ρ ) is€a covarianŠt homomorphism (by Claim 3). Therefore, there exists a 1 2 ∗-homomorphism ρ : A ⋊ G → C, with ρ α(s−1)a = A(s) ,andρ(λ(s)) = U . It follows that for α i i s all1≤ j≤J, € Š f a ,...,a ,λ(s ),...,λ(s ) ≥ f A ,...,A ,U ,...,U j 1 m 1 k A⋊αG j 1 m s1 sk C (cid:13) (cid:13) (cid:13)(cid:13) (cid:0) (cid:1)(cid:13)(cid:13) = l(cid:13)(cid:13)imt→€s∞up(cid:13)fj A1,...,Am,Us1,Š..(cid:13)(cid:13).,Usk (cid:13)MNt(C). € Š (cid:13) (cid:13) (cid:13) (cid:13) CrossedproductsandMFalgebras(W.Li,S.Orfanos) 7 Itremainstoshowthat forevery1≤ j≤J andsufficientlylarge n, f a ,...,a ,λ(s ),...,λ(s ) ≤ f A ,...,A ,U ,...,U +ε. j 1 m 1 k A⋊αG j 1 m s1 sk M (C) N (cid:13) (cid:13) (cid:13) (cid:0) (cid:1)(cid:13) (cid:13) € Š(cid:13) There exist(cid:13)apositive integer D andfamilie(cid:13)s ofmono(cid:13)mials p(d) ∈C(X ,...,X )a(cid:13)ndpolynomialsq(d)∈ j 1 k j C(X ,...,X )for1≤d ≤D and1≤ j≤J,suchthat 1 (k+1)m D f a ,...,a ,λ(s ),...,λ(s ) = p(d) λ(s ),...,λ(s ) q(d) a ,...,α(s−1)a ,...,a ,...,α(s−1)a j 1 m 1 k j 1 k j 1 k 1 m k m d=1 (cid:0) (cid:1) X (cid:0) (cid:1) € Š bythecovariance relation forcrossedproducts. Similarly,forsufficientlylarge n,wecanget D f A ,...,A ,U ,...,U = p(d) U ,...,U q(d) A ,...,A(sk) +r A ,...,A(sk),U ,...,U j 1 m s1 sk j s1 sk j 1 m j 1 m s1 sk d=1 € Š X € Š € Š € Š with ε max r A ,...,A(sk),U ,...,U < 1≤j≤J j 1 m s1 sk M (C) 3 N (cid:13) (cid:13) € Š byClaim3andrepeateduseofth(cid:13)(cid:13)eapproximate covariance rela(cid:13)(cid:13)tion AiUs =UsA(is)+r(Ai,A(is),Us). Wethenhave f a ,...,a ,λ(s ),...,λ(s ) − f A ,...,A ,U ,...,U j 1 m 1 k A⋊αG j 1 m s1 sk M (C) N (cid:13) (cid:13) (cid:13) (cid:0) (cid:1)(cid:13) (cid:13) € Š(cid:13) D (cid:13) (cid:13) (cid:13) (cid:13) < p(d) λ(s ),...,λ(s ) q(d) a ,...,α(s−1)a j 1 k C∗(G) j 1 k m A Xd=1(cid:13)(cid:13) (cid:0) (cid:1)(cid:13)(cid:13) (cid:13)(cid:13) € Š(cid:13)(cid:13) (cid:13) (cid:13) (cid:13)D (cid:13) ε − p(d) U ,...,U q(d) A ,...,A(sk) + j s1 sk M (C) j 1 m M (C) 3 Xd=1(cid:13) € Š(cid:13) N (cid:13) € Š(cid:13) N (cid:13) (cid:13) (cid:13) (cid:13) D (cid:13) (cid:13) (cid:13) (cid:13) ≤ p(d) λ(s ),...,λ(s ) q(d) a ,...,α(s−1)a − q(d) A ,...,A(sk) j 1 k C∗(G) j 1 k m A j 1 m M (C) Xd=1(cid:13)(cid:13) (cid:0) (cid:1)(cid:13)(cid:13) (cid:18)(cid:13)(cid:13) € Š(cid:13)(cid:13) (cid:13)(cid:13) € Š(cid:13)(cid:13) N (cid:19) D (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) ε + p(d) λ(s ),...,λ(s ) − p(d) U ,...,U q(d) A ,...,A(sk) + . j 1 k C∗(G) j s1 sk M (C) j 1 m M (C) 3 Xd=1(cid:18)(cid:13)(cid:13) (cid:0) (cid:1)(cid:13)(cid:13) (cid:13)(cid:13) € Š(cid:13)(cid:13) N (cid:19)(cid:13)(cid:13) € Š(cid:13)(cid:13) N Finally, no(cid:13)te that q(d) A ,...,A(cid:13)(sk) (cid:13) ≤ q(d) a ,...,(cid:13)α(s−1)a(cid:13) +1 for n suffi(cid:13)cientlylarge, j 1 m M (C) j 1 k m A N sodefine (cid:13) (cid:16) (cid:17)(cid:13) (cid:13) € Š(cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) D D M = max p(d) λ(s ),...,λ(s ) , q(d) a ,...,α(s−1)a +D 1≤j≤J( j 1 k C∗(G) j 1 k m A ) Xd=1(cid:13)(cid:13) (cid:0) (cid:1)(cid:13)(cid:13) Xd=1(cid:13)(cid:13) € Š(cid:13)(cid:13) anduseClaims 1and2w(cid:13)ithalarger nifnecessa(cid:13)ry,toobtai(cid:13)n,forall1≤d ≤D and(cid:13)1≤ j≤J, ε q(d) a ,...,α(s−1)a − q(d) A ,...,A(sk) < ,and j 1 k m A j 1 m M (C) 3M N (cid:13) (cid:13) (cid:13) (cid:13) € Š € Š (cid:13) (cid:13) (cid:13) (cid:13) ε (cid:13) p(d) λ(s ),...,λ(s )(cid:13) (cid:13)− p(d) U ,...,U(cid:13) < . j 1 k C∗(G) j s1 sk M (C) 3M N (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:0) (cid:1)(cid:13) (cid:13) € Š(cid:13) (cid:13) (cid:13) (cid:13) (cid:13) CrossedproductsandMFalgebras(W.Li,S.Orfanos) 8 Remark. Every discrete group is the inductive limit of its finitely generated subgroups. In particular, a discrete maximally almost periodic group is the inductive limit of its residually finite subgroups. Moreover, the inductive limit of MF algebras is an MF algebra. Therefore, Theorem 8 remains true if one assumes G to be any discrete countable amenable residually finite group, and can be extended to all discrete countable amenablemaximallyalmostperiodic groupswhose finitelygeneratedsubgroups satisfy the approximate periodicity condition. One couldalso assume that A is separable, rather than finitelygenerated,becauseofTheorem6. Examples We may now use this result to construct more exotic examples of crossed product C∗-algebras whose BDF Ext semigroupis notagroup. Example 2. Considerthe integerHeisenberggroup,whichcanbe definedabstractlyas H =〈s,t|[[s,t],s],[[s,t],t]〉. orinaconcreteway,as thesubgroupofSL (Z)generatedby 3 1 1 0 1 0 0 1 0 1 s= 0 1 0 and t = 0 1 1 ,withu=[s,t]=s−1t−1st = 0 1 0 .       0 0 1 0 0 1 0 0 1             Everyelementof H canbeuniquelywritten inthe formsktlum,for k,l.m∈Z. The sets n n K = sktlum:− <k,l,m≤ n 2 2 § ª have subsets F = sktlum:− n <k,l ≤ n,−n <m≤ n that form a Følner sequence, and if we n 2 2 2 2 define Ln=〈sn,tn,unn〉then H =pKnLn is atipling forevery n≥o1. Indeed, Ln isnormalsince (sktlum)(snptnqunr)(sktlum)−1=snptnqun(r+qk−pl)∈ L n andforany k,l,m∈Z,onecan findunique−n <k′,l′,m′≤ n and p,q,r ∈Z,suchthat 2 2 sktlum=sk′+nptl′+nqum′+n(r−pl′)=(sk′tl′um′)(snptnqunr)∈K L . n n Assume now that A is a unital finitely generated non-quasidiagonal MF algebra (e.g. A = C∗(F )) r 2 andletan actionα:H →Aut(A)beinducedby α(s)a=α(t)a=e2πθia where a ∈ A and 0 ≤ θ ≤ 1. Consider a positive integer n with the property that nθ approximates an integer. Then α is approximately periodic on L ∩F K K−1. It follows that (A,H,α) satisfies the n n n n conditions of Theorem 8, and thus the crossed product A ⋊ H is a non-quasidiagonal MF algebra, α therefore its Ext semigroupfails tobe agroup. Example 3. Considerthe Lamplightergroup,which canbedefinedabstractly as Λ=〈s,t|s2,[tjst−j,tlst−l]: j,l ∈Z〉. REFERENCES 9 or otherwise, as the semidirect product Z ⋊Z, where the action is by shifting the copies of Z Z 2 2 along Z. By denoting tjst−j = s , we may write each element of Λ uniquely as s s ···s tj0 with j j j j j < j <···< j and j inZ. Let (cid:0)L (cid:1) 1 2 k 1 2 k 0 n n n n F =K = s s ···s tj0 : − < j ≤ , − < j < j <···< j ≤ ,and0≤k<n . n n j j j 0 1 2 k 1 2 k 2 2 2 2 § ª The Følner condition follows immediatety from F s = F and |F △F t| = 2|F |/n. Let L be the n n n n n n subgroupofΛgeneratedbytnands s forall−n < j≤ n. Notethat L containsallelementss s with j j+n 2 2 n j l l− j divisible by n, and in fact, L is normal in Λ, since, for s s ···s tj0 ∈Λ and s s ···s tl0 ∈ L , n j j j l l l n 1 2 k 1 2 m wehave s s ···s tj0 s s ···s tl0 s s ···s tj0 −1= s s ··· s s s s ···s tl0 j j j l l l j j j j j +l j j +l l +j l +j l +j 1 2 k 1 2 m 1 2 k 1 1 0 k k 0 1 0 2 0 m 0 w€hich is in L .ŠM€oreover, Λ =ŠK€ L is a tilingŠfor e€very n ≥Š1, s€ince anyŠs€s ···s tj0 ∈ Λ can bŠe n n n j j j 1 2 k decomposedinto s s ···s tr0 s ···s s ···s tj0−r0 ∈K L r r r r −r r −r j −r j −r n n 1 2 m 1 0 m 0 1 0 k 0 with 0 ≤ m ≤ k < €n, −n < r ,r ,Š.€..r ≤ n, j − r divisible by n, aŠnd the cardinality of the set 2 0 1 m 2 0 0 (c+nZ)∩ r ,...,r ,j ,...,j to be an even number (or zero) for each c = 1,...,n. To verify the 1 m 1 k uniquessofsuchadecomposition,onecaneasilycomputethat K−1K ∩L ={e}forall n≥1. (cid:8) (cid:9) n n n Having studied the group in detail, let us now consider A to be any unital finitely generated non- quasidiagonal MFalgebraandletanactionα:Λ→Aut(A)beinducedby α(s)a=a∗ ,andα(t)a=e2πθia where a∈A and0≤θ ≤1. Again,forapositiveintegernwiththepropertythat nθ approximatesan integer, α is approximately periodic on L ∩K K K−1. It followsthat (A,Λ,α) satisfies the conditions n n n n ofTheorem 8,andthus the crossedproduct A ⋊ Λis anon-quasidiagonal MFalgebra,henceits Ext α semigroupis notagroup. References [1] B. Blackadar and E. Kirchberg, Generalized inductive limits of finite-dimensional C∗-algebras, Math.Ann.307(3)(1997)343–380. [2] L. Brown, R. Douglas and P. Fillmore, Extensions of C∗-algebras and K-homology, Ann.Math. 105 (1977)265–324. [3] U. Haagerup and S. Thorbjørnsen, A new application of random matrices: Ext(C∗ (F )) is not a red 2 group,Ann.Math.(2)162(2)(2005)711–775. [4] D. Hadwin and J. Shen, Some examples of Blackadar and Kirchberg’s MF algebras, Internat. J. Math.21(10)(2010)1239–1266. [5] S.Orfanos,Quasidiagonalityofcrossedproducts,J.OperatorTheory66(1)(2011)209–216. [6] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain crossed- product C∗-algebras,J.OperatorTheory4(1)(1980)93–118. [7] J. Rosenberg, Quasidiagonality and nuclearity (appendix to Strongly quasidiagonal operators by D.Hadwin), J.OperatorTheory18(1987)15–18. [8] D.Voiculescu,Thetopologicalversion offree entropy,Lett.Math.Phys. 62(1)(2002)71–82.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.